1
|
Hernández-Ojeda SL, Espinosa-Aguirre JJ, Camacho-Carranza R, Amacosta-Castillo J, Cárdenas-Ávila R. Piper auritum ethanol extract is a potent antimutagen against food-borne aromatic amines: mechanisms of action and chemical composition. Mutagenesis 2024; 39:301-309. [PMID: 38520343 PMCID: PMC11529617 DOI: 10.1093/mutage/geae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/21/2024] [Indexed: 03/25/2024] Open
Abstract
An ethanol extract of Piper auritum leaves (PAEE) inhibits the mutagenic effect of three food-borne aromatic amines (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)) in the TA98 Salmonella typhimurium strain. Preincubation with MeIQx demonstrated in mutagenesis experiments that inhibition of Cytochrome P450 (CYP), as well as direct interaction between component(s) of the plant extract with mutagens, might account for the antimutagenic observed effect. Gas chromatography/mass spectrometry analysis revealed that safrole (50.7%), α-copaene (7.7%), caryophyllene (7.2%), β-pinene (4.2%), γ-terpinene (4.1%), and pentadecane (4.1%) as the main components (PAEE). Piper extract and safrole were able to inhibit the rat liver microsomal CYP1A1 activity that participates in the amines metabolism, leading to the formation of the ultimate mutagenic/ molecules. According to this, safrole and PAEE-inhibited MeIQx mutagenicity but not that of the direct mutagen 2-nitrofluorene. No mutagenicity of plant extract or safrole was detected. This study shows that PAEE and its main component safrole are associated with the inhibition of heterocyclic amines activation due in part to the inhibition of CYP1A subfamily activity.
Collapse
Affiliation(s)
- Sandra L Hernández-Ojeda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Javier Jesús Espinosa-Aguirre
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Rafael Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Jessica Amacosta-Castillo
- Unidad de Servicio de Apoyo a la Investigación y a la Industria (USAII), Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Ricardo Cárdenas-Ávila
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Ross SA, Emenaker NJ, Kumar A, Riscuta G, Biswas K, Gupta S, Mohammed A, Shoemaker RH. Green Cancer Prevention and Beyond. Cancer Prev Res (Phila) 2024; 17:107-118. [PMID: 38251904 PMCID: PMC10911807 DOI: 10.1158/1940-6207.capr-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
The concept of green chemoprevention was introduced in 2012 by Drs. Jed Fahey and Thomas Kensler as whole-plant foods and/or extract-based interventions demonstrating cancer prevention activity. Refining concepts and research demonstrating proof-of-principle approaches are highlighted within this review. Early approaches included extensively investigated whole foods, including broccoli sprouts and black raspberries showing dose-responsive effects across a range of activities in both animals and humans with minimal or no apparent toxicity. A recent randomized crossover trial evaluating the detoxification of tobacco carcinogens by a broccoli seed and sprout extract in the high-risk cohort of current smokers highlights the use of a dietary supplement as a potential next-generation green chemoprevention or green cancer prevention approach. Challenges are addressed, including the selection of dose, duration and mode of delivery, choice of control group, and standardization of the plant food or extract. Identification and characterization of molecular targets and careful selection of high-risk cohorts for study are additional important considerations when designing studies. Goals for precision green cancer prevention include acquiring robust evidence from carefully controlled human studies linking plant foods, extracts, and compounds to modulation of targets for cancer risk reduction in individual cancer types.
