1
|
Manissorn J, Promsuk J, Wangkanont K, Thongnuek P. Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials. Drug Deliv 2025; 32:2449703. [PMID: 39782014 PMCID: PMC11721625 DOI: 10.1080/10717544.2025.2449703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles. Recombinant spider silk proteins, fibrin-binding peptides, collagen-mimetic peptides, and keratin-derived structures similarly illustrate the ability to engineer precise interactions and to design controlled release systems. Additionally, the use of resilin-like peptides showcases the potential for creating highly elastic and resilient biomaterials. This review highlights current achievements and future perspectives in the field, emphasizing the potential of biomimetic peptides to transform biopolymer-based biomedical applications.
Collapse
Affiliation(s)
- Juthatip Manissorn
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jaturong Promsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Thongnuek
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Pipis N, James BD, Allen JB. Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications. ACS Biomater Sci Eng 2025. [PMID: 39869382 DOI: 10.1021/acsbiomaterials.4c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials. These complexes form structures across length scales, including nanoparticles, microfibers, and hydrogels, a process controlled by the relative amount of each component and the type of nucleic acid and collagen. The broad distribution of different types of collagen within the body contributes to the extensive biological relevance of DNA-collagen complexes. Functional nucleic acids can form these complexes, such as siRNA, antisense oligonucleotides, DNA origami nanostructures, and, in particular, single-stranded DNA aptamers, often distinguished by their rapid self-assembly at room temperature and formation without external stimuli and modifications. The simple and seamless integration of nucleic acids within collagenous matrices enhances biomimicry and targeted bioactivity, and provides stability against enzymatic degradation, positioning DNA-collagen complexes as an advanced biomaterial system for many applications including angiogenesis, bone tissue regeneration, wound healing, and more.
Collapse
Affiliation(s)
- Nikolaos Pipis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Bryan D James
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Josephine B Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 2024; 9:e10642. [PMID: 38818118 PMCID: PMC11135157 DOI: 10.1002/btm2.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.
Collapse
Affiliation(s)
- James A. Mullin
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erfan Rahmani
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kristi L. Kiick
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
4
|
Hwang J, Kiick KL, Sullivan MO. VEGF-Encoding, Gene-Activated Collagen-Based Matrices Promote Blood Vessel Formation and Improved Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16434-16447. [PMID: 36961242 PMCID: PMC10154048 DOI: 10.1021/acsami.2c23022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Disruption in vascularization during wound repair can severely impair healing. Proangiogenic growth factor therapies have shown great healing potential; however, controlling growth factor activity and cellular behavior over desired healing time scales remains challenging. In this study, we evaluated collagen-mimetic peptide (CMP) tethers for their capacity to control growth factor gene transfer and growth factor activity using our recently developed gene-activated hyaluronic acid-collagen matrix (GAHCM). GAHCM was comprised of DNA/polyethyleneimine (PEI) polyplexes that were retained on hyaluronic acid (HA)-collagen hydrogels using CMPs. We hypothesized that using CMP-collagen tethers to control vascular endothelial growth factor-A (VEGF-A) gene delivery in fibroblasts would provide a powerful strategy to modulate the proangiogenic behaviors of endothelial cells (ECs) for blood vessel formation, resulting in enhanced wound repair. In co-culture experiments, we observed that CMP-modified GAHCM induced tunable gene delivery in fibroblasts as predicted, and correspondingly, VEGF-A produced by the fibroblasts led to increased growth and persistent migration of ECs for at least 7 days, as compared to non-CMP-modified GAHCM. Moreover, when ECs were exposed to fibroblast-containing VEGF-GAHCM with higher levels of CMP modification (50% CMP-PEI, or 50 CP), high CD31 expression was stimulated, resulting in the formation of an interconnected EC network with a significantly higher network volume and a larger diameter network structure than controls. Application of VEGF-GAHCM with 50 CP in murine splinted excisional wounds facilitated prolonged prohealing and proangiogenic responses resulting in increased blood vessel formation, improved granulation tissue formation, faster re-epithelialization, and overall enhanced repair. These findings suggest the benefits of CMP-collagen tethers as useful tools to control gene transfer and growth factor activity for improved treatment of wounds.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
