• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4688919)   Today's Articles (3167)
For: Mohammadi S, Maeki M, Mohamadi RM, Ishida A, Tani H, Tokeshi M. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst 2015. [PMID: 26207925 DOI: 10.1039/c5an00909j] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Number Cited by Other Article(s)
1
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024;1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
2
Larkey NE, Obiorah IE. Advances and Progress in Automated Urine Analyzers. Clin Lab Med 2024;44:409-421. [PMID: 39089747 DOI: 10.1016/j.cll.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
3
Silva-Neto HA, Jaime JC, Rocha DS, Sgobbi LF, Coltro WKT. Fabrication of paper-based analytical devices using stencil-printed glass varnish barriers for colorimetric detection of salivary α-amylase. Anal Chim Acta 2024;1297:342336. [PMID: 38438226 DOI: 10.1016/j.aca.2024.342336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 03/06/2024]
4
Goncharov A, Joung HA, Ghosh R, Han GR, Ballard ZS, Maloney Q, Bell A, Aung CTZ, Garner OB, Carlo DD, Ozcan A. Deep Learning-Enabled Multiplexed Point-of-Care Sensor using a Paper-Based Fluorescence Vertical Flow Assay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;19:e2300617. [PMID: 37104829 DOI: 10.1002/smll.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
5
Sang J, Cheng J, Hu H, Liu K, Guo J, Guo J. Portable dual-channel blood enzyme analyzer for point-of-care liver function detection. Analyst 2023;148:6020-6027. [PMID: 37885378 DOI: 10.1039/d3an01432k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
6
Choi J, Lee EH, Kang SM, Jeong HH. A Facile Method to Fabricate an Enclosed Paper-Based Analytical Device via Double-Sided Patterning for Ionic Contaminant Detection. BIOSENSORS 2023;13:915. [PMID: 37887108 PMCID: PMC10605057 DOI: 10.3390/bios13100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
7
Khan M, Zhao B, Wu W, Zhao M, Bi Y, Hu Q. Distance-based microfluidic assays for instrument-free visual point-of-care testing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
8
Roller RM, Rea A, Lieberman M. The air-gap PAD: a roll-to-roll-compatible fabrication method for paper microfluidics. LAB ON A CHIP 2023;23:1918-1925. [PMID: 36883463 DOI: 10.1039/d2lc01164f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
9
Chen C, Meng H, Guo T, Deshpande S, Chen H. Development of Paper Microfluidics with 3D-Printed PDMS Barriers for Flow Control. ACS APPLIED MATERIALS & INTERFACES 2022;14:40286-40296. [PMID: 36001301 DOI: 10.1021/acsami.2c08541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
10
Thongkam T, Hemavibool K. A simple epoxy resin screen-printed paper-based analytical device for detection of phosphate in soil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022;14:1069-1076. [PMID: 35195618 DOI: 10.1039/d1ay02011k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
11
Fast and highly efficient multiplexed electrokinetic stacking on a paper-based analytical device. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
12
Juang YJ, Hsu SK. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper. Polymers (Basel) 2022;14:639. [PMID: 35160629 PMCID: PMC8840650 DOI: 10.3390/polym14030639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022]  Open
13
Faura G, Boix-Lemonche G, Holmeide AK, Verkauskiene R, Volke V, Sokolovska J, Petrovski G. Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy-Application of Sensor Arrays and Machine Learning. SENSORS 2022;22:s22030718. [PMID: 35161465 PMCID: PMC8839630 DOI: 10.3390/s22030718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022]
14
Sinha A, Basu M, Chandna P. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022;186:109-158. [PMID: 35033281 DOI: 10.1016/bs.pmbts.2021.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
15
Shin G, Jeon JG, Kim JH, Lee JH, Lee J, Kim HJ, Baek JY, Kang KM, Han Y, So BJ, Kang TJ. Paper-Based Ionic Thermocouples for Inexpensive and High-Precision Measurement of Temperature. ACS APPLIED MATERIALS & INTERFACES 2021;13:60154-60162. [PMID: 34844404 DOI: 10.1021/acsami.1c17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
16
