1
|
Cheng S, Ji H, Xu T, Liu X, Xu L, Zhao W, Zhao C. Development of substrate-independent heparin coating to mitigate surface-induced thrombogenesis: efficacy and mechanism. J Mater Chem B 2024; 12:10994-11011. [PMID: 39352074 DOI: 10.1039/d4tb01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Heparin coatings are widely applied on blood-contact materials to reduce the use of anticoagulants during blood treatment. However, the previous heparin coatings formed via covalent binding or electrostatic bonding commonly require complex surface premodification, and the blood coagulation pathway was significantly inhibited to potentially increase the bleeding risk. This contradicts the intended purpose and deviates from the anticoagulation mechanism of the heparin coatings. Herein, we present a facile and substrate-independent coating, achieved through the co-deposition of dopamine/chitosan followed by electrostatic interaction between heparin and the immobilized chitosan, which could be prepared within 1 hour. This coating prolonged the plasma re-calcification time (PRT) to over 60 minutes, effectively preventing surface-induced thrombosis. Favorable hemocompatibility was reflected in a hemolysis ratio of less than 2%, low levels of platelet adhesion and activation, and low levels of fibrinogen adhesion. We also systematically elucidate the anticoagulant mechanism of the coating, demonstrating why the coating can prevent thrombogenesis without the bleeding risk. Our work not only offers a promising and readily available heparin coating for blood-contact materials, but more importantly, the mechanism exploration supports the practical feasibility of heparin coating in various applications.
Collapse
Affiliation(s)
- Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
2
|
Abdollahi M, Baharian A, Mohamadhoseini M, Hassanpour M, Makvandi P, Habibizadeh M, Jafari B, Nouri R, Mohamadnia Z, Nikfarjam N. Advances in ionic liquid-based antimicrobial wound healing platforms. J Mater Chem B 2024; 12:9478-9507. [PMID: 39206539 DOI: 10.1039/d4tb00841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wound infections, marked by the proliferation of microorganisms at surgical sites, necessitate the development of innovative wound dressings with potent bactericidal properties to curb microbial growth and prevent bacterial infiltration. This study explores the recent strides in utilizing ionic liquid-based polymers as highly promising antimicrobial agents for advanced wound healing applications. Specifically, cationic polymers containing quaternary ammonium, imidazolium, guanidinium, pyridinium, triazolium, or phosphonium groups have emerged as exceptionally effective antimicrobial compounds. Their mechanism of action involves disrupting bacterial membranes, thereby preventing the development of resistance and minimizing toxicity to mammalian cells. This comprehensive review not only elucidates the intricate dynamics of the skin's immune response and the various stages of wound healing but also delves into the synthesis methodologies of ionic liquid-based polymers. By spotlighting the practical applications of antimicrobial wound dressings, particularly those incorporating ionic liquid-based materials, this review aims to lay the groundwork for future research endeavors in this burgeoning field. Through a nuanced examination of these advancements, this article seeks to contribute to the ongoing progress in developing cutting-edge wound healing platforms that can effectively address the challenges posed by microbial infections in surgical wounds.
Collapse
Affiliation(s)
- Mahin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Aysan Baharian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Masoumeh Mohamadhoseini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Bahman Jafari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Roya Nouri
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia 29208, SC, USA
| |
Collapse
|
3
|
Iqbal MH, Kerdjoudj H, Boulmedais F. Protein-based layer-by-layer films for biomedical applications. Chem Sci 2024; 15:9408-9437. [PMID: 38939139 PMCID: PMC11206333 DOI: 10.1039/d3sc06549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
The surface engineering of biomaterials is crucial for their successful (bio)integration by the body, i.e. the colonization by the tissue-specific cell, and the prevention of fibrosis and/or bacterial colonization. Performed at room temperature in an aqueous medium, the layer-by-layer (LbL) coating method is based on the alternating deposition of macromolecules. Versatile and simple, this method allows the functionalization of surfaces with proteins, which play a crucial role in several biological mechanisms. Possessing intrinsic properties (cell adhesion, antibacterial, degradable, etc.), protein-based LbL films represent a powerful tool to control bacterial and mammalian cell fate. In this article, after a general introduction to the LbL technique, we will focus on protein-based LbL films addressing different biomedical issues/domains, such as bacterial infection, blood contacting surfaces, mammalian cell adhesion, drug and gene delivery, and bone and neural tissue engineering. We do not consider biosensing applications or electrochemical aspects using specific proteins such as enzymes.