| | - Kristi L. Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA, 19716
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA, 19716
| |
Collapse
|
5
|
Hwang J, Huang H, Sullivan MO, Kiick KL. Controlled Delivery of Vancomycin from Collagen-tethered Peptide Vehicles for the Treatment of Wound Infections. Mol Pharm 2023; 20:1696-1708. [PMID: 36707500 PMCID: PMC10197141 DOI: 10.1021/acs.molpharmaceut.2c00898] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the great promise of antibiotic therapy in wound infections, antibiotic resistance stemming from frequent dosing diminishes drug efficacy and contributes to recurrent infection. To identify improvements in antibiotic therapies, new antibiotic delivery systems that maximize pharmacological activity and minimize side effects are needed. In this study, we developed elastin-like peptide and collagen-like peptide nanovesicles (ECnVs) tethered to collagen-containing matrices to control vancomycin delivery and provide extended antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). We observed that ECnVs showed enhanced entrapment efficacy of vancomycin by 3-fold as compared to liposome formulations. Additionally, ECnVs enabled the controlled release of vancomycin at a constant rate with zero-order kinetics, whereas liposomes exhibited first-order release kinetics. Moreover, ECnVs could be retained on both collagen-fibrin (co-gel) matrices and collagen-only matrices, with differential retention on the two biomaterials resulting in different local concentrations of released vancomycin. Overall, the biphasic release profiles of vancomycin from ECnVs/co-gel and ECnVs/collagen more effectively inhibited the growth of MRSA for 18 and 24 h, respectively, even after repeated bacterial inoculation, as compared to matrices containing free vancomycin, which just delayed the growth of MRSA. Thus, this newly developed antibiotic delivery system exhibited distinct advantages for controlled vancomycin delivery and prolonged antibacterial activity relevant to the treatment of wound infections.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Haofu Huang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kristi L. Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
6
|
Hwang J, Kiick KL, Sullivan MO. Modified hyaluronic acid-collagen matrices trigger efficient gene transfer and prohealing behavior in fibroblasts for improved wound repair. Acta Biomater 2022; 150:138-153. [PMID: 35907557 DOI: 10.1016/j.actbio.2022.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/01/2022]
Abstract
Growth factor therapy has demonstrated great promise for chronic wound repair, but controlling growth factor activity and cell phenotype over desired time frames remains a critical challenge. In this study, we developed a gene-activated hyaluronic acid-collagen matrix (GAHCM) comprising DNA/polyethylenimine (PEI) polyplexes retained on hyaluronic acid (HA)-collagen hydrogels using collagen mimetic peptides (CMPs). We hypothesized that manipulating both the number of CMP-collagen tethers and the ECM composition would provide a powerful strategy to control growth factor gene transfer kinetics while regulating cell behavior, resulting in enhanced growth factor activity for wound repair. We observed that polyplexes with 50% CMP-modified PEI (50 CP) showed enhanced retention of polyplexes in HCM hydrogels by 2.7-fold as compared to non-CMP modified polyplexes. Moreover, the incorporation of HA in the hydrogel promoted a significant increase in gene transfection efficiency based upon analysis of Gaussia luciferase (GLuc) reporter gene expression, and gene expression could be attenuated by blocking HA-CD44 signaling. Furthermore, when fibroblasts were exposed to vascular endothelial growth factor-A (VEGF-A)-GAHCM, the 50 CP matrix facilitated sustained VEGF-A production for up to 7 days, with maximal expression at day 5. Application of these VEGF-A-50 CP samples stimulated prolonged pro-healing responses, including the TGF-β1-induced myofibroblast-like phenotypes and enhanced closure of murine splinted wounds. Overall, these findings demonstrate the use of ECM-based materials to stimulate efficient gene transfer and regulate cellular phenotype, resulting in improved control of growth factor activity for wound repair. GAHCM have significant potential to overcome key challenges in growth factor therapy for regenerative medicine. STATEMENT OF SIGNIFICANCE: Despite great promise for growth factor therapies in wound treatment, controlling growth factor activity and providing a microenvironment for cells that maximizes growth factor signaling have continued to limit the success of existing formulations. Our GAHCM strategy, combining CMP gene delivery and hyaluronic acid-collagen matrix, enabled enhanced wound healing efficacy via the combination of controlled and localized growth factor expression and matrix-mediated regulation of cell behavior. Incorporation of CMPs and HA in the same matrix synergistically enhanced VEGF activity as compared with simpler matrices. Accordingly, GAHCM will advance our ability to leverage growth factor signaling for wound healing, resulting in new long-term treatments for recalcitrant wounds.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kristi L Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Millicent O Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Malcor JD, Mallein-Gerin F. Biomaterial functionalization with triple-helical peptides for tissue engineering. Acta Biomater 2022; 148:1-21. [PMID: 35675889 DOI: 10.1016/j.actbio.2022.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