Tseng HY, Lizama JH, Shen YW, Chen CJ. The pursuit of further miniaturization of screen printed micro paper-based analytical devices utilizing controlled penetration towards optimized channel patterning. Sci Rep 2021;11:21496. [PMID: 34728732 PMCID: PMC8563737 DOI: 10.1038/s41598-021-01048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]  Open
17
Yadav S, Sharma NN, Akhtar J. Nucleic acid analysis on paper substrates (NAAPs): an innovative tool for Point of Care (POC) infectious disease diagnosis. Analyst 2021;146:3422-3439. [PMID: 33904559 DOI: 10.1039/d1an00214g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
18
Zhang H, Chen Z, Dai J, Zhang W, Jiang Y, Zhou A. A low-cost mobile platform for whole blood glucose monitoring using colorimetric method. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
19
Telemedicine for Pre-Employment Medical Examinations and Follow-Up Visits on Board Ships: A Narrative Review on the Feasibility. Healthcare (Basel) 2021;9:healthcare9010069. [PMID: 33451120 PMCID: PMC7828583 DOI: 10.3390/healthcare9010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]  Open
20
Sawetwong P, Chairam S, Jarujamrus P, Amatatongchai M. Enhanced selectivity and sensitivity for colorimetric determination of glyphosate using Mn-ZnS quantum dot embedded molecularly imprinted polymers combined with a 3D-microfluidic paper-based analytical device. Talanta 2021;225:122077. [PMID: 33592801 DOI: 10.1016/j.talanta.2020.122077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023]
21
Prapaporn S, Arisara S, Wunpen C, Wijitar D. Nanocellulose Films to Improve the Performance of Distance-based Glucose Detection in Paper-based Microfluidic Devices. ANAL SCI 2020;36:1447-1452. [PMID: 32713902 DOI: 10.2116/analsci.20p168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
22
Zhang D, Yan L, Zhang Y, Li T, Wang J. An ultrasimple and cost‐effective µPAD by pasting hydrophilic channels to a hydrophobic basement. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]  Open
23
Komatsu T, Maeki M, Ishida A, Tani H, Tokeshi M. Paper-Based Device for the Facile Colorimetric Determination of Lithium Ions in Human Whole Blood. ACS Sens 2020;5:1287-1294. [PMID: 32283919 DOI: 10.1021/acssensors.9b02218] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
24
Material development using the inherent features of nano-cellulose and nano-chitin: Necessity of simple processes and cross-disciplinary collaboration. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
25
One-Step Polylactic Acid Screen-Printing Microfluidic Paper-Based Analytical Device: Application for Simultaneous Detection of Nitrite and Nitrate in Food Samples. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7030044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
26
Soum V, Park S, Brilian AI, Kwon OS, Shin K. Programmable Paper-Based Microfluidic Devices for Biomarker Detections. MICROMACHINES 2019;10:E516. [PMID: 31382502 PMCID: PMC6722603 DOI: 10.3390/mi10080516] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
27
Screen-printed microfluidic paper-based analytical device (μPAD) as a barcode sensor for magnesium detection using rubber latex waste as a novel hydrophobic reagent. Anal Chim Acta 2019;1082:66-77. [PMID: 31472714 DOI: 10.1016/j.aca.2019.06.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/24/2022]
28
Sitanurak J, Fukana N, Wongpakdee T, Thepchuay Y, Ratanawimarnwong N, Amornsakchai T, Nacapricha D. T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices. Talanta 2019;205:120113. [PMID: 31450420 DOI: 10.1016/j.talanta.2019.120113] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022]
29
Zhang H, Smith E, Zhang W, Zhou A. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine. Biomed Microdevices 2019;21:48. [DOI: 10.1007/s10544-019-0388-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
30
Jang H, Park JH, Oh J, Kim K, Kim MG. Advanced Colorimetric Paper Sensors Using Color Focusing Effect Based on Asymmetric Flow of Fluid. ACS Sens 2019;4:1103-1108. [PMID: 30950270 DOI: 10.1021/acssensors.9b00390] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Scalable Methods for Device Patterning as an Outstanding Challenge in Translating Paper-Based Microfluidics from the Academic Benchtop to the Point-of-Care. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00093-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
