1
|
Chen J, Li D, Ding X, Zhang D. Sensitive and selective electrochemical aptasensing method for the voltammetric determination of dopamine based on AuNPs/PEDOT-ERGO nanocomposites. Bioelectrochemistry 2024; 157:108653. [PMID: 38281365 DOI: 10.1016/j.bioelechem.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
In this study, the effects of phosphate buffered saline (PBS) and graphene oxide (GO) as supporting electrolytes and dopants on the electropolymerization process of 3,4-ethylenedioxythiophene (EDOT) on glassy carbon electrode (GCE) were investigated. It was found that the PEDOT-ERGO nanocomposites obtained by a simple one-step electrochemical redox polymerization method using GO as the only supporting electrolyte and dopant possess excellent electrochemical properties. Then, the PEDOT-ERGO nanocomposites were used as electrode substrate to further modify with AuNPs, and an electrochemical aptasensor based on AuNPs/PEDOT-ERGO nanocomposites was successfully constructed for the sensitive and selective determination of dopamine (DA). Comparison of the cyclic voltammetric response of different neurotransmitters before and after aptamer assembly showed that the aptamer significantly improved the selectivity of the sensor for DA. The low detection limit of 1.0 μM (S/N = 3) indicated the good electrochemical performance of the PEDOT-ERGO nanocomposite film. Moreover, the aptasensor showed good recoveries in 50-fold diluted fetal bovine serum with RSD values all less than 5 % (n = 5), indicating that the PEDOT-ERGO nanocomposites and the electrochemical aptasensor have promising applications in other neurochemicals assay and biomedical analysis.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dandan Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Oziat J, Babin T, Gougis M, Malliaras GG, Mailley P. Electrochemical detection of redox molecules secreted by Pseudomonas aeruginosa - Part 2: Enhanced detection owing to PEDOT:PSS electrode structuration. Bioelectrochemistry 2023; 154:108538. [PMID: 37549554 DOI: 10.1016/j.bioelechem.2023.108538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Fast bacterial detection and identification is a crucial challenge in order to improve our antibiotics use and reduce the antimicrobial resistance. Electroanalysis of biological fluids is cheap and can be done in situ but the electrode material needs to be perfectly chosen. We previously studied electrochemical signature of Pseudomonas aeruginosa's secretome, thanks to glassy carbon electrode. Some conductive polymers are particularly efficient for biological use because of their antifouling properties, biocompatibility and way of processing. In this paper, we described the fabrication, characterization and utilisation of PEDOT:PSS film to detect and identify Pseudomonas aeruginosa through three of its secreted molecules: pyocyanin, Pseudomonas quinolone PQS and 2'-aminoacetophenone. The electrochemical responses, clearly amplified by PEDOT:PSS, can be used to identify these bacteria quickly and efficiently.
Collapse
Affiliation(s)
- Julie Oziat
- CEA, Leti, MINATEC Campus, F-38054 Grenoble, France; Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Bioserenity, 47 Bd de l'Hopital, F-75013 Paris, France
| | | | | | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | | |
Collapse
|
3
|
Patra S, Sahu KM, Reddy AA, Swain SK. Polymer and biopolymer based nanocomposites for glucose sensing. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - A. Amulya Reddy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
4
|
Electrochemical determination of acetamiprid using PEDOT sensing coating functionalized with carbon quantum dots and Prussian blue nanoparticles. Mikrochim Acta 2022; 189:341. [PMID: 35997821 DOI: 10.1007/s00604-022-05434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
A dual-mode electrochemical biosensor for acetamiprid detection was proposed for the first time based on carbon quantum dots/Prussian blue (CQDs/PB)-functionalized poly(3,4-ethylenedioxythiphene) (PEDOT) nanocomposite. The nanocomposite with spherical stacking nanostructure showed high surface area, excellent catalytic ability, and cycling stability. The biosensor can be effortlessly constructed after the immobilization of acetamiprid aptamer. The concentration of acetamiprid can be determined by differential pulse voltammetry (DPV) based on its signal change deduced from the pristine PB. With the capture of acetamiprid, the response current (I-T) signal generated by hydrogen peroxide catalysis from the biosensor can also been used to establish the method for monitoring acetamiprid. The dual-mode biosensor showed a wide linear range from 10-12 g mL-1 to 10-6 g mL-1, low detection limits of 6.84 × 10-13 g mL-1 and 4.99 × 10-13 g mL-1, and ultrafast detection time of 25 s and 5 s through DPV and I-T mode, respectively. The biosensor possessed excellent selectivity and stability. More importantly, the biosensor was successfully applied to detect acetamiprid residues in vegetables, proving a promising approach for routine detection of pesticide in real samples. The biosensor based on PEDOT/CQDs/PB for acetamiprid can be effortlessly constructed through both the increase of differential pulse voltammetry (DPV) signal change deduced by the pristine PB and the decrease of the response current (I-T) signal of the reduction of hydrogen peroxide catalyzed by PEDOT/CQDs/PB.