In the growing field of tissue engineering, providing cells in biomaterials with the adequate biological cues represents an increasingly important challenge. Yet, biomaterials with excellent mechanical properties often are often biologically inert to many cell types. To address this issue, researchers resort to functionalization, i.e. the surface modification of a biomaterial with active molecules or substances. Functionalization notably aims to replicate the native cellular microenvironment provided by the extracellular matrix, and in particular by collagen, its major component. As our understanding of biological processes regulating cell behaviour increases, functionalization with biomolecules binding cell surface receptors constitutes a promising strategy. Amongst these, triple-helical peptides (THPs) that reproduce the architectural and biological properties of collagen are especially attractive. Indeed, THPs containing binding sites from the native collagen sequence have successfully been used to guide cell response by establishing cell-biomaterial interactions. Notably, the GFOGER motif recognising the collagen-binding integrins is extensively employed as a cell adhesive peptide. In biomaterials, THPs efficiently improved cell adhesion, differentiation and function on biomaterials designed for tissue repair (especially for bone, cartilage, tendon and heart), vascular graft fabrication, wound dressing, drug delivery or immunomodulation. This review describes the key characteristics of THPs, their effect on cells when combined to biomaterials and their strong potential as biomimetic tools for regenerative medicine. STATEMENT OF SIGNIFICANCE: This review article describes how triple-helical peptides constitute efficient tools to improve cell-biomaterial interactions in tissue engineering. Triple helical peptides are bioactive molecules that mimic the architectural and biological properties of collagen. They have been successfully used to specifically recognize cell-surface receptors and provide cells seeded on biomaterials with controlled biological cues. Functionalization with triple-helical peptides has enabled researchers to improve cell function for regenerative medicine applications, such as tissue repair. However, despite encouraging results, this approach remains limited and under-exploited, and most functionalization strategies reported in the literature rely on biomolecules that are unable to address collagen-binding receptors. This review will assist researchers in selecting the correct tools to functionalize biomaterials in efforts to guide cellular response.
Collapse
Affiliation(s)
- Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France.
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France
| |
Collapse
|
8
|
Dunshee LC, McDonough R, Price C, Kiick KL. Retention of peptide-based vesicles in murine knee joints after intra-articular injection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Dunshee LC, Sullivan MO, Kiick KL. Therapeutic nanocarriers comprising extracellular matrix-inspired peptides and polysaccharides. Expert Opin Drug Deliv 2021; 18:1723-1740. [PMID: 34696691 PMCID: PMC8601199 DOI: 10.1080/17425247.2021.1988925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The extracellular matrix (ECM) is vital for cell and tissue development. Given its importance, extensive work has been conducted to develop biomaterials and drug delivery vehicles that capture features of ECM structure and function. AREAS COVERED This review highlights recent developments of ECM-inspired nanocarriers and their exploration for drug and gene delivery applications. Nanocarriers that are inspired by or created from primary components of the ECM (e.g. elastin, collagen, hyaluronic acid (HA), or combinations of these) are explicitly covered. An update on current clinical trials employing elastin-like proteins is also included. EXPERT OPINION Novel ECM-inspired nanoscale structures and conjugates continue to be of great interest in the materials science and bioengineering communities. Hyaluronic acid nanocarrier systems in particular are widely employed due to the functional activity of HA in mediating a large number of disease states. In contrast, collagen-like peptide nanocarriers are an emerging drug delivery platform with potential relevance to a myriad of ECM-related diseases, making their continued study most pertinent. Elastin-like peptide nanocarriers have a well-established tolerability and efficacy track record in preclinical analyses that has motivated their recent advancement into the clinical arena.
