1
|
Bi S, Kargeti M, Colin R, Farke N, Link H, Sourjik V. Dynamic fluctuations in a bacterial metabolic network. Nat Commun 2023; 14:2173. [PMID: 37061520 PMCID: PMC10105761 DOI: 10.1038/s41467-023-37957-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
The operation of the central metabolism is typically assumed to be deterministic, but dynamics and high connectivity of the metabolic network make it potentially prone to generating fluctuations. However, time-resolved measurements of metabolite levels in individual cells that are required to characterize such fluctuations remained a challenge, particularly in small bacterial cells. Here we use single-cell metabolite measurements based on Förster resonance energy transfer, combined with computer simulations, to explore the real-time dynamics of the metabolic network of Escherichia coli. We observe that steplike exposure of starved E. coli to glycolytic carbon sources elicits large periodic fluctuations in the intracellular concentration of pyruvate in individual cells. These fluctuations are consistent with predicted oscillatory dynamics of E. coli metabolic network, and they are primarily controlled by biochemical reactions around the pyruvate node. Our results further indicate that fluctuations in glycolysis propagate to other cellular processes, possibly leading to temporal heterogeneity of cellular states within a population.
Collapse
Affiliation(s)
- Shuangyu Bi
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), D-35043, Marburg, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Manika Kargeti
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), D-35043, Marburg, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), D-35043, Marburg, Germany
| | - Niklas Farke
- University of Tübingen, D-72076, Tübingen, Germany
| | - Hannes Link
- University of Tübingen, D-72076, Tübingen, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), D-35043, Marburg, Germany.
| |
Collapse
|
2
|
Yu J, Zhang Y, Zhao Y, Zhang X, Ren H. Highly Sensitive and Selective Detection of Inorganic Phosphates in the Water Environment by Biosensors Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2023; 95:4904-4913. [PMID: 36942460 DOI: 10.1021/acs.analchem.2c04748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The accurate detection of phosphate in water is very important to prevent water eutrophication and ensure the health of water quality. However, traditional phosphomolybdenum blue spectrophotometry is not sensitive, is time-consuming, and demands large amounts of chemical reagents. Therefore, highly sensitive, rapid, and environmentally friendly Pi detection methods are urgently needed. Here, we developed a bioluminescence resonance energy transfer (BRET)-based biosensor, which can detect Pi in water quickly, highly sensitively, and highly selectively. The NanoLuc and the Venus fluorescent protein were selected as the bioluminescence donor and energy acceptor, respectively. The best-performing BRET sensor variant, VenusΔC10-PΔC12-ΔN4Nluc, was identified by Pi-specific binding protein (PiBP) screening and systematic truncation. Single-factor experiments optimized the key parameters affecting the detection performance of the sensor. Under the optimal detection conditions, the detection limit of this method was 1.3 μg·L-1, the detection range was 3.3-434 μg·L-1, and it had excellent selectivity, repeatability, and stability. This low-cost and environment-friendly BRET sensor showed a good application prospect in real water quality detection.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
3
|
Abstract
Metabolomics is a continuously dynamic field of research that is driven by demanding research questions and technological advances alike. In this review we highlight selected recent and ongoing developments in the area of mass spectrometry-based metabolomics. The field of view that can be seen through the metabolomics lens can be broadened by adoption of separation techniques such as hydrophilic interaction chromatography and ion mobility mass spectrometry (going broader). For a given biospecimen, deeper metabolomic analysis can be achieved by resolving smaller entities such as rare cell populations or even single cells using nano-LC and spatially resolved metabolomics or by extracting more useful information through improved metabolite identification in untargeted metabolomic experiments (going deeper). Integration of metabolomics with other (omics) data allows researchers to further advance in the understanding of the complex metabolic and regulatory networks in cells and model organisms (going further). Taken together, diverse fields of research from mechanistic studies to clinics to biotechnology applications profit from these technological developments.