Collapse
|
5
|
Zhao Z, Chen H, Cheng Y, Huang Z, Wei X, Feng J, Cheng J, Mugo SM, Jaffrezic-Renault N, Guo Z. Electrochemical aptasensor based on electrodeposited poly(3,4-ethylenedioxythiophene)-graphene oxide coupled with Au@Pt nanocrystals for the detection of 17β-estradiol. Mikrochim Acta 2022; 189:178. [PMID: 35386009 DOI: 10.1007/s00604-022-05274-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
An electrochemical aptasensor is reported for the sensitive and specific monitoring of 17β-estradiol (E2) based on the modification of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT)-graphene oxide (GO) coupled with Au@Pt nanocrystals (Au@Pt). With excellent conductivity, chemical stability and active sites, the PEDOT-GO nanocomposite film was firstly in situ polymerized on the glassy carbon electrode by cyclic voltammetry. Subsequently, one-step synthesized Au@Pt were decorated on the conductive polymer, providing a platform for immobilizing the aptamer and enhancing the detecting sensitivity. With the addition of E2, since the interfacial electron transfer process was retarded by the E2-aptamer complex, the differential pulse voltammetry signal decreased gradually. Under optimum conditions, the calibration curve of E2 exhibited a linear range between 0.1 pM and 1 nM, with a low detection limit (S/N = 3) of 0.08 pM. The developed aptasensor showed admiring selectivity, stability, and reproducibility. It was tested in human serum, lake water and tap water samples after low-cost and simple pretreatment. Consequently, the developed platform could provide a new design thought for ultrasensitive detection of E2 in clinical and environmental samples.
Collapse
Affiliation(s)
- Zhi Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.,School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.,Wuhan Jianghan Center for Disease Prevention and Control, Wuhan, 430015, People's Republic of China
| | - Hao Chen
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ya Cheng
- Central War Zone General Hospital, Hankou Hospital District, 68 Huangpu Street, Wuhan, 430070, People's Republic of China
| | - Ziyu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.,School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Xianghong Wei
- School of Basic Medicine, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Jialu Feng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Jing Cheng
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, UMR-CNRS 5280, University of Lyon, 5, La Doua Street, Villeurbanne, 69100, Lyon, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
6
|
Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00209-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
9
|
Rajaram R, Kiruba M, Suresh C, Mathiyarasu J, Kumaran S, Kumaresan R. Amperometric determination of Myo-inositol using a glassy carbon electrode modified with nanostructured copper sulfide. Mikrochim Acta 2020; 187:334. [PMID: 32417978 DOI: 10.1007/s00604-020-04300-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/23/2020] [Indexed: 12/30/2022]
Abstract
A method for the amperometric determination of Myo-inositol is presented. Nanostructured copper sulfide material was synthesized by solvothermal method and utilized as sensor matrix. The physico-chemical analysis using XRD, Raman, FE-SEM, TEM, and XPS confirmed the formation of CuS material. The voltammetric response of CuS-modified glassy carbon electrode for a successive Myo-inositol (0.5 μM) addition confirmed that the reaction takes place at the surface of the electrode. The modified electrode resulted in signal enhancement for a linear response ranging from 0.5-8.5 μM at an applied overpotential of 0.65 V with a correlation coefficient value (R2) of 0.99. The sensitivity and limit of detection of the modified electrode were 7.87 μA μM-1 cm-2 and 0.24 μM, respectively. The interfering effect of various compounds present in real samples was examined. Graphical abstract Schematic representation of synthetic protocol of nanostructured CuS and Myo-inositol oxidation on CuS-modified glassy carbon electrode in basic medium.