32
Xie L, Zi X, Zeng H, Sun J, Xu L, Chen S. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Anal Chim Acta 2018;1053:131-138. [PMID: 30712558 DOI: 10.1016/j.aca.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/20/2023]
33
Oyaert M, Delanghe J. Progress in Automated Urinalysis. Ann Lab Med 2018;39:15-22. [PMID: 30215225 PMCID: PMC6143458 DOI: 10.3343/alm.2019.39.1.15] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]  Open
34
Rahimi R, Ochoa M, Ziaie B. Comparison of Direct and Indirect Laser Ablation of Metallized Paper for Inexpensive Paper-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2018;10:36332-36341. [PMID: 30222316 DOI: 10.1021/acsami.8b09598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
35
Fan Y, Wang H, Liu S, Zhang B, Zhang Y. Milk carton with integrated paper‐based microfluidics for milk quality rapid test. J Food Saf 2018. [DOI: 10.1111/jfs.12548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
36
Murase R, Kondo S, Kitamura T, Goi Y, Hashimoto M, Teramoto Y. Cellulose Nanofibers as a Module for Paper-Based Microfluidic Analytical Devices: Labile Substance Storage, Processability, and Reaction Field Provision and Control. ACS APPLIED BIO MATERIALS 2018;1:480-486. [DOI: 10.1021/acsabm.8b00206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
37
Paschoalino WJ, Kogikoski S, Barragan JTC, Giarola JF, Cantelli L, Rabelo TM, Pessanha TM, Kubota LT. Emerging Considerations for the Future Development of Electrochemical Paper-Based Analytical Devices. ChemElectroChem 2018. [DOI: 10.1002/celc.201800677] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
38
Fluorometric determination of dopamine by using molybdenum disulfide quantum dots. Mikrochim Acta 2018;185:234. [PMID: 29594717 DOI: 10.1007/s00604-018-2771-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
39
Busa LSA, Komatsu T, Mohammadi S, Maeki M, Ishida A, Tani H, Tokeshi M. 3,3',5,5'-Tetramethylbenzidine Oxidation on Paper Devices for Horseradish Peroxidase-based Assays. ANAL SCI 2018;32:815-8. [PMID: 27506705 DOI: 10.2116/analsci.32.815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
40
KOMATSU T, MAEKI M, ISHIDA A, TANI H, TOKESHI M. Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods. ANAL SCI 2018;34:39-44. [DOI: 10.2116/analsci.34.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
41
Bandara GC, Heist CA, Remcho VT. Patterned polycaprolactone-filled glass microfiber microfluidic devices for total protein content analysis. Talanta 2017;176:589-594. [PMID: 28917794 DOI: 10.1016/j.talanta.2017.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/30/2022]
42
Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
43
Shangguan JW, Liu Y, Pan JB, Xu BY, Xu JJ, Chen HY. Microfluidic PDMS on paper (POP) devices. LAB ON A CHIP 2016;17:120-127. [PMID: 27883132 DOI: 10.1039/c6lc01250g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
44
Liu S, Su W, Ding X. A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection. SENSORS 2016;16:s16122086. [PMID: 27941634 PMCID: PMC5191067 DOI: 10.3390/s16122086] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/26/2022]
45
Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates. Anal Bioanal Chem 2016;408:7559-7563. [DOI: 10.1007/s00216-016-9853-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
46
Busa LSA, Mohammadi S, Maeki M, Ishida A, Tani H, Tokeshi M. Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis. MICROMACHINES 2016;7:E86. [PMID: 30404261 PMCID: PMC6189793 DOI: 10.3390/mi7050086] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023]
47
Komatsu T, Mohammadi S, Busa LSA, Maeki M, Ishida A, Tani H, Tokeshi M. Image analysis for a microfluidic paper-based analytical device using the CIE L*a*b* color system. Analyst 2016;141:6507-6509. [DOI: 10.1039/c6an01409g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
48
Busa LSA, Mohammadi S, Maeki M, Ishida A, Tani H, Tokeshi M. A competitive immunoassay system for microfluidic paper-based analytical detection of small size molecules. Analyst 2016;141:6598-6603. [DOI: 10.1039/c6an01475e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA