1
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2024. [PMID: 39680919 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Wisuthiphaet N, Zhang H, Liu X, Nitin N. Detection of Escherichia coli Using Bacteriophage T7 and Analysis of Excitation‑Emission Matrix Fluorescence Spectroscopy. J Food Prot 2024; 87:100396. [PMID: 39521134 DOI: 10.1016/j.jfp.2024.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Conventional detection methods require the isolation and enrichment of bacteria, followed by molecular, biochemical, or culture-based analysis. To address some of the limitations of conventional methods, this study develops a machine learning (ML) approach to analyze the excitation-emission matrix (EEM) fluorescence data generated based on bacteriophage T7 and Escherichia coli interactions for in-situ detection of live bacteria in the presence of fresh produce homogenate. We trained classification models using various ML algorithms based on the 3-D EEM data generated with bacteria and their interactions with a T7 phage. These ML algorithms, including linear Support Vector Classifier (SVC) and Random Forest (RF), demonstrate high accuracy (>0.85) for detecting E. coli at 102 CFU/ml concentration within 6 h. Additionally, these ML models can differentiate among different E. coli concentration levels. For example, the Gaussian Process model achieved an accuracy of 92% in detecting different concentration levels of live E. coli. Application of these ML methods to detect E. coli in spinach homogenate yielded an accuracy of 89% using the linear-SVC model. Furthermore, feature selection techniques were employed to reduce the dimensionality of the data, revealing that only six features were necessary for achieving classification accuracy (>0.85) of spinach homogenate samples containing 102 CFU/ml of E. coli. These findings highlight the potential of this novel bacterial detection methodology, offering rapid, specific, and efficient solutions for applications in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Nicharee Wisuthiphaet
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Huanle Zhang
- School of Computer Science and Technology, Shandong University, Shandong, China
| | - Xin Liu
- Department of Computer Science, University of California, Davis, Davis, California, United States
| | - Nitin Nitin
- Department of Food Science & Technology, University of California, Davis, Davis, California, United States; Department of Biological & Agricultural Engineering, University of California, Davis, Davis, California, United States.
| |
Collapse
|
3
|
Wang J, Zheng Y, Huang H, Ma Y, Zhao X. An overview of signal amplification strategies and construction methods on phage-based biosensors. Food Res Int 2024; 191:114727. [PMID: 39059923 DOI: 10.1016/j.foodres.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phages are a class of viruses that specifically infect host bacteria. Compared to other recognition elements, phages offer several advantages such as high specificity, easy to obtain and good environmental tolerance, etc. These advantages underscore the potential of phages as recognition elements in the construction of biosensors. Therefore, the phage-based biosensors are currently garnering widespread attention for detecting pathogens in recent years. However, the test performance such as detection limit, sensitivity and stability of exicting phage-based biosensors require enhancement. In the design of sensors, the selection of various materials and construction methods significantly influences the test performance of the sensor, and employing appropriate signal amplification strategies and construction methods to devise biosensors based on different principles is an effective strategy to enhance sensor performance. The manuscript primarily focuses on the signal amplification strategies and construction methods employed in phage-based biosensors recent ten years, and summarizes the advantages and disadvantages of different signal amplification strategies and construction methods. Meanwhile, the manuscript discusses the relationship between sensor performance and various materials and construction methods, and reviews the application progress of phage-based electrochemical biosensors in the detection of foodborne bacteria. Furthermore, the manuscript points out the present limitations and the future research direction for the field of phage-based biosensors, so as to provide the reference for developing high-performance phage-based biosensors.