Collapse
Affiliation(s)
- Rajendran Rajaram
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Central Electrochemical Research Institute (CECRI) Campus, Chennai, 600113, India.,Electrodics and Electrocatalysis Division, CSIR- Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India
| | - Muniyandi Kiruba
- PG & Research Department of Chemistry, Alagappa Government Arts College, Karaikudi, Tamil Nadu, 630003, India
| | - Chinnathambi Suresh
- Electrodics and Electrocatalysis Division, CSIR- Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| | - Jayaraman Mathiyarasu
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Central Electrochemical Research Institute (CECRI) Campus, Chennai, 600113, India. .,Electrodics and Electrocatalysis Division, CSIR- Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| | - Shanmugam Kumaran
- Department of Bio-Technology, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu, 613 403, India
| | - Ramanathan Kumaresan
- Department of Medical Biochemistry, Biomedical Division, School of Medicine, College of Health Sciences, Mekelle University (Ayder Campus), P.O. Box 1871, Mekelle, Ethiopia
| |
Collapse
|
10
|
Electrodeposited poly(3,4-ethylenedioxythiophene) doped with graphene oxide for the simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Mikrochim Acta 2020; 187:94. [PMID: 31902014 DOI: 10.1007/s00604-019-4083-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/13/2019] [Indexed: 01/20/2023]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) films were electrodeposited by cyclic voltammetry on a glassy carbon electrode (GCE) in aqueous solution. Three kinds of supporting electrolytes were used, viz. graphene oxide (GO), phosphate buffered saline (PBS), and GO in PBS, respectively. The surface morphology of the modified electrodes was characterized by scanning electron microscopy. The electrochemical performance of the modified electrodes was investigated by cyclic voltammetry and electrochemical impedance spectroscopy by using the hexacyanoferrate redox system. The results demonstrate that the PEDOT-GO/GCE, which was electropolymerized in aqueous solutions containing EDOT and GO, shows the best electrochemical activities compared with other modified electrodes. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were investigated by cyclic voltammetry. The PEDOT-GO/GCE exhibits enhanced electrocatalytic activities towards these important biomolecules. Under physiological pH conditions and in the mixed system of AA, DA and UA, the modified GCE exhibits the following figures of merit: (a) a linear voltammetric response in the concentration ranges of 100-1000 μM for AA, 6.0-200 μM for DA, and 40-240 μM for UA; (b) well separated oxidation peaks near 31, 213 and 342 mV (vs. saturated Ag/AgCl) for AA, DA and UA, respectively; and (c) detection of limits (at S/N = 3) of 20, 2.0 and 10 μM. The results demonstrate that GO, based on its relatively large number of anionic sites, can be used as the sole weak electrolyte and charge balance dopant for the preparation of functionally doped conducting polymers by electrodeposition. Graphical abstractSchematic representation of a nanostructure composed of hybrid conducting polymer PEDOT-GO nanocomposites, and its application to simultaneous determination of ascorbic acid, dopamine and uric acid.
Collapse
|
11
|
Zhang H, Yu Y, Shen X, Hu X. A Cu2O/Cu/carbon cloth as a binder-free electrode for non-enzymatic glucose sensors with high performance. NEW J CHEM 2020. [DOI: 10.1039/c9nj05256a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An electrode prepared via potentiostatic electrochemical deposition exhibits a 60 nM detection limit and a 1 linear range of 1 to 1555 μM.
Collapse
Affiliation(s)
- Haoze Zhang
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Yawei Yu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Xiaodong Shen
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Xiulan Hu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| |
Collapse
|
12
|
Phytic acid doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for enzymeless amperometric sensing of glucose. Mikrochim Acta 2019; 187:49. [PMID: 31848764 DOI: 10.1007/s00604-019-3988-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
A nanocomposite consisting of phytic acid (PA) that was doped with poly(3,4-ethylenedioxy-thiophene) (PEDOT) and modified with copper nanoparticles (CuNPs) was placed on a glassy carbon electrode and then applied in an enzymeless glucose sensor. The undulating PEDOT/PA composite has good conductivity and a large surface area, which was suitable as substrate for the uniform growth of CuNPs. The modified electrode typically operated at a potential near 0.55 V (vs. Ag/AgCl) demonstrated remarkable catalytic activity towards direct oxidation of glucose in NaOH solution (the major limitation of this sensor). Figures of merit include (a) a wide analytical range (5 to 403 μM); (b) high sensitivity (79.27 μA·μM-1·cm-2), (c) a low detection limit (0.28 μM at a signal to noise ratio of 3), and (d) fast response (< 4 s). Graphical abstractA nanocomposite of phytic acid (PA) doped poly(3,4-ethylenedioxy-thiophene) (PEDOT) modified with copper nanoparticles (CuNPs) onto a glassy carbon electrode was prepared by electrochemical strategy. The CuNPs/PEDOT/PA-modified electrodes were applied in enzymeless glucose sensors with high performance.