Collapse
Affiliation(s)
- Sofia Moco
- Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joerg M Buescher
- Metabolomics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
4
|
Cable J, Pourquié O, Wellen KE, Finley LWS, Aulehla A, Gould AP, Teleman A, Tu WB, Garrett WS, Miguel-Aliaga I, Perrimon N, Hooper LV, Walhout AJM, Wei W, Alexandrov T, Erez A, Ralser M, Rabinowitz JD, Hemalatha A, Gutiérrez-Pérez P, Chandel NS, Rutter J, Locasale JW, Landoni JC, Christofk H. Metabolic decisions in development and disease-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:55-73. [PMID: 34414571 DOI: 10.1111/nyas.14678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022]
Abstract
There is an increasing appreciation for the role of metabolism in cell signaling and cell decision making. Precise metabolic control is essential in development, as evident by the disorders caused by mutations in metabolic enzymes. The metabolic profile of cells is often cell-type specific, changing as cells differentiate or during tumorigenesis. Recent evidence has shown that changes in metabolism are not merely a consequence of changes in cell state but that metabolites can serve to promote and/or inhibit these changes. Metabolites can link metabolic pathways with cell signaling pathways via several mechanisms, for example, by serving as substrates for protein post-translational modifications, by affecting enzyme activity via allosteric mechanisms, or by altering epigenetic markers. Unraveling the complex interactions governing metabolism, gene expression, and protein activity that ultimately govern a cell's fate will require new tools and interactions across disciplines. On March 24 and 25, 2021, experts in cell metabolism, developmental biology, and human disease met virtually for the Keystone eSymposium, "Metabolic Decisions in Development and Disease." The discussions explored how metabolites impact cellular and developmental decisions in a diverse range of model systems used to investigate normal development, developmental disorders, dietary effects, and cancer-mediated changes in metabolism.
Collapse
Affiliation(s)
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Stem Cell Institute, Boston, Massachusetts
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lydia W S Finley
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Aurelio Teleman
- German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - William B Tu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Wendy Sarah Garrett
- Harvard T. H. Chan School of Public Health and Dana-Farber Cancer, Boston, Massachusetts
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Howard Hughes Institute, Boston, Massachusetts
| | - Lora V Hooper
- Department of Immunology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - A J Marian Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Department of Biology and Stanford ChEM-H, Stanford University, Stanford, California
| | - Theodore Alexandrov
- Structural and Computational Biology Unit and Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.,Department of Biochemistry, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Anupama Hemalatha
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Paula Gutiérrez-Pérez
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Navdeep S Chandel
- Department of Medicine, Robert H. Lurie Cancer Center, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jared Rutter
- Department of Biochemistry and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Juan C Landoni
- Research Program in Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Heather Christofk
- Departments of Biological Chemistry and Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
5
|
Flux controlling technology for central carbon metabolism for efficient microbial bio-production. Curr Opin Biotechnol 2020; 64:169-174. [PMID: 32485613 DOI: 10.1016/j.copbio.2020.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Syntheses of many commodities that are produced using microorganisms require cofactors such as ATP and NAD(P)H. Thus, optimization of the flux distribution in central carbon metabolism, which plays a key role in cofactor regeneration, is critical for enhancing the production of the target compounds. Since the intracellular and extracellular conditions change over time in the fermentation process, dynamic control of the metabolic system for maintaining the cellular state appropriately is necessary. Here, we review techniques for detecting the intracellular metabolic state with fluorescent sensors and controlling the flux of central carbon metabolism with optogenetic tools, as well as present a prospect of bio-production processes for fine-tuning the flux distribution.