Collapse
Affiliation(s)
- Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| | | | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| |
Collapse
|
4
|
Peighami R, Mehrnia M, Yazdian F, Sheikhpour M. Biocompatibility evaluation of polyethersulfone-pyrolytic carbon composite membrane in artificial pancreas. Biointerphases 2023; 18:021003. [PMID: 36944533 DOI: 10.1116/6.0002155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Polyethersulfone (PES) membranes are widely used in medical devices, especially intravascular devices such as intravascular bioartificial pancreases. In the current work, the pure PES and PES-pyrolytic carbon (PyC) composite membranes were synthesized and permeability studies were conducted. In addition, the cytocompatibility and hemocompatibility of the pure PES and PES-PyC membranes were investigated. These materials were characterized using peripheral blood mononuclear cell (PBMC) activation, platelet activation, platelet adhesion, ß-cell viability and proliferation, and ß-cell response to hyperglycemia. The results showed that platelet activation decreased from 87.3% to 27.8%. Any alteration in the morphology of sticking platelets was prevented, and the number of attached platelets decreased by modification with PyC. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay corroborated that PBMC activation was encouraged by the PyC-modified PES membrane surface. It can be concluded that PES-modified membranes show higher hemocompatibility than pure PES membranes. ß-cells cultured on all the three membranes displayed a lower rate of proliferation although the cells on the PES-PyC (0.1 wt. %) membrane indicated a slightly higher viability and proliferation than those on the pure PES and PES-PyC (0.05 wt. %) membranes. It shows that the PES-PyC (0.1 wt. %) membrane possesses superior cytocompatibility over the other membranes.
Collapse
Affiliation(s)
- Reza Peighami
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran 1439956191, Iran
| | - Mohamadreza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417614411, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran 1439956191, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
5
|
Chiao YH, Lin HT, Ang MBMY, Teow YH, Wickramasinghe SR, Chang Y. Surface Zwitterionization via Grafting of Epoxylated Sulfobetaine Copolymers onto PVDF Membranes for Improved Permeability and Biofouling Mitigation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yu-Hsuan Chiao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| | - Hao-Tung Lin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| | - Yeit Hann Teow
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
| | - S. Ranil Wickramasinghe
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| |
Collapse
|
6
|
Nazari S, Abdelrasoul A. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review. MEMBRANES 2022; 12:1063. [PMID: 36363617 PMCID: PMC9698264 DOI: 10.3390/membranes12111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Despite significant research efforts, hemodialysis patients have poor survival rates and low quality of life. Ultrafiltration (UF) membranes are the core of hemodialysis treatment, acting as a barrier for metabolic waste removal and supplying vital nutrients. So, developing a durable and suitable membrane that may be employed for therapeutic purposes is crucial. Surface modificationis a useful solution to boostmembrane characteristics like roughness, charge neutrality, wettability, hemocompatibility, and functionality, which are important in dialysis efficiency. The modification techniques can be classified as follows: (i) physical modification techniques (thermal treatment, polishing and grinding, blending, and coating), (ii) chemical modification (chemical methods, ozone treatment, ultraviolet-induced grafting, plasma treatment, high energy radiation, and enzymatic treatment); and (iii) combination methods (physicochemical). Despite the fact that each strategy has its own set of benefits and drawbacks, all of these methods yielded noteworthy outcomes, even if quantifying the enhanced performance is difficult. A hemodialysis membrane with outstanding hydrophilicity and hemocompatibility can be achieved by employing the right surface modification and immobilization technique. Modified membranes pave the way for more advancement in hemodialysis membrane hemocompatibility. Therefore, this critical review focused on the impact of the modification method used on the hemocompatibility of dialysis membranes while covering some possible modifications and basic research beyond clinical applications.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
7
|
Wang L, Gong T, Ming W, Qiao X, Ye W, Zhang L, Pan C. One step preparation of multifunctional poly (ether sulfone) thin films with potential for wound dressing. BIOMATERIALS ADVANCES 2022; 136:212758. [PMID: 35929327 DOI: 10.1016/j.bioadv.2022.212758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
The increasing demand for higher-quality medical care has resulted in the obsolescence of traditional biomaterials. Medical care is currently transitioning from an era depending on single-functional biomaterials to one that is supported by multifunctional and stable biomaterials. Herein, long-lasting multifunctional poly(ether sulfone) thin films (MPFs) containing heparin-mimic groups and a quaternary ammonium compound (QAC) were prepared via semi-interpenetrating polymer network (SIPN) strategy. The MPFs, with rough surface and inner finger-like macrovoid, had better hydrophilicity and anti-protein fouling ability, as revealed by scanning electron microscopy (SEM), atomic force microscope (AFM) and water contact angle (WCA) and protein adsorption tests. The results of platelet adhesion and activation, and clotting time confirmed that the hemocompatibility of the MPFs was significantly improved. From cell culture and germ-culture test, it was noted that the overall trend of human umbilical vein endothelial cell (HUVEC) proliferation was enhanced by a combination of heparin-mimic groups and QAC, whereas the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was significantly prohibited. In addition, the MPFs were capable of modulating the expression level of basic fibroblast growth factor (bFGF) and transforming growth factor-beta1 (TGF-β1) in fibroblast, which was beneficial to controlling the formation of hypertrophic scar. In summary, the MPFs had potential to be used in the field of wound management and the study might help guide the design of surface structure of wound dressing.