Collapse
Affiliation(s)
- Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kristi L Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
10
|
Thapa RK, Margolis DJ, Kiick KL, Sullivan MO. Enhanced wound healing via collagen-turnover-driven transfer of PDGF-BB gene in a murine wound model. ACS APPLIED BIO MATERIALS 2020; 3:3500-3517. [PMID: 32656505 DOI: 10.1021/acsabm.9b01147] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wound healing is a complex biological process that requires coordinated cell proliferation, migration, and extracellular matrix production/remodeling, all of which are inhibited/delayed in chronic wounds. In this study, a formulation was developed that marries a fibrin-based, provisional-like matrix with collagen mimetic peptide (CMP)/PDGF gene-modified collagens, leading to the formation of robust gels that supported temporally controlled PDGF expression and facile application within the wound bed. Analysis employing in vitro co-gel scaffolds confirmed sustained and temporally controlled gene release based on matrix metalloproteinase (MMP) activity, with ~30% higher PDGF expression in MMP producing fibroblasts as-compared with non-MMP-expressing cells. The integration of fibrin with the gene-modified collagens resulted in co-gels that strongly supported both fibroblast cell recruitment/invasion as well as multiple aspects of the longer-term healing process. The excisional wound healing studies in mice established faster wound closure using CMP-modified PDGF polyplex-loaded co-gels, which exhibited up to 24% more wound closure (achieved with ~2 orders of magnitude lower growth factor dosing) after 9 days as compared to PDGF-loaded co-gels, and 19% more wound closure after 9 days as compared to CMP-free polyplex loaded co-gels. Moreover, minimal scar formation as well as improved collagen production, myofibroblast activity, and collagen orientation was observed following CMP-modified PDGF polyplex-loaded co-gel application on wounds. Taken together, the combined properties of the co-gels, including their stability and capacity to control both cell recruitment and cell phenotype within the murine wound bed, strongly supports the potential of the co-gel scaffolds for improved treatment of chronic non-healing wounds.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - David J Margolis
- Perelman School of Medicine, Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
11
|
Hwang J, Sullivan MO, Kiick KL. Targeted Drug Delivery via the Use of ECM-Mimetic Materials. Front Bioeng Biotechnol 2020; 8:69. [PMID: 32133350 PMCID: PMC7040483 DOI: 10.3389/fbioe.2020.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
The use of drug delivery vehicles to improve the efficacy of drugs and to target their action at effective concentrations over desired periods of time has been an active topic of research and clinical investigation for decades. Both synthetic and natural drug delivery materials have facilitated locally controlled as well as targeted drug delivery. Extracellular matrix (ECM) molecules have generated widespread interest as drug delivery materials owing to the various biological functions of ECM. Hydrogels created using ECM molecules can provide not only biochemical and structural support to cells, but also spatial and temporal control over the release of therapeutic agents, including small molecules, biomacromolecules, and cells. In addition, the modification of drug delivery carriers with ECM fragments used as cell-binding ligands has facilitated cell-targeted delivery and improved the therapeutic efficiency of drugs through interaction with highly expressed cellular receptors for ECM. The combination of ECM-derived hydrogels and ECM-derived ligand approaches shows synergistic effects, leading to a great promise for the delivery of intracellular drugs, which require specific endocytic pathways for maximal effectiveness. In this review, we provide an overview of cellular receptors that interact with ECM molecules and discuss examples of selected ECM components that have been applied for drug delivery in both local and systemic platforms. Finally, we highlight the potential impacts of utilizing the interaction between ECM components and cellular receptors for intracellular delivery, particularly in tissue regeneration applications.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
12
|
Thapa RK, Kiick KL, Sullivan MO. Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds. Acta Biomater 2020; 103:115-128. [PMID: 31843720 PMCID: PMC7044801 DOI: 10.1016/j.actbio.2019.12.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Wound infections are a significant clinical problem affecting millions of people worldwide. Topically applied antibacterial formulations with longer residence time and controlled antimicrobial release would offer significant benefits for improved prevention and treatment of infected wounds. In this study, we developed collagen mimetic peptide (CMP) tethered vancomycin (Van)-containing liposomes (Lipo) (CMP-Van-Lipo) hybridized to collagen-based hydrogels ('co-gels,' e.g., collagen/fibrin combination hydrogels) for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in vitro and in vivo. Tethering CMP-Van-Lipo nanostructures to co-gels enabled sustained Van release and enhanced in vitro antibacterial effects against MRSA as compared to Van loaded co-gels or Van-Lipo loaded co-gels following multiple fresh bacterial inoculations over a period of 48 h. These results were successfully translated in vivo wherein MRSA infected wounds were effectively treated with CMP-Van-Lipo loaded co-gels for up to 9 days, whereas the activity of Van loaded co-gels and Van-Lipo loaded co-gels were limited to <2 days. Moreover, CMP-Van-Lipo retained in vivo antibacterial activity even after re-inoculation with bacteria; however, Van loaded co-gels and Van-Lipo loaded co-gels allowed significant bacterial growth demonstrating their limited efficacy. Altogether, these results provide proof-of-concept that CMP-Van-Lipo loaded co-gels can be effective topical formulations for preventive treatment of MRSA wound infections. STATEMENT OF SIGNIFICANCE: Current topical antimicrobial formulations (e.g., creams, gels, and ointments) do not control release, leaving antimicrobial concentrations either too high or too low at different time points, and provoking the development of antibacterial resistance and recurrence of wound infections. Here, collagen mimetic peptides (CMPs) were used to stably hybridize vancomycin-containing liposomal nanocarriers (CMP-Van-Lipo) within collagen-fibrin co-gels via triple-helical integration with collagen, enabling control over Van release for prolonged time periods and minimizing the adverse effects of the Lipo formulations on fibroblast cell viability in the wound bed. The CMP-Van-Lipo loaded co-gel's higher antibacterial effects in vitro were successfully translated in vivo for treatment of MRSA-infected mouse wounds, and thus the co-gels can be a potentially translatable treatment for improved clinical wound management.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 USA.
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA.
| |
Collapse
|
13
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
14
|
Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019; 16:1149-1167. [PMID: 31498013 DOI: 10.1080/17425247.2019.1663822] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The delivery of nucleic acid therapeutics through non-viral carriers face multiple biological barriers that reduce their therapeutic efficiency. Despite great progress, there remains a significant technological gap that continues to limit clinical translation of these nanocarriers. A number of polymeric materials are being exploited to efficiently deliver nucleic acids and achieve therapeutic effects. Areas covered: We discuss the recent advances in the polymeric materials for the delivery of nucleic acid therapeutics. We examine the use of common polymer architectures and highlight the challenges that exist for their development from bench side to clinic. We also provide an overview of the most notable improvements made to circumvent such challenges, including structural modification and stimuli-responsive approaches, for safe and effective nucleic acid delivery. Expert opinion: It has become apparent that a universal carrier that follows 'one-size' fits all model cannot be expected for delivery of all nucleic acid therapeutics. Carriers need to be designed to exhibit sensitivity and specificity toward individual targets diseases/indications, and relevant subcellular compartments, each of which possess their own unique challenges. The ability to devise synthetic methods that control the molecular architecture enables the future development that allow for the construction of 'intelligent' designs.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Boston , USA
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Gothenburg , Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville , TN , USA
| | | |
Collapse
|
15
|
Goldbloom-Helzner L, Hao D, Wang A. Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides. Int J Mol Sci 2019; 20:E4072. [PMID: 31438477 PMCID: PMC6747276 DOI: 10.3390/ijms20174072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Collagen is the most widespread extracellular matrix (ECM) protein in the body and is important in maintaining the functionality of organs and tissues. Studies have explored interventions using collagen-targeting tissue engineered techniques, using collagen hybridizing or collagen binding peptides, to target or treat dysregulated or injured collagen in developmental defects, injuries, and diseases. Researchers have used collagen-targeting peptides to deliver growth factors, drugs, and genetic materials, to develop bioactive surfaces, and to detect the distribution and status of collagen. All of these approaches have been used for various regenerative medicine applications, including neovascularization, wound healing, and tissue regeneration. In this review, we describe in depth the collagen-targeting approaches for regenerative therapeutics and compare the benefits of using the different molecules for various present and future applications.
Collapse
Affiliation(s)
- Leora Goldbloom-Helzner
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
16
|
Qin J, Luo T, Kiick KL. Self-Assembly of Stable Nanoscale Platelets from Designed Elastin-like Peptide–Collagen-like Peptide Bioconjugates. Biomacromolecules 2019; 20:1514-1521. [DOI: 10.1021/acs.biomac.8b01681] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingya Qin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology
Institute, Newark, Delaware 19711, United States
| |
Collapse
|
17
|
Abstract
The diverse amino acid chemistries and secondary structures in peptides provide 'minimalist' mimics of motifs in proteins and offer many ideal properties for targeted delivery approaches. Several non-viral vectors (polymers and lipids) have been studied for their potential applications in gene delivery. However, non-specific uptake, lack of targeting, inability to escape endosomes, and inefficient nuclear delivery limit their application. Peptide-assisted trafficking of non-viral vectors can potentially overcome these biological barriers to improve gene delivery through targeted uptake using key cell-surface receptors (e.g., integrins, growth factor receptors, and G-protein coupled receptors); membrane disruption for endosomal escape; and nuclear importation. Furthermore, the capacity of peptides to regulate spatio-temporal control over gene delivery opens multi-faceted avenues for effective gene delivery in a variety of complex applications. Rigorous on-going in vitro and in vivo studies utilizing peptides for targeted and microenvironment-sensitive gene delivery could promote their widespread clinical usage.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
18
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Munsell EV, Kurpad DS, Freeman TA, Sullivan MO. Histone-targeted gene transfer of bone morphogenetic protein-2 enhances mesenchymal stem cell chondrogenic differentiation. Acta Biomater 2018; 71:156-167. [PMID: 29481871 PMCID: PMC5899933 DOI: 10.1016/j.actbio.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 01/27/2023]
Abstract
Skeletal tissue regeneration following traumatic injury involves a complex cascade of growth factor signals that direct the differentiation of mesenchymal stem cells (MSCs) within the fracture. The necessity for controlled and localized expression of these factors has highlighted the role gene therapy may play as a promising treatment option for bone repair. However, the design of nanocarrier systems that negotiate efficient intracellular trafficking and nuclear delivery represents a significant challenge. Recent investigations have highlighted the roles histone tail sequences play in directing nuclear delivery and activating DNA transcription. We previously established the ability to recapitulate these natural histone tail activities within non-viral nanocarriers, improving gene transfer and expression by enabling effective navigation to the nucleus via retrograde vesicular trafficking. Herein, we demonstrate that histone-targeting leads to ∼4-fold enhancements in osteogenic bone morphogenetic protein-2 (BMP-2) expression by MSCs over 6 days, as compared with standard polymeric transfection reagents. This improved expression augmented chondrogenesis, an essential first step in fracture healing. Importantly, significant enhancements of cartilage-specific protein expression were triggered by histone-targeted gene transfer, as compared with the response to treatment with equivalent amounts of recombinant BMP-2 protein. In fact, an ∼100-fold increase in recombinant BMP-2 was required to achieve similar levels of chondrogenic gene and protein expression. The enhancements in differentiation achieved using histone-targeting were in part enabled by an increase in transcription factor expression, which functioned to drive MSC chondrogenesis. These novel findings demonstrate the utility of histone-targeted gene transfer strategies to enable substantial reductions in BMP-2 dosing for bone regenerative applications. STATEMENT OF SIGNIFICANCE This contribution addresses significant limitations in non-viral gene transfer for bone regenerative applications by exploiting a novel histone-targeting approach for cell-triggered delivery that induces osteogenic BMP-2 expression coincident with the initiation of bone repair. During repair, proliferating MSCs respond to a complex series of growth factor signals that direct their differentiation along cellular lineages essential to mature bone formation. Although these MSCs are ideal targets for enhanced transfection during cellular mitosis, few non-viral delivery approaches exist to enable maximization of this effect. Accordingly, this contribution seeks to utilize our histone-targeted nanocarrier design strategy to stimulate BMP-2 gene transfer in dividing MSCs. This gene-based approach leads to significantly augmented MSC chondrogenesis, an essential first step in bone tissue repair.
Collapse
Affiliation(s)
- Erik V Munsell
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| | - Deepa S Kurpad
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Theresa A Freeman
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| |
Collapse
|
20
|
Zhu S, Yuan Q, Yin T, You J, Gu Z, Xiong S, Hu Y. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J Mater Chem B 2018; 6:2650-2676. [DOI: 10.1039/c7tb02999c] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By combining regulatory parameters with characterization methods, researchers can selectively fabricate collagenous biomaterials with various functional responses for biomedical applications.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Qijuan Yuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Tao Yin
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Juan You
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Yang Hu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| |
Collapse
|
21
|
Urello MA, Kiick KL, Sullivan MO. ECM turnover-stimulated gene delivery through collagen-mimetic peptide-plasmid integration in collagen. Acta Biomater 2017; 62:167-178. [PMID: 28865990 PMCID: PMC5654588 DOI: 10.1016/j.actbio.2017.08.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022]
Abstract
Gene therapies have great potential in regenerative medicine; however, clinical translation has been inhibited by low stability and limited transfection efficiencies. Herein, we incorporate collagen-mimetic peptide (CMP)-linked polyplexes in collagen scaffolds to increase DNA stability by up to 400% and enable tailorable in vivo transgene expression at 100-fold higher levels and 10-fold longer time periods. These improvements were directly linked to a sustained interaction between collagen and polyplexes that persisted during cellular remodeling, polyplex uptake, and intracellular trafficking. Specifically, incorporation of CMPs into polyethylenimine (PEI) polyplexes preserved serum-exposed polyplex-collagen activity over a period of 14days, with 4 orders-of-magnitude more intact DNA present in CMP-modified polyplex-collagen relative to unmodified polyplex-collagen after a 10day incubation under cell culture conditions. CMP-modification also altered endocytic uptake, as indicated by gene silencing studies showing a nearly 50% decrease in transgene expression in response to caveolin-1 silencing in modified samples versus only 30% in unmodified samples. Furthermore, cellular internalization studies demonstrated that polyplex-collagen association persisted within cells in CMP polyplexes, but not in unmodified polyplexes, suggesting that CMP linkage to collagen regulates intracellular transport. Moreover, experiments in an in vivo repair model showed that CMP modification enabled tailoring of transgene expression from 4 to 25days over a range of concentrations. Overall, these findings demonstrate that CMP decoration provides substantial improvements in gene retention, altered release kinetics, improved serum-stability, and improved gene activity in vivo. This versatile technique has great potential for multiple applications in regenerative medicine. STATEMENT OF SIGNIFICANCE In this work, we demonstrate a novel approach for stably integrating DNA into collagen scaffolds to exploit the natural process of collagen remodelling for high efficiency non-viral gene delivery. The incorporation of CMPs into DNA polyplexes, coupled with the innate affinity between CMPs and collagen, not only permitted improved control over polyplex retention and release, but also provided a series of substantial and highly unique benefits via the stable and persistent linkage between CMP-polyplexes and collagen fragments. Specifically, CMP-modification of polyplexes was demonstrated to (i) control release for nearly a month, (ii) improve vector stability under physiological-like conditions, and (iii) provide ligands able to efficiently transfer genes via endocytic collagen pathways. These unique properties overcome key barriers inhibiting non-viral gene therapy.
Collapse
Affiliation(s)
- Morgan A Urello
- Dept. of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Dept. of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Millicent O Sullivan
- Dept. of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
22
|
Luo T, David MA, Dunshee LC, Scott RA, Urello MA, Price C, Kiick KL. Thermoresponsive Elastin-b-Collagen-Like Peptide Bioconjugate Nanovesicles for Targeted Drug Delivery to Collagen-Containing Matrices. Biomacromolecules 2017; 18:2539-2551. [PMID: 28719196 PMCID: PMC5815509 DOI: 10.1021/acs.biomac.7b00686] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past few decades, (poly)peptide block copolymers have been widely employed in generating well-defined nanostructures as vehicles for targeted drug delivery applications. We previously reported the assembly of thermoresponsive nanoscale vesicles from an elastin-b-collagen-like peptide (ELP-CLP). The vesicles were observed to dissociate at elevated temperatures, despite the LCST-like behavior of the tethered ELP domain, which is suggested to be triggered by the unfolding of the CLP domain. Here, the potential of using the vesicles as drug delivery vehicles for targeting collagen-containing matrices is evaluated. The sustained release of an encapsulated model drug was achieved over a period of 3 weeks, following which complete release could be triggered via heating. The ELP-CLP vesicles show strong retention on a collagen substrate, presumably through collagen triple helix interactions. Cell viability and proliferation studies using fibroblasts and chondrocytes suggest that the vesicles are highly cytocompatible. Additionally, essentially no activation of a macrophage-like cell line is observed, suggesting that the vesicles do not initiate an inflammatory response. Endowed with thermally controlled delivery, the ability to bind collagen, and excellent cytocompatibility, these ELP-CLP nanovesicles are suggested to have significant potential in the controlled delivery of drugs to collagen-containing matrices and tissues.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Michael A. David
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Lucas C. Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Morgan A. Urello
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| |
Collapse
|
23
|
Abstract
Collagen-like peptides (CLPs), also known as collagen-mimetic peptides (CMPs), are short synthetic peptides that mimic the triple helical conformation of native collagens. Traditionally, CLPs have been widely used in deciphering the chemical basis for collagen triple helix stabilization, mimicking collagen fibril formation and fabricating other higher-order supramolecular self-assemblies. While CLPs have been used extensively for elucidation of the assembly of native collagens, less work has been reported on the use of CLP-polymer and CLP-peptide conjugates in the production of responsive assemblies. CLP triple helices have been used as physical cross-links in CLP-polymer hydrogels with predesigned thermoresponsiveness. The more recently reported ability of CLP to target native collagens via triple helix hybridization has further inspired the production of CLP-polymer and CLP-peptide bioconjugates and the employment of these conjugates in generating well-defined nanostructures for targeting collagen substrates. This review summarizes the current progress and potential of using CLPs in biomedical arenas and is intended to serve as a general guide for designing CLP-containing biomaterials.