Collapse
Affiliation(s)
- Sharon A. Ross
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Nancy J. Emenaker
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Amit Kumar
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Gabriela Riscuta
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Kajal Biswas
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| | - Shanker Gupta
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| | - Altaf Mohammed
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| | - Robert H. Shoemaker
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
3
|
Davidsen JM, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Harman CL, Taylor SV. FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes. Food Chem Toxicol 2023; 175:113646. [PMID: 36804339 DOI: 10.1016/j.fct.2023.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St, S.E, Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA.
| |
Collapse
|
4
|
In vitro and in silico study on consequences of combined exposure to the food-borne alkenylbenzenes estragole and safrole. Toxicol In Vitro 2021; 79:105290. [PMID: 34861381 DOI: 10.1016/j.tiv.2021.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/20/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
Potential consequences of combined exposure to the selected food-borne alkenylbenzenes safrole and estragole or their proximate carcinogenic 1'-hydroxy metabolites were evaluated in vitro and in silico. HepG2 cells were exposed to 1'-hydroxyestragole and 1'-hydroxysafrole individually or in equipotent combination subsequently detecting cytotoxicity and DNA adduct formation. Results indicate that concentration addition adequately describes the cytotoxic effects and no statistically significant differences were shown in the level of formation of the major DNA adducts. Furthermore, physiologically based kinetic modeling revealed that at normal dietary intake the concentration of the parent compounds and their 1'-hydroxymetabolites remain substantially below the Km values for the respective bioactivation and detoxification reactions providing further support for the fact that the simultaneous presence of the two carcinogens or of their proximate carcinogenic 1'-hydroxy metabolites may not affect their DNA adduct formation. Overall, these results point at the absence of interactions upon combined exposure to selected food-borne alkenylbenzenes at realistic dietary levels of intake.
Collapse
|
5
|
Alkenylbenzenes in Foods: Aspects Impeding the Evaluation of Adverse Health Effects. Foods 2021; 10:foods10092139. [PMID: 34574258 PMCID: PMC8469824 DOI: 10.3390/foods10092139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Alkenylbenzenes are naturally occurring secondary plant metabolites, primarily present in different herbs and spices, such as basil or fennel seeds. Thus, alkenylbenzenes, such as safrole, methyleugenol, and estragole, can be found in different foods, whenever these herbs and spices (or extracts thereof) are used for food production. In particular, essential oils or other food products derived from the aforementioned herbs and spices, such as basil-containing pesto or plant food supplements, are often characterized by a high content of alkenylbenzenes. While safrole or methyleugenol are known to be genotoxic and carcinogenic, the toxicological relevance of other alkenylbenzenes (e.g., apiol) regarding human health remains widely unclear. In this review, we will briefly summarize and discuss the current knowledge and the uncertainties impeding a conclusive evaluation of adverse effects to human health possibly resulting from consumption of foods containing alkenylbenzenes, especially focusing on the genotoxic compounds, safrole, methyleugenol, and estragole.
Collapse
|
6
|