Collapse
Affiliation(s)
- Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China; Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, United States.
| | - Tao Gong
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, United States
| | - Xinglong Qiao
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - Wei Ye
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - Linna Zhang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - ChangJiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China.
| |
Collapse
|
8
|
de Almeida WS, da Silva DA. Does polysaccharide quaternization improve biological activity? Int J Biol Macromol 2021; 182:1419-1436. [PMID: 33965482 DOI: 10.1016/j.ijbiomac.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The natural polysaccharides, due to their structural diversity, commonly present very distinct solubility and physical chemical properties and additionally have intrinsic biological activities that, gene-rally, reveal themselves in a light way. The chemical modification of the molecular structure can improve these parameters. In this review, original articles that approached the quaternization of polysaccharides for purposes of biological application were selected, without limitation of year of publication, in the databases Scopus, Web of Science and PubMed. The results obtained from the bibliographic survey indicate that the increase in positive charges caused by quaternization improves the interaction between modified polysaccharides and structures that have negative charges on their surface, such as the cell wall of microorganisms and some cells in the human body, such as the DNA. This greater interaction is reflected as an increase in the biological activity of all polysaccharides broached in this study. Another important data obtained was the fact that the chemical changes did not affect or irrelevantly affect the toxicity of almost all of the polysaccharides that were quaternized. Therefore, polysaccharide quaternization is a safe and effective way to obtain improvements in the biological behavior of these macromolecules.
Collapse
Affiliation(s)
- Wanessa Sales de Almeida
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil.
| | - Durcilene Alves da Silva
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil; Núcleo de Pesquisa em Biotecnologia e Biodiversidade, Universidade Federal do Delta do Parnaíba, Brazil.
| |
Collapse
|
9
|
Hoseinpour V, Noori L, Mahmoodpour S, Shariatinia Z. A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:906-965. [PMID: 33380262 DOI: 10.1080/09205063.2020.1870379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable methods have so far been used for the surface modification of biomedical membranes. Several reviews and articles have been published on the improvements achieved in the field of poly(arylsulfone) membranes subjected to various surface modification methods and used in biomedical applications. This review concentrates on the surface modification, biological applications and future perspective of the poly(arylsulfone) biomedical membranes. Different surface modification procedures employed for the poly(arylsulfone) membranes have been classified, studied and compared. Diverse surface modification techniques include surface coating, chemical modification and immobilization/cross-linking, grafting, surface zwitterionicalization, mussel-inspired coating and layer-by-layer assembly. Furthermore, we review the recent research studies performed on the surface modification of the poly(arylsulfone) biomedical membranes. Meanwhile, the properties of biomedical membranes are also discussed in each section. At last, the future perspective and challenges of the strategies utilized for the surface modification of poly(arylsulfone) biomedical membranes are presented.
Collapse
Affiliation(s)
- Vahid Hoseinpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Laya Noori
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Saba Mahmoodpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
10
|
Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Susanto H, Robbani MH, Istirokhatun T, Firmansyah AA, Rhamadhan RN. Preparation of low-fouling polyethersulfone ultrafiltration membranes by incorporating high-molecular-weight chitosan with the help of a surfactant. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1016/j.sajce.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Yang L, Li L, Wu H, Zhang B, Luo R, Wang Y. Catechol-mediated and copper-incorporated multilayer coating: An endothelium-mimetic approach for blood-contacting devices. J Control Release 2020; 321:59-70. [DOI: 10.1016/j.jconrel.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/25/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
|
13
|
Wang L, Gong T, Brown Z, Gu Y, Teng K, Ye W, Ming W. Preparation of Ascidian-Inspired Hydrogel Thin Films to Selectively Induce Vascular Endothelial Cell and Smooth Muscle Cell Growth. ACS APPLIED BIO MATERIALS 2020; 3:2068-2077. [DOI: 10.1021/acsabm.9b01190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lingren Wang
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Tao Gong
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zachary Brown
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Yelian Gu
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Kangwen Teng
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Wei Ye
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| |
Collapse
|
14
|
Zhang T, Guo J, Ding Y, Mao H, Yan F. Redox-responsive ferrocene-containing poly(ionic liquid)s for antibacterial applications. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9348-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Yang W, Wu K, Liu X, Jiao Y, Zhou C. Construction and characterization of an antibacterial/anticoagulant dual-functional surface based on poly l-lactic acid electrospun fibrous mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:726-736. [DOI: 10.1016/j.msec.2018.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 11/26/2022]
|
16
|
Anti-thrombogenicity and permeability of polyethersulfone hollow fiber membrane with sulfonated alginate toward blood purification. Int J Biol Macromol 2018; 116:364-377. [DOI: 10.1016/j.ijbiomac.2018.04.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 11/18/2022]
|
17
|
Wang L, He M, Gong T, Zhang X, Zhang L, Liu T, Ye W, Pan C, Zhao C. Introducing multiple bio-functional groups on the poly(ether sulfone) membrane substrate to fabricate an effective antithrombotic bio-interface. Biomater Sci 2018; 5:2416-2426. [PMID: 29115308 DOI: 10.1039/c7bm00673j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been widely recognized that functional groups on biomaterial surfaces play important roles in blood compatibility. To construct an effective antithrombotic bio-interface onto the poly(ether sulfone) (PES) membrane surface, bio-functional groups of sodium carboxylic (-COONa), sodium sulfonic (-SO3Na) and amino (-NH2) groups were introduced onto the PES membrane surface in three steps: the synthesis of PES with carboxylic (-COOH) groups (CPES) and water-soluble PES with sodium sulfonic (-SO3Na) groups and amino (-NH2) groups (SNPES); the introduction of carboxylic groups onto the PES membrane by blending CPES with PES; and the grafting of SNPES onto CPES/PES membranes via the coupling of amino groups and carboxyl groups. The physical/chemical properties and bioactivities were dependent on the proportions of the additives. After introducing bio-functional groups, the excellent hemocompatibility of the modified membranes was confirmed by the inhibited platelet adhesion and activation, prolonged clotting times, suppressed blood-related complement and leukocyte-related complement receptor activations. Furthermore, cell tests indicated that the modified membranes showed better cytocompatibility in endothelial cell proliferation than the pristine PES membrane due to the synergistic promotion of the functional groups. To sum up, these results suggested that modified membranes present great potential in fields using blood-contacting materials, such as hemodialysis and surface endothelialization.
Collapse
Affiliation(s)
- Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices. Huaiyin Institute of Technology, Huaian 223003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ethirajan SK, Sengupta A, Jebur M, Kamaz M, Qian X, Wickramasinghe R. Single-Step Synthesis of Novel Polyionic Liquids Having Antibacterial Activity and Showing π-Electron Mediated Selectivity in Separation of Aromatics. ChemistrySelect 2018. [DOI: 10.1002/slct.201800101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Arijit Sengupta
- Ralph E Martin Department of Chemical Engineering; University of Arkansas; Fayetteville, AR USA
| | - Mahmood Jebur
- Ralph E Martin Department of Chemical Engineering; University of Arkansas; Fayetteville, AR USA
| | - Mohanad Kamaz
- Ralph E Martin Department of Chemical Engineering; University of Arkansas; Fayetteville, AR USA
| | - Xianghong Qian
- Department of Biomedical Engineering; University of Arkansas; Fayetteville, AR USA
| | - Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering; University of Arkansas; Fayetteville, AR USA
| |
Collapse
|
19
|
Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.106] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Fan XL, Hu M, Qin ZH, Wang J, Chen XC, Lei WX, Ye WY, Jin Q, Ren KF, Ji J. Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10428-10436. [PMID: 29508992 DOI: 10.1021/acsami.7b18889] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cationic antibacterial coating based on quaternary ammonium compounds, with an efficient and broad spectrum bactericidal property, has been widely used in various fields. However, the high density of positive charges tends to induce weak hemocompatibility, which hinders the application of the cationic antibacterial coating in blood-contacting devices and implants. It has been reported that a negatively charged surface can reduce blood coagulation, showing improved hemocompatibility. Here, we describe a strategy to combine the cationic and anionic groups by using mixed-charged copolymers. The copolymers of poly (quaternized vinyl pyridine- co- n-butyl methacrylate- co-methacrylate acid) [P(QVP- co- nBMA- co-MAA)] were synthesized through free radical copolymerization. The cationic group of QVP, the anionic group of MAA, and the hydrophobic group of nBMA were designed to provide bactericidal capability, hemocompatibility, and coating stability, respectively. Our findings show that the hydrophilicity of the copolymer coating increased, and its zeta potential decreased from positive charge to negative charge with the increase of the anionic/cationic ratio. Meanwhile, the bactericidal property of the copolymer coating was kept around a similar level compared with the pure quaternary ammonium copolymer coating. Furthermore, the coagulation time, platelet adhesion, and hemolysis tests revealed that the hemocompatibility of the copolymer coating improved with the addition of the anionic group. The mixed-charged copolymer combined both bactericidal property and hemocompatibility and has a promising potential in blood-contacting antibacterial devices and implants.
Collapse
Affiliation(s)
- Xiao-Li Fan
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Mi Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhi-Hui Qin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xia-Chao Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wen-Xi Lei
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wan-Ying Ye
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
21
|
Phillips SJ, Stenken JA. In Situ Inner Lumen Attachment of Heparin to Poly(ether sulfone) Hollow Fiber Membranes Used for Microdialysis Sampling. Anal Chem 2018; 90:4955-4960. [DOI: 10.1021/acs.analchem.7b03927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sarah J. Phillips
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Julie A. Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
22
|
Gravel J, Schmitzer AR. Imidazolium and benzimidazolium-containing compounds: from simple toxic salts to highly bioactive drugs. Org Biomol Chem 2018; 15:1051-1071. [PMID: 28045182 DOI: 10.1039/c6ob02293f] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The toxicity of simple imidazolium and benzimidazolium salts started to be more and more investigated in the last few years and was taken in consideration in the context of microorganisms, plants and more evolved organisms' exposure. However, the toxicity of these salts can be exploited in the development of different biological applications by incorporating them in the structure of compounds that specifically target microorganisms and cancer cells. We highlight in this minireview the way researchers became aware of the inherent problem of the stability and bioaccumulation of imidazolium and benzimidazolium salts and how they found inspiration to exploit their toxicity by incorporating them into new highly potent drugs.
Collapse
Affiliation(s)
- J Gravel
- Département de Chimie- Université de Montréal, 2900 Edouard Montpetit CP 6128 Succursalle Centre Ville Montréal Québec, Canada H3C 3J7.
| | - A R Schmitzer
- Département de Chimie- Université de Montréal, 2900 Edouard Montpetit CP 6128 Succursalle Centre Ville Montréal Québec, Canada H3C 3J7.
| |
Collapse
|
23
|
Wang H, Li J, Liu F, Li T, Zhong Y, Lin H, He J. Enhanced hemocompatibility of flat and hollow fiber membranes via a heparin free surface crosslinking strategy. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 2018; 45:5888-5924. [PMID: 27494001 DOI: 10.1039/c5cs00579e] [Citation(s) in RCA: 602] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.
Collapse
Affiliation(s)
- Runnan Zhang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanan Liu
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Mingrui He
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanlei Su
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xueting Zhao
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
26
|
Niu Y, Chu M, Xu P, Meng S, Zhou Q, Zhao W, Zhao B, Shen J. An aptasensor based on heparin-mimicking hyperbranched polyester with anti-biofouling interface for sensitive thrombin detection. Biosens Bioelectron 2017; 101:174-180. [PMID: 29073518 DOI: 10.1016/j.bios.2017.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023]
Abstract
In this paper, novel heparin-mimicking hyperbranched polyester nanoparticles (HBPE-SO3 NPs) with abundant of sulfonated acid functional groups were synthesized, and their antithrombogenicities were further evaluated. Further, a label-free electrochemical aptamer biosensor (aptasensor) based on HBPE-SO3 NPs modified electrode was developed for thrombin (TB) detection in whole blood. Meanwhile, the anti-biofouling properties of different modified electrodes were studied by whole blood and platelet adhesion test, hemolysis assay and morphological changes of red blood cells in vitro. Besides, the thrombin-binding aptamer was selected as receptor for the proposed aptasensor, which has excellent binding affinity and selectivity for TB. When binding to TB, the electron transfer taking place at the modified electrode interface was inhibited that can attribute to the stereo-hindrance effect, resulting in the decreased current response. This aptasensor showed excellent electrochemical properties with a wide detection range and a low detection limit of 0.031pM (S/N = 3), and provided high selectivity, long-term stability and good reproducibility. Finally, the sensitively detection of TB in whole blood samples directly was achieved by this aptasensor we proposed, which suggested its great potential for TB detection in the clinic.
Collapse
Affiliation(s)
- Yanlian Niu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meilin Chu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ping Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shuangshuang Meng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
27
|
Zheng Z, Guo J, Mao H, Xu Q, Qin J, Yan F. Metal-Containing Poly(ionic liquid) Membranes for Antibacterial Applications. ACS Biomater Sci Eng 2017; 3:922-928. [PMID: 33429564 DOI: 10.1021/acsbiomaterials.7b00165] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Imidazolium-type metal-containing ionic liquid (IL) monomers and their corresponding poly(ionic liquid) (PIL) membranes coordinated with CuCl2 (PILM-Cu), FeCl3 (PILM-Fe), or ZnCl2 (PILM-Zn) were synthesized. The effect of metal ions on the antimicrobial activities against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was investigated. Compared with pristine PILM-Br membrane, PILM-Cu, PILM-Fe, and PILM-Zn membranes exhibit enhanced antibacterial activities due to the attributes of both imidazolium cations and metal-containing anions. Furthermore, all of the metal-containing PIL membranes present low hemolysis toward human red blood cell and high long-term antibacterial stability, even after immersion in water for 90 days, demonstrating clinical feasibility in topical applications.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiming Xu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing Qin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
28
|
Qin J, Guo J, Xu Q, Zheng Z, Mao H, Yan F. Synthesis of Pyrrolidinium-Type Poly(ionic liquid) Membranes for Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10504-10511. [PMID: 28272866 DOI: 10.1021/acsami.7b00387] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pyrrolidinium-type small molecule ionic liquids (ILs), poly(ionic liquid) (PIL) homopolymers, and their corresponding PIL membranes were synthesized and used for antibacterial applications. The influences of substitutions at the N position of pyrrolidinium cation on the antimicrobial activities against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were studied by minimum inhibitory concentration (MIC). The antibacterial efficiency of both the small molecule ILs and PIL homopolymers increased with the increase of the alkyl chain length of substitutions. Furthermore, PIL homopolymers show relatively lower MIC values, indicating better antimicrobial activities than those of the corresponding small molecule ILs. However, the antibacterial properties of the PIL membranes are contrary to corresponding ILs and PIL homopolymers, which reduce with the increase of alkyl chain length. Furthermore, the resultant PIL membranes show excellent hemocompatibility and low cytotoxicity toward human cells, demonstrating clinical feasibility in topical applications.
Collapse
Affiliation(s)
- Jing Qin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Qiming Xu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Zhiqiang Zheng
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| |
Collapse
|
29
|
Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Acta Biomater 2017; 51:479-494. [PMID: 28082114 DOI: 10.1016/j.actbio.2017.01.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
The design of self-sterilizing surfaces with favorable biocompatibility is acknowledged as an effective approach to deal with the bacterial infections of biomedical devices. In this study, we report an intriguing protocol for the large-scale fabrication of self-sterilizing and biocompatible surface film coatings by using polymer shielded silver nanoparticle loaded oxidized carbon nanotube (AgNPs@oCNT) nano-dispersions. To achieve the antibacterial coatings, the bioinspired positively charged and negatively charged AgNPs@oCNTs were alternately deposited onto substrates by spray-coating assisted layer-by-layer assembly. Then the bacterial inhibitory zones, optical density value monitoring, bacterial killing efficiency and adhesion were investigated; and all the results revealed that the AgNPs@oCNTs thin film coatings exhibited robust and long-term antibacterial activity against both Gram negative and Gram positive bacteria. Moreover, due to the shielding effects of polymer layers, the coatings showed extraordinary blood compatibility and limited toxicity against human umbilical vein endothelial cells. It is believed that the proposed large-scale fabrication of bactericidal, blood and cell compatible AgNPs@oCNT based thin film coatings will have great potential to forward novel operational pathogenic inhibition strategies to avoid undesired bacterial contaminations of biomedical implants or biological devices. STATEMENT OF SIGNIFICANCE Bacterial infection of medical devices has been considered to be a world-wide clinical threat towards patients' health. In this study, a bioinspired and biocompatible antibacterial coating was prepared via the spray-assisted layer-by-layer (LbL) assembly. The silver nanopartilces loaded oxidized carbon nanotube (AgNPs@oCNT), which were coated by functional polymers (chitosan and synthetic heparin mimicking polymers), were prepared via mussel inspired chemistry; and the spray-assisted assembly process allowed the fast construction on devices. Owing to the antibacterial efficiency of the loaded AgNPs, the coating showed robust bacterial killing activity and resistance towards bacterial adhesion. Moreover, since that the AgNPs were shielded by the polymers, the coating exhibited no clear toxicity at blood or cellular level. Benefiting from the universal and large-scale fabrication advancements of the spray assisted LbL coating; it is believed that the proposed strategy can be applied in designing many other kinds of self-sterilizing biomedical implants and devices.
Collapse
|
30
|
Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017; 89:276-299. [PMID: 28105839 PMCID: PMC6773264 DOI: 10.1021/acs.analchem.6b04251] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J. Soto
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - James B. Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
31
|
Gu H, Chen X, Yu Q, Liu X, Zhan W, Chen H, Brash JL. A multifunctional surface for blood contact with fibrinolytic activity, ability to promote endothelial cell adhesion and inhibit smooth muscle cell adhesion. J Mater Chem B 2017; 5:604-611. [DOI: 10.1039/c6tb02808j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multifunctional surface with fibrinolytic activity, the ability to promote endothelial cell and inhibit smooth muscle cell adhesion was realized.
Collapse
Affiliation(s)
- Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - John L. Brash
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
32
|
Ji HF, Xiong L, Shi ZQ, He M, Zhao WF, Zhao CS. Engineering of hemocompatible and antifouling polyethersulfone membranes by blending with heparin-mimicking microgels. Biomater Sci 2017; 5:1112-1121. [DOI: 10.1039/c7bm00196g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing the hemocompatible and antifouling property of polyethersulfone membranes by blending with heparin-mimicking microgels.
Collapse
Affiliation(s)
- Hai-feng Ji
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lian Xiong
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Min He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Wei-feng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
33
|
He M, Cui X, Jiang H, Huang X, Zhao W, Zhao C. Super-Anticoagulant Heparin-Mimicking Hydrogel Thin Film Attached Substrate Surfaces to Improve Hemocompatibility. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600281] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/26/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Min He
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Xiaofei Cui
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Huiyi Jiang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Xuelian Huang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
- Fiber and Polymer Technology; School of Chemical Science and Engineering; Royal Institute of Technology (KTH); Teknikringen 56-58, SE-100 44 Stockholm Sweden
| | - Changsheng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| |
Collapse
|
34
|
He M, Jiang H, Wang R, Xie Y, Zhao W, Zhao C. A versatile approach towards multi-functional surfaces via covalently attaching hydrogel thin layers. J Colloid Interface Sci 2016; 484:60-69. [PMID: 27591729 DOI: 10.1016/j.jcis.2016.08.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 01/07/2023]
Abstract
In this study, a robust and straightforward method to covalently attach multi-functional hydrogel thin layers onto substrates was provided. In our strategy, double bonds were firstly introduced onto substrates to provide anchoring points for hydrogel layers, and then hydrogel thin layers were prepared via surface cross-linking copolymerization of the immobilized double bonds with functional monomers. Sulfobetaine methacrylate (SBMA), sodium allysulfonate (SAS), and methyl acryloyloxygen ethyl trimethyl ammonium chloride (METAC) were selected as functional monomers to form hydrogel layers onto polyether sulfone (PES) membrane surfaces, respectively. The thickness of the formed hydrogel layers could be controlled, and the layers showed excellent long-term stability. The PSBMA hydrogel layer exhibited superior antifouling property demonstrated by undetectable protein adsorption and excellent bacteria resistant property; after attaching PSAS hydrogel layer, the membrane showed incoagulable surface property when contacting with blood confirmed by the activated partial thromboplastin time (APTT) value exceeding 600s; while, the PMETAC hydrogel thin layer could effectively kill attached bacteria. The proposed method provides a new platform to directly modify material surfaces with desired properties, and thus has great potential to be widely used in designing materials for blood purification, drug delivery, wound dressing, and intelligent biosensors.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Huiyi Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Rui Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China; Fiber and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| |
Collapse
|
35
|
Zheng Z, Xu Q, Guo J, Qin J, Mao H, Wang B, Yan F. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12684-12692. [PMID: 27145107 DOI: 10.1021/acsami.6b03391] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Qiming Xu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University , Shanghai 200438, China
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Jing Qin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University , Shanghai 200438, China
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| |
Collapse
|
36
|
Kaleekkal NJ, Rana D, Mohan D. Functionalized MWCNTs in improving the performance and biocompatibility of potential hemodialysis membranes. RSC Adv 2016. [DOI: 10.1039/c6ra09354j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Functionalized multi-walled carbon nanotube incorporated polyetherimide mixed matrix membranes for blood purification application.
Collapse
Affiliation(s)
- Noel Jacob Kaleekkal
- Membrane Laboratory
- Department of Chemical Engineering
- Anna University
- Chennai-600025
- India
| | - Dipak Rana
- Department of Chemical and Biological Engineering
- University of Ottawa
- Ottawa
- Canada
| | - D. Mohan
- Membrane Laboratory
- Department of Chemical Engineering
- Anna University
- Chennai-600025
- India
| |
Collapse
|
37
|
He C, Shi ZQ, Cheng C, Lu HQ, Zhou M, Sun SD, Zhao CS. Graphene oxide and sulfonated polyanion co-doped hydrogel films for dual-layered membranes with superior hemocompatibility and antibacterial activity. Biomater Sci 2016; 4:1431-40. [DOI: 10.1039/c6bm00494f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GO based dual-layered membranes with superior hemocompatibility and antibacterial activity have potential application for clinical hemodialysis and many other biomedical therapies.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hua-Qing Lu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- Institute of Textile
- Sichuan University
- Chengdu 610065
- China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
38
|
He C, Cheng C, Nie SQ, Wang LR, Nie CX, Sun SD, Zhao CS. Graphene oxide linked sulfonate-based polyanionic nanogels as biocompatible, robust and versatile modifiers of ultrafiltration membranes. J Mater Chem B 2016; 4:6143-6153. [DOI: 10.1039/c6tb01855f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A GO linked sulfonate-based polyanionic nanogel as a membrane modifier has application potential in clinical hemodialysis and other biomedical therapies.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Sheng-Qiang Nie
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province
- University of Guizhou Province
- College of Chemistry and Materials Engineering
- Guiyang University
- China
| | - Ling-Ren Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
39
|
Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3801-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Randriamahazaka H, Ghilane J. Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis. ELECTROANAL 2015. [DOI: 10.1002/elan.201500527] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Guo J, Xu Q, Zheng Z, Zhou S, Mao H, Wang B, Yan F. Intrinsically Antibacterial Poly(ionic liquid) Membranes: The Synergistic Effect of Anions. ACS Macro Lett 2015; 4:1094-1098. [PMID: 35614810 DOI: 10.1021/acsmacrolett.5b00609] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of materials with intrinsically antimicrobial activities has attracted great interest. Herein, we report the synthesis of free-standing and robust poly(ionic liquid) (PIL) membranes with high antibacterial activities by in situ photo-cross-linking of an ionic liquid monomer and followed by anion-exchange with an amino acid (l-proline (Pro) or l-tryptophan (Trp)). The resultant PIL-based membranes with excellent robustness exhibit high antimicrobial properties against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) and present no significant hemolysis and cytotoxicity toward human red blood and skin fibroblast cells, as well as low adsorption of bovine serum albumin. The synthesized PIL-Trp membranes exhibit the highest antibacterial efficiency due to the synergistic attributes of both imidazolium cation and Trp- anion. Furthermore, all the PIL-based membranes exhibit long-term antibacterial stability, which demonstrates clinical feasibility in topical applications.