Collapse
|
6
|
Otten J, Tenhaef N, Jansen RP, Döbber J, Jungbluth L, Noack S, Oldiges M, Wiechert W, Pohl M. A FRET-based biosensor for the quantification of glucose in culture supernatants of mL scale microbial cultivations. Microb Cell Fact 2019; 18:143. [PMID: 31434564 PMCID: PMC6704555 DOI: 10.1186/s12934-019-1193-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/14/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In most microbial cultivations D-glucose is the main carbon and energy source. However, quantification of D-glucose especially in small scale is still challenging. Therefore, we developed a FRET-based glucose biosensor, which can be applied in microbioreactor-based cultivations. This sensor consists of a glucose binding protein sandwiched between two fluorescent proteins, constituting a FRET pair. Upon D-glucose binding the sensor undergoes a conformational change which is translated into a FRET-ratio change. RESULTS The selected sensor shows an apparent Kd below 1.5 mM D-glucose and a very high sensitivity of up to 70% FRET-ratio change between the unbound and the glucose-saturated state. The soluble sensor was successfully applied online to monitor the glucose concentration in an Escherichia coli culture. Additionally, this sensor was utilized in an at-line process for a Corynebacterium glutamicum culture as an example for a process with cell-specific background (e.g. autofluorescence) and medium-induced quenching. Immobilization of the sensor via HaloTag® enabled purification and covalent immobilization in one step and increased the stability during application, significantly. CONCLUSION A FRET-based glucose sensor was used to quantify D-glucose consumption in microtiter plate based cultivations. To the best of our knowledge, this is the first method reported for online quantification of D-glucose in microtiter plate based cultivations. In comparison to D-glucose analysis via an enzymatic assay and HPLC, the sensor performed equally well, but enabled much faster measurements, which allowed to speed up microbial strain development significantly.
Collapse
Affiliation(s)
- Julia Otten
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Niklas Tenhaef
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Roman P. Jansen
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Johannes Döbber
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lisa Jungbluth
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Noack
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
7
|
Kost LA, Ivanova VO, Balaban PM, Lukyanov KA, Nikitin ES, Bogdanov AM. Red Fluorescent Genetically Encoded Voltage Indicators with Millisecond Responsiveness. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2982. [PMID: 31284557 PMCID: PMC6651345 DOI: 10.3390/s19132982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
Genetically encoded fluorescent indicators typically consist of the sensitive and reporter protein domains connected with the amino acid linkers. The final performance of a particular indicator may depend on the linker length and composition as strong as it depends on the both domains nature. Here we aimed to optimize interdomain linkers in VSD-FR189-188-a recently described red fluorescent protein-based voltage indicator. We have tested 13 shortened linker versions and monitored the dynamic range, response speed and polarity of the corresponding voltage indicator variants. While the new indicators didn't show a contrast enhancement, some of them carrying very short interdomain linkers responded 25-fold faster than the parental VSD-FR189-188. Also we found the critical linker length at which fluorescence response to voltage shift changes its polarity from negative to positive slope. Our observations thus make an important contribution to the designing principles of the fluorescent protein-derived voltage indicators.
Collapse
Affiliation(s)
- Liubov A Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Violetta O Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Konstantin A Lukyanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
| |
Collapse
|
8
|
Walia A, Waadt R, Jones AM. Genetically Encoded Biosensors in Plants: Pathways to Discovery. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:497-524. [PMID: 29719164 DOI: 10.1146/annurev-arplant-042817-040104] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors. We then consider the discoveries in plant biology made by using biosensors for calcium, pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, and nutrients. These discoveries were dependent on the engineering, characterization, and optimization required to develop a successful biosensor; they were also dependent on the methodological developments required to express, detect, and analyze the readout of such biosensors.