Olanlokun JO, Bodede O, Prinsloo G, Olorunsogo OO. Comparative antimalarial, toxicity and mito-protective effects of Diospyros mespiliformis Hochst. ex A. DC. and Mondia whitei (Hook.f.) Skeels on Plasmodium berghei infection in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113585. [PMID: 33189839 DOI: 10.1016/j.jep.2020.113585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diospyros mespiliformis Hochst. ex A. DC. and Mondia whitei (Hook.f.) Skeels are traditionally used in Africa for the treatment of malaria. However, scientific evidence to substantiate this folkloric claim and their effects on liver mitochondria during malaria treatment have not been reported. AIM OF THE STUDY This study investigated the efficacy of D. mespiliformis and M. whitei against chloroquine-sensitive and resistant strains of malarial parasites in mice. It also investigated the toxicity and protection against cellular organelles like mitochondria. MATERIALS AND METHODS Male Swiss mice were infected with a chloroquine resistant (ANKA) strain of Plasmodium berghei and were treated via oral gavage with methanol extracts of D. mespiliformis and M. whitei reconstituted in diluted dimethylsulfoxide as vehicle (DMSO, 5% v/v) for five consecutive days. Percentage parasite load and clearance were assessed by microscopy. The infected control was treated with the vehicle. Hematological indices were assessed using standard procedures. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were determined using assay kits. Hepatic mitochondria were isolated via centrifugation, and their permeability transition (mPT), ATPase (mATPase) activity and lipid peroxidation (mLPO) were determined spectroscopically. Liver tissue histology was carried out by standard laboratory procedures. Phytochemical analysis of both extracts were performed using LC-MS to identify the most prominent compounds from each of the extracts. RESULTS After treatment on day 5, D. mespiliformis and M. whitei at 400 mg/kg decreased mean values for: percentage parasitemia (5.0 ± 1.0, 2.0 ± 0.2), increased Packed Cell Volume (PCV) (36.0 ± 1.4, 36.0 ± 0.0%) and platelets (2.0 ± 1.4, 2.0 ± 2.8 × 105mm3) relative to the untreated control (20.0 ± 5.2; 30.0 ± 0.0%; 1.4 ± 1.4 × 105 mm3, respectively). At the same dose, D. mespiliformis and M. whitei decreased ALT (8.0 ± 3.8, 24.2 ± 4.0U/L), AST (6.2 ± 0.8, 8.0 ± 0.9U/L) and ALP (56.0 ± 0.7, 51.0 ± 1.0U/L) activities compared to the infected control (77.0 ± 10.9U/L, 14.0 ± 0.7U/L and 76.0 ± 6.0U/L, respectively). Both D. mespiliformis and M. whitei reversed mPT opening, decreased mATPase enhancement and mLPO, relative to the control. Histopathology of the liver showed extensive hemorrhagic lesions and severe disseminated congestion in the infected control while both D. mespiliformis and M. whitei were well tolerated at the highest dose. The LC-MS analysis of D. mespiliformis showed the presence of betulinic acid, tocopherol and kaempferol with antimalarial and antioxidant properties while the M. whitei sample contained coumarin and chlorogenic acid that have antimalarial and hepato-protective properties. CONCLUSIONS D.mespiliformis and M. whitei show antimalarial effects against resistant Plasmodium berghei infection, enhanced cell viability, mito-protection and are not toxic in mice.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Nigeria.
| | - Olusola Bodede
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Nigeria
| |
Collapse
|
7
|
Prinsloo G, Steffens F, Vervoort J, Rietjens IM. Risk assessment of herbal supplements containing ingredients that are genotoxic and carcinogenic. Crit Rev Toxicol 2019; 49:567-579. [DOI: 10.1080/10408444.2019.1686456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Gerhard Prinsloo
- Division of Toxicology, Wageningen University, Wageningen, Netherlands
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Johannesburg, South Africa
| | - Francois Steffens
- Department of Consumer Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jacques Vervoort
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Johannesburg, South Africa
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
8
|
Marabini L, Galli CL, La Fauci P, Marinovich M. Effect of plant extracts on the genotoxicity of 1′-hydroxy alkenylbenzenes. Regul Toxicol Pharmacol 2019; 105:36-41. [DOI: 10.1016/j.yrtph.2019.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|
9
|
Prinsloo G, Nogemane N, Street R. The use of plants containing genotoxic carcinogens as foods and medicine. Food Chem Toxicol 2018; 116:27-39. [DOI: 10.1016/j.fct.2018.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 01/20/2023]
|
10
|
Risk assessment of genotoxic and carcinogenic alkenylbenzenes in botanical containing products present on the Chinese market. Food Chem Toxicol 2018; 115:344-357. [DOI: 10.1016/j.fct.2018.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/27/2022]
|
11
|
Low TY, Wong KO, Yap ALL, De Haan LHJ, Rietjens IMCM. The Regulatory Framework Across International Jurisdictions for Risks Associated with Consumption of Botanical Food Supplements. Compr Rev Food Sci Food Saf 2017; 16:821-834. [DOI: 10.1111/1541-4337.12289] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Teng Yong Low
- Div. of Toxicology; Wageningen Univ.; Stippeneng 4 6708 WE Wageningen The Netherlands
- Regulatory Programs Dept., Regulatory Administration Group; Agri-Food & Veterinary Authority of Singapore; 52 Jurong Gateway Road Singapore 608550 Singapore
| | - Kwok Onn Wong
- Regulatory Programs Dept., Regulatory Administration Group; Agri-Food & Veterinary Authority of Singapore; 52 Jurong Gateway Road Singapore 608550 Singapore
| | - Adelene L. L. Yap
- Regulatory Programs Dept., Regulatory Administration Group; Agri-Food & Veterinary Authority of Singapore; 52 Jurong Gateway Road Singapore 608550 Singapore
| | - Laura H. J. De Haan
- Div. of Toxicology; Wageningen Univ.; Stippeneng 4 6708 WE Wageningen The Netherlands
| | | |
Collapse
|
12
|
Prinsloo G, Papadi G, Hiben MG, de Haan L, Louisse J, Beekmann K, Vervoort J, Rietjens IMCM. In vitro bioassays to evaluate beneficial and adverse health effects of botanicals: promises and pitfalls. Drug Discov Today 2017; 22:1187-1200. [PMID: 28533190 DOI: 10.1016/j.drudis.2017.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023]
Abstract
This review provides an update on the promises and pitfalls when using in vitro bioassays to evaluate beneficial and adverse health effects of botanicals and botanical preparations. Important issues addressed in the paper are: (i) the type of assays and biological effects available; (ii) false-positives, false-negatives and confounding factors; (iii) matrix and combination effects; (iv) extrapolation of in vitro data to the in vivo situation; (v) when (not) to use bioassays; and (vi) identification of active constituents. It is concluded that in vitro bioassays provide models to detect beneficial as well as adverse activities, but that linking these observations to individual ingredients and extrapolations to the in vivo situation is more complicated than generally anticipated.
Collapse
Affiliation(s)
- Gerhard Prinsloo
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Agriculture and Animal Health, University of South Africa, Private bag x 6, Florida, South Africa.
| | - Georgia Papadi
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Biological Applications & Technology, University of Ioannina, Greece
| | - Mebrahtom G Hiben
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Laura de Haan
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Karsten Beekmann
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jacques Vervoort
- Department of Agriculture and Animal Health, University of South Africa, Private bag x 6, Florida, South Africa; Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
13
|
McClements DJ, Zou L, Zhang R, Salvia-Trujillo L, Kumosani T, Xiao H. Enhancing Nutraceutical Performance Using Excipient Foods: Designing Food Structures and Compositions to Increase Bioavailability. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12170] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- David Julian McClements
- Biopolymers and Colloids Laboratory, Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst Mass 01003 U.S.A
- Biochemistry Dept., Faculty of Science, Production of Bioproducts for Industrial Applications Research Group and Experimental Biochemistry Unit; King Fahd Medical Research Center, King Abdulaziz Univ; Jeddah Saudi Arabia
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology; Nanchang Univ; Nanchang, No. 235 Nanjing East Road Nanchang 330047 Jiangxi China
| | - Ruojie Zhang
- State Key Laboratory of Food Science and Technology; Nanchang Univ; Nanchang, No. 235 Nanjing East Road Nanchang 330047 Jiangxi China
| | - Laura Salvia-Trujillo
- State Key Laboratory of Food Science and Technology; Nanchang Univ; Nanchang, No. 235 Nanjing East Road Nanchang 330047 Jiangxi China
| | - Taha Kumosani
- Biochemistry Dept., Faculty of Science, Production of Bioproducts for Industrial Applications Research Group and Experimental Biochemistry Unit; King Fahd Medical Research Center, King Abdulaziz Univ; Jeddah Saudi Arabia
| | - Hang Xiao
- Biopolymers and Colloids Laboratory, Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst Mass 01003 U.S.A
| |
Collapse
|
14
|
Punt A, Rietjens I. Risk assessment of plant genotoxins. Toxicol Lett 2015. [DOI: 10.1016/j.toxlet.2015.08.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|