Collapse
Affiliation(s)
- Jiangna Guo
- Jiangsu
Key Laboratory of Advanced Functional Polymer Design and Application,
Department of Polymer Science and Engineering, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qiming Xu
- Department
of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Zheng
- Jiangsu
Key Laboratory of Advanced Functional Polymer Design and Application,
Department of Polymer Science and Engineering, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shengbo Zhou
- Department
of Plastic and Reconstructive Surgery, Shanghai Ninth People’s
Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hailei Mao
- Department
of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Ninth People’s
Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Yan
- Jiangsu
Key Laboratory of Advanced Functional Polymer Design and Application,
Department of Polymer Science and Engineering, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
42
|
Wang L, Li H, Chen S, Nie C, Cheng C, Zhao C. Interfacial Self-Assembly of Heparin-Mimetic Multilayer on Membrane Substrate as Effective Antithrombotic, Endothelialization, and Antibacterial Coating. ACS Biomater Sci Eng 2015; 1:1183-1193. [PMID: 33429557 DOI: 10.1021/acsbiomaterials.5b00320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we design the interfacial self-assembly of heparin-mimetic multilayer on poly(ether sulfone) (PES) membrane, which can endow the substrate with excellent cytocompatibility, highly hemocompatibility and enhanced antibacterial properties. The coated 3D sponge-like multilayer was fabricated by surface engineered layer by layer assembly of sulfonic amino polyether sulfone (SNPES) and quaternized chitosan (QC). The cell morphology observation and viability evaluation suggested that the assembled multilayer coating had remarkable cytocompatibility with endothelial cells due to the synergistic promotion of bovine serum albumin adsorption and heparin-mimetic groups; which further indicated that surface endothelialization could be achieved on the heparin-mimetic multilayer. The systematical tests of antithrombotic and blood activation indicated that the heparin-mimetic multilayer-coated membrane owned significantly suppressed adsorption of bovine serum fibrinogen, platelet adhesion and activation, prolonged clotting times, as well as lower activation of blood complement. Furthermore, the antibacterial test suggested the multilayer coated substrates exhibited obvious inhibition capability for both Escherichia coli and Staphylococcus aureus. Therefore, we believe that the developed SNPES/QC multilayer on PES membrane show great potential as a multifunctional coating toward versatile biomedical applications due to the integrated and highly effective antithrombotic, endothelialization, and antibacterial properties.
Collapse
Affiliation(s)
- Lingren Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Jiangsu Provincial Key Laboratory for Interventional Medical Devices. Huaiyin Institute of Technology, Huaian 223003, China
| | - Hao Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuai Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
43
|
Mondal M, De S. Characterization and antifouling properties of polyethylene glycol doped PAN–CAP blend membrane. RSC Adv 2015. [DOI: 10.1039/c5ra02889b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effects of polyethylene glycol (PEG) as an additive to a cellulose acetate phthalate–polyacrylonitrile blend membrane in the ultrafiltration range were investigated.
Collapse
Affiliation(s)
- Mrinmoy Mondal
- Department of Chemical Engineering
- Indian Institute of Technology, Kharagpur
- Kharagpur – 721302
- India
| | - Sirshendu De
- Department of Chemical Engineering
- Indian Institute of Technology, Kharagpur
- Kharagpur – 721302
- India
| |
Collapse
|
44
|
Cheng C, He A, Nie C, Xia Y, He C, Ma L, Zhao C. One-pot cross-linked copolymerization for the construction of robust antifouling and antibacterial composite membranes. J Mater Chem B 2015; 3:4170-4180. [DOI: 10.1039/c5tb00136f] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study reports a highly efficient, convenient and universal protocol for the fabrication of robust antifouling and antibacterial polymeric membranes via one-pot cross-linked copolymerization of functional monomers.
Collapse
Affiliation(s)
- Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Ai He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yi Xia
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| |
Collapse
|
45
|
Abstract
This review describes the latest update on research in the area of layer-by-layer assemblies for antibacterial applications.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- , Singapore 117602
| | - Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- , Singapore 117602
- Department of Materials Science and Engineering
| |
Collapse
|