Collapse
|
13
|
Fu Y, Jin W. Facile synthesis of core-shell CuS-Cu 2S based nanocomposite for the high-performance glucose detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110120. [PMID: 31546467 DOI: 10.1016/j.msec.2019.110120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Abstract
Glucose detection is of great importance for the medical diagnosis, food biotechnology and pharmaceutical analysis. In this study, we synthesized a core-shell CuS-Cu2S decorated carbon nanotube-graphene nanocomposite via a facile hydrothermal method. It exhibits great sensing performance towards glucose with wide linear range ranging from 0.001 to 2 mM, ultra-sensitivity of 1923 μA·cm-2·mM-1 and 0.33 μM detection limit in alkaline solutions. The excellent electrocatalytic activity originates from the synergistic effect between heterogeneous copper sulfides structures and carbon nanomaterials. Besides, the fabricate sensor also has great durability, selectivity and great potential for practical applications.
Collapse
Affiliation(s)
- Yanqiu Fu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Jin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Zhai H, Bai Y, Qin J, Feng F. Colorimetric and Ratiometric Fluorescence Dual-Mode Sensing of Glucose Based on Carbon Quantum Dots and Potential UV/Fluorescence of o-Diaminobenzene. SENSORS (BASEL, SWITZERLAND) 2019; 19:E674. [PMID: 30736400 PMCID: PMC6386939 DOI: 10.3390/s19030674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/14/2022]
Abstract
A novel colorimetric and ratiometric fluorescence sensor was constructed by using carbon quantum dots (CQDs) and o-diaminobenzene (ODB). Unlike ODB by itself, ODB oxide (oxODB) not only emits fluorescence, but also produces ultraviolet (UV) absorption. Therefore, on the basis of the potential optical properties of ODB, glucose oxidase (Gox) and horseradish peroxidase (HRP) were introduced into a CQDs⁻ODB system for the quantitative oxidation of ODB. When glucose is present, it is oxidized by oxygen under the catalytic action of its oxidase to form hydrogen peroxide. Hydrogen peroxide is a strong oxidant that can rapidly oxidize ODB through the catalysis of horseradish peroxidase. oxODB can cause changes in the fluorescence ratio (I550/I446) and absorbance ratio (A/A₀). At the same time, the color of the detection solution can also change under sunlight and ultraviolet lamps. Therefore, glucose can be quantitatively detected by ratiometric fluorescence and colorimetry simultaneously, and semi-quantitatively detected by observing the colors with sunlight and ultraviolet lamps of 365 nm. This increases not only the convenience but also the accuracy of detection. In addition, this sensor has good selectivity and can be used for the determination of glucose in serum, providing a new idea for the development of blood glucose sensors.
Collapse
Affiliation(s)
- Hong Zhai
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, China.
| | - Yunfeng Bai
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, China.
| | - Jun Qin
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, China.
| | - Feng Feng
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, China.