Collapse
Affiliation(s)
| | - Kristi L Kiick
- Delaware Biotechnology Institute , Newark, Delaware 19711, United States
| |
Collapse
|
24
|
Wahyudi H, Reynolds AA, Li Y, Owen SC, Yu SM. Targeting collagen for diagnostic imaging and therapeutic delivery. J Control Release 2016; 240:323-331. [PMID: 26773768 PMCID: PMC4936964 DOI: 10.1016/j.jconrel.2016.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 12/22/2022]
Abstract
As the most abundant protein in mammals and a major structural component in extracellular matrix, collagen holds a pivotal role in tissue development and maintaining the homeostasis of our body. Persistent disruption to the balance between collagen production and degradation can cause a variety of diseases, some of which can be fatal. Collagen remodeling can lead to either an overproduction of collagen which can cause excessive collagen accumulation in organs, common to fibrosis, or uncontrolled degradation of collagen seen in degenerative diseases such as arthritis. Therefore, the ability to monitor the state of collagen is crucial for determining the presence and progression of numerous diseases. This review discusses the implications of collagen remodeling and its detection methods with specific focus on targeting native collagens as well as denatured collagens. It aims to help researchers understand the pathobiology of collagen-related diseases and create novel collagen targeting therapeutics and imaging modalities for biomedical applications.
Collapse
Affiliation(s)
- Hendra Wahyudi
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda A Reynolds
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Shawn C Owen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Urello MA, Kiick KL, Sullivan MO. Integration of growth factor gene delivery with collagen-triggered wound repair cascades using collagen-mimetic peptides. Bioeng Transl Med 2016; 1:207-219. [PMID: 27981245 PMCID: PMC5125401 DOI: 10.1002/btm2.10037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Growth factors (GFs) play vital roles in wound repair. Many GF therapies have reached clinical trials, but success has been hindered by safety concerns and a lack of efficacy. Previously, we presented an approach to produce protein factors in wound beds through localized gene delivery mediated by biomimetic peptides. Modification of polyethylenimine (PEI) DNA polyplexes with collagen-mimetic peptides (CMPs) enabled tailoring of polyplex release/retention and improved gene transfer activity in a cell-responsive manner. In this work, CMP-mediated delivery from collagen was shown to improve expression of platelet-derived growth factor-BB (PDGF-BB) and promote a diverse range of cellular processes associated with wound healing, including proliferation, extracellular matrix production, and chemotaxis. Collagens were pre-exposed to physiologically-simulating conditions (complete media, 37°C) for days to weeks prior to cell seeding to simulate the environment within typical wound dressings. In cell proliferation studies, significant increases in cell counts were demonstrated in collagen gels containing CMP-modified polyplex versus unmodified polyplex, and these effects became most pronounced following prolonged preincubation periods of greater than a week. Collagen containing CMP-modified polyplexes also induced a twofold increase in gel contraction as well as enhanced directionality and migratory activity in response to cell-secreted PDGF-BB gradients. While these PDGF-BB-triggered behaviors were observed in collagens containing unmodified polyplexes, the responses withstood much longer preincubation periods in CMP-modified polyplex samples (10 days vs. <5 days). Furthermore, enhanced closure rates in an in vitro wound model suggested that CMP-based PDGF-BB delivery may have utility in actual wound repair and other regenerative medicine applications.
Collapse
Affiliation(s)
- Morgan A. Urello
- Dept. of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716
| | - Kristi L. Kiick
- Dept. of Material Science and EngineeringUniversity of DelawareNewarkDE19716
| | | |
Collapse
|
26
|
Luo T, Kiick KL. Noncovalent Modulation of the Inverse Temperature Transition and Self-Assembly of Elastin-b-Collagen-like Peptide Bioconjugates. J Am Chem Soc 2015; 137:15362-5. [PMID: 26633746 PMCID: PMC4930074 DOI: 10.1021/jacs.5b09941] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive nanostructures produced with peptide domains from the extracellular matrix offer great opportunities for imaging and drug delivery. Although the individual utility of elastin-like (poly)peptides and collagen-like peptides in such applications has been demonstrated, the synergistic advantages of combining these motifs in short peptide conjugates have surprisingly not been reported. Here, we introduce the conjugation of a thermoresponsive elastin-like peptide (ELP) with a triple-helix-forming collagen-like peptide (CLP) to yield ELP-CLP conjugates that show a remarkable reduction in the inverse transition temperature of the ELP domain upon formation of the CLP triple helix. The lower transition temperature of the conjugate enables the facile formation of well-defined vesicles at physiological temperature and the unexpected resolubilization of the vesicles at elevated temperatures upon unfolding of the CLP domain. Given the demonstrated ability of CLPs to modify collagens, our results not only provide a simple and versatile avenue for controlling the inverse transition behavior of ELPs, but also suggest future opportunities for these thermoresponsive nanostructures in biologically relevant environments.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, Newark, Delaware 19711, United States
| |
Collapse
|