Collapse
Affiliation(s)
- Ankit Walia
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| | - Rainer Waadt
- Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - Alexander M Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| |
Collapse
|
9
|
Mastop M, Bindels DS, Shaner NC, Postma M, Gadella TWJ, Goedhart J. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2. Sci Rep 2017; 7:11999. [PMID: 28931898 PMCID: PMC5607329 DOI: 10.1038/s41598-017-12212-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/05/2017] [Indexed: 01/13/2023] Open
Abstract
The performance of Förster Resonance Energy Transfer (FRET) biosensors depends on brightness and photostability, which are dependent on the characteristics of the fluorescent proteins that are employed. Yellow fluorescent protein (YFP) is often used as an acceptor but YFP is prone to photobleaching and pH changes. In this study, we evaluated the properties of a diverse set of acceptor fluorescent proteins in combination with the optimized CFP variant mTurquoise2 as the donor. To determine the theoretical performance of acceptors, the Förster radius was determined. The practical performance was determined by measuring FRET efficiency and photostability of tandem fusion proteins in mammalian cells. Our results show that mNeonGreen is the most efficient acceptor for mTurquoise2 and that the photostability is better than SYFP2. The non-fluorescent YFP variant sREACh is an efficient acceptor, which is useful in lifetime-based FRET experiments. Among the orange and red fluorescent proteins, mCherry and mScarlet-I are the best performing acceptors. Several new pairs were applied in a multimolecular FRET based sensor for detecting activation of a heterotrimeric G-protein by G-protein coupled receptors. Overall, the sensor with mNeonGreen as acceptor and mTurquoise2 as donor showed the highest dynamic range in ratiometric FRET imaging experiments with the G-protein sensor.
Collapse
Affiliation(s)
- Marieke Mastop
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Daphne S Bindels
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Nathan C Shaner
- Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, California, United States of America
| | - Marten Postma
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Abstract
Metabolic pathways play a vital yet poorly understood role in embryogenesis. In this issue of Developmental Cell, Bulusu et al. (2017) and Oginuma et al. (2017) provide insights into the intricate relationship between metabolism and morphogenesis, showing that glycolysis facilitates body elongation and balances neural and mesodermal differentiation.
Collapse
Affiliation(s)
| | - Andrew C Oates
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Bulusu V, Prior N, Snaebjornsson MT, Kuehne A, Sonnen KF, Kress J, Stein F, Schultz C, Sauer U, Aulehla A. Spatiotemporal Analysis of a Glycolytic Activity Gradient Linked to Mouse Embryo Mesoderm Development. Dev Cell 2017; 40:331-341.e4. [PMID: 28245920 PMCID: PMC5337618 DOI: 10.1016/j.devcel.2017.01.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 12/01/2016] [Accepted: 01/27/2017] [Indexed: 12/27/2022]
Abstract
How metabolism is rewired during embryonic development is still largely unknown, as it remains a major technical challenge to resolve metabolic activities or metabolite levels with spatiotemporal resolution. Here, we investigated metabolic changes during development of organogenesis-stage mouse embryos, focusing on the presomitic mesoderm (PSM). We measured glycolytic labeling kinetics from 13C-glucose tracing experiments and detected elevated glycolysis in the posterior, more undifferentiated PSM. We found evidence that the spatial metabolic differences are functionally relevant during PSM development. To enable real-time quantification of a glycolytic metabolite with spatiotemporal resolution, we generated a pyruvate FRET-sensor reporter mouse line. We revealed dynamic changes in cytosolic pyruvate levels as cells transit toward a more anterior PSM state. Combined, our approach identifies a gradient of glycolytic activity across the PSM, and we provide evidence that these spatiotemporal metabolic changes are intrinsically linked to PSM development and differentiation. Identification of glycolytic activity gradient in mouse presomitic mesoderm Development of a pyruvate FRET-reporter mouse model Real-time imaging reveals pyruvate gradient dynamics Metabolic state is linked to presomitic mesoderm cell differentiation
Collapse
Affiliation(s)
- Vinay Bulusu
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Nicole Prior
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Marteinn T Snaebjornsson
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Katharina F Sonnen
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jana Kress
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Frank Stein
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
12
|
Edwards KA, Tu‐Maung N, Cheng K, Wang B, Baeumner AJ, Kraft CE. Thiamine Assays-Advances, Challenges, and Caveats. ChemistryOpen 2017; 6:178-191. [PMID: 28413748 PMCID: PMC5390807 DOI: 10.1002/open.201600160] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/27/2017] [Indexed: 01/08/2023] Open
Abstract
Thiamine (vitamin B1) is essential to the health of all living organisms and deficiency has long been associated with diseases in animals such as fish, birds, alligators, and domesticated ruminant mammals. Thiamine is also implicated in several human diseases including Alzheimer's, diabetes, dementia, depression and, most notably, Wernicke-Korsakoff syndrome and Beriberi disease. Yet, highly sensitive and specific detection of thiamine remains an analytical challenge, as pM to nm levels of thiamine need to be detected in environmental and human samples, respectively, various phosphorylated variants need to be discriminated, and rapid on-site detection would be highly desirable. Furthermore, appropriate sample preparation is mandatory, owing to the complexity of the relevant sample matrices including fish tissues, ocean water, and body fluids. This Review has two objectives. First, it provides a thorough overview of analytical techniques published for thiamine detection over the last 15 years. Second, it describes the principles of analytical approaches that are based on biorecognition and may open up new avenues for rapid and high-throughput thiamine analysis. Most notably, periplasmic binding proteins, ribozymes, and aptamers are of particular interest, as they function as bioaffinity recognition elements that can fill an important assay technology gap, owing to the unavailability of thiamine-specific commercial antibodies. Finally, the authors provide brief evaluations of key outcomes of the major assay concepts and suggest how innovative techniques could help develop sensitive and specific thiamine analytical test systems.
Collapse
Affiliation(s)
- Katie A. Edwards
- Department of Natural ResourcesCornell UniversityIthacaNY14853USA
| | - Nicole Tu‐Maung
- Department of Natural ResourcesCornell UniversityIthacaNY14853USA
| | - Krystal Cheng
- Department of Natural ResourcesCornell UniversityIthacaNY14853USA
| | - Binbin Wang
- Department of Natural ResourcesCornell UniversityIthacaNY14853USA
| | - Antje J. Baeumner
- Institute for Analytical Chemistry, Chemo and BiosensorsUniversity of RegensburgRegensburg93040Germany
| | | |
Collapse
|
13
|
Abstract
Genetically encoded fluorescent sensors are essential tools in modern biological research, and recent advances in fluorescent proteins (FPs) have expanded the scope of sensor design and implementation. In this review we compare different sensor platforms, including Förster resonance energy transfer (FRET) sensors, fluorescence-modulated single FP-based sensors, translocation sensors, complementation sensors, and dimerization-based sensors. We discuss elements of sensor design and engineering for each platform, including the incorporation of new types of FPs and sensor screening techniques. Finally, we summarize the wide range of sensors in the literature, exploring creative new sensor architectures suitable for different applications.
Collapse
Affiliation(s)
- Lynn Sanford
- University of Colorado Boulder, Boulder, CO, United States
| | - Amy Palmer
- University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
14
|
Bilan DS, Belousov VV. Genetically encoded probes for NAD +/NADH monitoring. Free Radic Biol Med 2016; 100:32-42. [PMID: 27387770 DOI: 10.1016/j.freeradbiomed.2016.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/04/2016] [Accepted: 06/18/2016] [Indexed: 12/18/2022]
Abstract
NAD+ and NADH participate in many metabolic reactions. The NAD+/NADH ratio is an important parameter reflecting the general metabolic and redox state of different types of cells. For a long time, in situ and in vivo NAD+/NADH monitoring has been hampered by the lack of suitable tools. The recent development of genetically encoded indicators based on fluorescent proteins linked to specific nucleotide-binding domains has already helped to address this monitoring problem. In this review, we will focus on four available indicators: Peredox, Frex family probes, RexYFP and SoNar. Each indicator has advantages and limitations. We will also discuss the most important points that should be considered when selecting a suitable indicator for certain experimental conditions.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
15
|
Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell 2016; 109:1-23. [PMID: 27628952 DOI: 10.1111/boc.201600040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future.
Collapse
Affiliation(s)
- Andrey Bolbat
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| |
Collapse
|