| |
Collapse
|
15
|
Uniform and dense copper nanoparticles directly modified indium tin oxide electrode for non-enzymatic glucose sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Na W, Lee J, Jun J, Kim W, Kim YK, Jang J. Highly sensitive copper nanowire conductive electrode for nonenzymatic glucose detection. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Zhang C, Zhang Z, Yang Q, Chen W. Graphene-based Electrochemical Glucose Sensors: Fabrication and Sensing Properties. ELECTROANAL 2018. [DOI: 10.1002/elan.201800522] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunmei Zhang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Ziwei Zhang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
- University of Science and Technology of China; Hefei 230029, Anhui China
| | - Qin Yang
- School of Science; Xi'an University of Architecture & Technology; Xi'an 710055 China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
- University of Science and Technology of China; Hefei 230029, Anhui China
| |
Collapse
|
20
|
Synthesis and electrochemical sensing application of poly(3,4-ethylenedioxythiophene)-based materials: A review. Anal Chim Acta 2018; 1022:1-19. [DOI: 10.1016/j.aca.2018.02.080] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
|
21
|
Zang G, Hao W, Li X, Huang S, Gan J, Luo Z, Zhang Y. Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT:PSS. Talanta 2018; 183:329-338. [PMID: 29567183 DOI: 10.1016/j.talanta.2018.02.066] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Abstract
We explored the use of carbon black (CB), graphene oxide (GO), copper nanoparticles (CuNPs) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as electrode materials for the simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine. The designed nanostructured surface was widely characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), contact angle measurements and electrochemistry. From electrochemical characterization assays carried out towards the potassium ferricyanide redox probe, fast electron transfer kinetics and a considerably higher electroactive surface area were observed for the modified electrodic surface based on CB, GO, CuNPs and PEDOT:PSS film. Using square-wave voltammetry (SWV), well defined and resolved anodic peaks were detected for isoproterenol, acetaminophen, folic acid, propranolol and caffeine, with peak-to-peak potential separation not less than 170 mV. Then, the SWV technique was explored for the simultaneous determination of quinary mixtures of these analytes, resulting in analytical curves with linear ranges and limits of detection at micromolar concentration levels. The practical viability of the proposed voltammetric sensor was illustrated in the analysis of human body fluid samples. The proposed sensor showed good repeatability and a successful application using urine and serum matrices, with recoveries close to 100%.
Collapse
|
23
|
Yang S, Liu D, Meng QB, Wu S, Song XM. Reduced graphene oxide-supported methylene blue nanocomposite as a glucose oxidase-mimetic for electrochemical glucose sensing. RSC Adv 2018; 8:32565-32573. [PMID: 35547707 PMCID: PMC9086296 DOI: 10.1039/c8ra06208k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
A novel electrochemical glucose sensor based on methylene blue-reduced graphene oxide nanocomposite was constructed, and the sensor exhibited good glucose oxidase-mimetic electrocatalytic activity towards glucose and practical applicability.
Collapse
Affiliation(s)
- Shaojun Yang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Daliang Liu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Qing Bo Meng
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Shuyao Wu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| |
Collapse
|
24
|
Wang G, Morrin A, Li M, Liu N, Luo X. Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J Mater Chem B 2018; 6:4173-4190. [DOI: 10.1039/c8tb00817e] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes recent advances in the development of electrochemical sensors and biosensors based on nanomaterial doped conducting polymers.
Collapse
Affiliation(s)
- Guixiang Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Aoife Morrin
- School of Chemical Sciences
- National Centre for Sensor Research
- INSIGHT Centre for Data Analytics
- Dublin City University
- Dublin 9
| | - Mengru Li
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Nianzu Liu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
25
|
Wang Z, Dong S, Gui M, Asif M, Wang W, Wang F, Liu H. Graphene paper supported MoS 2 nanocrystals monolayer with Cu submicron-buds: High-performance flexible platform for sensing in sweat. Anal Biochem 2017; 543:82-89. [PMID: 29233679 DOI: 10.1016/j.ab.2017.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
Flexible sweat biosensors are of considerable current interest for the development of wearable smart miniature devices. In this work, we report a novel type of flexible and electrochemical sweat platform fabricated by depositing Cu submicron buds on freestanding graphene paper (GP) carrying MoS2 nanocrystals monolayer for bio-functional detection of glucose and lactate. Quantitative analysis of glucose and lactate was carried out by using amperometric i-t method. Linear ranges were obtained between 5 and 1775 μM for glucose and 0.01-18.4 mM for lactate, and their corresponding limits of detection were 500 nM and 0.1 μM, respectively. The platform demonstrates fast response, good selectivity, superb reproducibility and outstanding flexibility, which enable its use for monitoring glucose and lactate in human perspiration. The strategy of structurally integrating 3D transition metal, 0D transition metal sulfide and 2D graphene will provide new insight into the design of flexible electrodes for sweat glucose and lactate monitoring and a wider range of applications in biosensing, bioelectronics, and lab-on-a-chip devices.
Collapse
Affiliation(s)
- Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shuang Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mengxi Gui
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Feng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
26
|
Venkadesh A, Radhakrishnan S, Mathiyarasu J. Eco-friendly synthesis and morphology-dependent superior electrocatalytic properties of CuS nanostructures. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.077] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Sharma A, Kumar A, Khan R. Electrochemical immunosensor based on poly (3,4-ethylenedioxythiophene) modified with gold nanoparticle to detect aflatoxin B1. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:802-809. [DOI: 10.1016/j.msec.2017.03.146] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
|
28
|
Tukimin N, Abdullah J, Sulaiman Y. Development of a PrGO-Modified Electrode for Uric Acid Determination in the Presence of Ascorbic Acid by an Electrochemical Technique. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1539. [PMID: 28671562 PMCID: PMC5539542 DOI: 10.3390/s17071539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022]
Abstract
An attractive electrochemical sensor of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide electrode (PrGO) was developed for an electrochemical technique for uric acid (UA) detection in the presence of ascorbic acid (AA). PrGO composite film showed an improved electrocatalytic activity towards UA oxidation in pH 6.0 (0.1 M PBS). The PrGO composite exhibited a high current signal and low charge transfer resistance (Rct) compared to a reduced graphene oxide (rGO) electrode or a bare glassy carbon electrode (GCE). The limit of detection and sensitivity of PrGO for the detection of UA are 0.19 μM (S/N = 3) and 0.01 μA/μM, respectively, in the range of 1-300 μM of UA.
Collapse
Affiliation(s)
- Nurulkhalilah Tukimin
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | - Yusran Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
29
|
Dayakar. T, Venkateswara Rao. K, Bikshalu. K, Rajendar. V, Park SH. Novel synthesis and structural analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1472-1479. [DOI: 10.1016/j.msec.2017.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/29/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
30
|
Chen L, Liu X, Wang C, Lv S, Chen C. Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2189-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Solairaj D, Rameshthangam P, Muthukumaran P, Wilson J. Studies on electrochemical glucose sensing, antimicrobial activity and cytotoxicity of fabricated copper nanoparticle immobilized chitin nanostructure. Int J Biol Macromol 2017; 101:668-679. [PMID: 28363648 DOI: 10.1016/j.ijbiomac.2017.03.147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022]
Abstract
In this study, copper nanoparticle immobilized chitin nanocomposite (CNP/CuNP) was synthesized and used for the development of non-enzymatic electrochemical sensor. The CNP/CuNP was characterized by X-ray diffraction (XRD), fourier transform infra red (FTIR) spectroscopy and high resolution transmission electron microscopy (HRTEM) analysis. The glucose sensing property of CNP/CuNP was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). As a result of the synergistic effect of CNP and CuNP, the modified electrode displayed effective electro-oxidation of glucose in 0.1M NaOH solution. At 0.45V potential the modified electrode showed response towards glucose in the linear range of 1-1000μM with a lowest detection limit of 0.776μM with better selectivity and stability. In addition, the antimicrobial activity of CNP/CuNP was evaluated against bacterial and fungal strains. CNP/CuNP displayed enhanced antimicrobial activity when compared to CNP and CuNP alone. Similarly, cytotoxicity of CNP/CuNP was tested against Artemia salina, which showed no toxic effect in the tested concentration.
Collapse
Affiliation(s)
- Dhanasekaran Solairaj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Palanivel Rameshthangam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| | - Palanisamy Muthukumaran
- Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Jeyaraj Wilson
- Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
32
|
Balamurugan J, Thanh TD, Karthikeyan G, Kim NH, Lee JH. A novel hierarchical 3D N-Co-CNT@NG nanocomposite electrode for non-enzymatic glucose and hydrogen peroxide sensing applications. Biosens Bioelectron 2017; 89:970-977. [DOI: 10.1016/j.bios.2016.09.077] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
|
33
|
CuO nanoparticles decorated nano-dendrite-structured CuBi 2 O 4 for highly sensitive and selective electrochemical detection of glucose. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.130] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Meng A, Sheng L, Zhao K, Li Z. A controllable honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene oxide–poly(3,4-ethylenedioxythiophene) composite through electrodeposition for non-enzyme glucose sensing. J Mater Chem B 2017; 5:8934-8943. [DOI: 10.1039/c7tb02482g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A facile, controllable two-step electrodeposition route was developed, whereby a honeycomb-like amorphous CoxSy architecture was obtained via direct growth on rGO–PEDOT/GCE as an electrode for glucose detection.
Collapse
Affiliation(s)
- Alan Meng
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Liying Sheng
- Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial
- College of Electromechanical Engineering
- College of Sino-German Science and Technology
- Qingdao University of Science and Technology
- Qingdao 266061
| | - Kun Zhao
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Zhenjiang Li
- Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial
- College of Electromechanical Engineering
- College of Sino-German Science and Technology
- Qingdao University of Science and Technology
- Qingdao 266061
| |
Collapse
|
35
|
Gopalan A, Muthuchamy N, Komathi S, Lee KP. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens Bioelectron 2016; 84:53-63. [DOI: 10.1016/j.bios.2015.10.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022]
|
36
|
Liu S, Ma Y, Zhang R, Luo X. Three-Dimensional Nanoporous Conducting Polymer Poly(3,4-ethylenedioxythiophene) (PEDOT) Decorated with Copper Nanoparticles: Electrochemical Preparation and Enhanced Nonenzymatic Glucose Sensing. ChemElectroChem 2016. [DOI: 10.1002/celc.201600439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shuo Liu
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Yihui Ma
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Ruiqiao Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker; Ministry of Education; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| |
Collapse
|
37
|
Yang Y, Wang Y, Bao X, Li H. Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Vijayaraj K, Jin SH, Park DS. A Sensitive and Selective Nitrite Detection in Water Using Graphene/Platinum Nanocomposite. ELECTROANAL 2016. [DOI: 10.1002/elan.201600133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kathiresan Vijayaraj
- Department of Chemistry Education, Graduate Department of Chemical Materials; Pusan National University; Busan 609-735 South Korea
| | - Sung-Ho Jin
- Department of Chemistry Education, Graduate Department of Chemical Materials; Pusan National University; Busan 609-735 South Korea
| | - Deog-Su Park
- Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 609-735 South Korea
| |
Collapse
|
39
|
Cui M, Song Z, Wu Y, Guo B, Fan X, Luo X. A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. Biosens Bioelectron 2016; 79:736-41. [DOI: 10.1016/j.bios.2016.01.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 01/16/2023]
|
40
|
Lin P, Chai F, Zhang R, Xu G, Fan X, Luo X. Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1751-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Copper nanoparticle/graphene oxide/single wall carbon nanotube hybrid materials as electrochemical sensing platform for nonenzymatic glucose detection. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Zheng J, Zhang W, Lin Z, Wei C, Yang W, Dong P, Yan Y, Hu S. Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection. J Mater Chem B 2016; 4:1247-1253. [DOI: 10.1039/c5tb02624e] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Illustration of the glucose biosensing mechanism based on CuO/r-GO composites.
Collapse
Affiliation(s)
- Jianzhong Zheng
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P. R. China
- College of Chemistry and Environment
| | - Wuxiang Zhang
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Zhongqiu Lin
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Chan Wei
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Weize Yang
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Peihui Dong
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Yaru Yan
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Shirong Hu
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| |
Collapse
|
43
|
Premlatha S, Sivasakthi P, Ramesh Bapu GNK. Electrodeposition of a 3D hierarchical porous flower-like cobalt–MWCNT nanocomposite electrode for non-enzymatic glucose sensing. RSC Adv 2015. [DOI: 10.1039/c5ra12316j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A versatile and cost-effective electrodeposition technique was adopted to synthesize cobalt and cobalt–MWCNT nanocomposite electrodes and the fabricated cobalt–MWCNT material was successfully demonstrated as a non-enzymatic glucose sensor.
Collapse
Affiliation(s)
- S. Premlatha
- CSIR-Central Electrochemical Research Institute
- Electroplating and Metal Finishing Technology Division
- Karaikudi-630006
- India
| | - P. Sivasakthi
- CSIR-Central Electrochemical Research Institute
- Electroplating and Metal Finishing Technology Division
- Karaikudi-630006
- India
| | - G. N. K. Ramesh Bapu
- CSIR-Central Electrochemical Research Institute
- Electroplating and Metal Finishing Technology Division
- Karaikudi-630006
- India
| |
Collapse
|