Collapse
Affiliation(s)
- Jiahao Wang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yuqing Zheng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hongkai Huang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Ya Ma
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xiaojuan Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
4
|
Gil J, Paulson J, Zahn H, Brown M, Nguyen MM, Erickson S. Development of a Replication-Deficient Bacteriophage Reporter Lacking an Essential Baseplate Wedge Subunit. Viruses 2023; 16:8. [PMID: 38275943 PMCID: PMC10821221 DOI: 10.3390/v16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Engineered bacteriophages (phages) can be effective diagnostic reporters for detecting a variety of bacterial pathogens. Although a promising biotechnology, the large-scale use of these reporters may result in the unintentional release of genetically modified viruses. In order to limit the potential environmental impact, the ability of these phages to propagate outside the laboratory was targeted. The phage SEA1 has been previously engineered to facilitate food safety as an accurate and sensitive reporter for Salmonella contamination. In this study, homologous recombination was used to replace the expression of an essential baseplate wedge subunit (gp141) in SEA1 with a luciferase, NanoLuc®. This reporter, referred to as SEA1Δgp141.NL, demonstrated a loss of plaque formation and a failure to increase in titer following infection of Salmonella. SEA1Δgp141.NL was thus incapable of producing infectious progeny in the absence of gp141. In contrast, production of high titer stocks was possible when gp141 was artificially supplied in trans during infection. As a reporter, SEA1Δgp141.NL facilitated rapid, sensitive, and robust detection of Salmonella despite an inability to replicate. These results suggest that replication-deficient reporter phages are an effective method to obtain improved containment without sacrificing significant performance or the ease of production associated with many phage-based diagnostic methods.
Collapse
Affiliation(s)
- Jose Gil
- Laboratory Corporation of America Holdings, Los Angeles, CA 90062, USA;
| | - John Paulson
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| | - Henriett Zahn
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| | - Matthew Brown
- Laboratory Corporation of America Holdings, Burlington, NC 27215, USA;
| | - Minh M. Nguyen
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| | - Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| |
Collapse
|
5
|
Zhuang L, Gong J, Shen Q, Yang J, Song C, Liu Q, Zhao B, Zhang Y, Zhu M. Advances in detection methods for viable Salmonella spp.: current applications and challenges. ANAL SCI 2023; 39:1643-1660. [PMID: 37378821 DOI: 10.1007/s44211-023-00384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Salmonella is a common intestinal pathogen that can cause food poisoning and intestinal disease. The high prevalence of Salmonella necessitates efficient and sensitive methods for its identification, detection, and monitoring, especially of viable Salmonella. Conventional culture methods need to be more laborious and time-consuming. And they are relatively limited in their ability to detect Salmonella in the viable but non-culturable status if present in the sample to be tested. As a result, there is an increasing need for rapid and accurate techniques to detect viable Salmonella spp. This paper reviewed the status and progress of various methods reported in recent years that can be used to detect viable Salmonella, such as culture-based methods, molecular methods targeting RNAs and DNAs, phage-based methods, biosensors, and some techniques that have the potential for future application. This review can provide researchers with a reference for additional method options and help facilitate the development of rapid and accurate assays. In the future, viable Salmonella detection approaches will become more stable, sensitive, and fast and are expected to play a more significant role in food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
6
|
Gonçalves WB, Teixeira WSR, Sampaio ANDCE, Martins OA, Cervantes EP, Mioni MDSR, Gruber J, Pereira JG. Combination of the electronic nose with microbiology as a tool for rapid detection of Salmonella. J Microbiol Methods 2023; 212:106805. [PMID: 37558057 DOI: 10.1016/j.mimet.2023.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Salmonella is one of the most important foodborne pathogens and its analysis in raw and processed products is mandatory in the food industry. Although microbiological analysis is the standard practice for Salmonella determination, these assays are commonly laborious and time-consuming, thus, alternative techniques based on easy operation, few manipulation steps, low cost, and reduced time are desirable. In this paper, we demonstrate the use of an e-nose based on ionogel composites (ionic liquid + gelatine + Fe3O4 particles) as a complementary tool for the conventional microbiological detection of Salmonella. We used the proposed methodology for differentiating Salmonella from Escherichia coli, Pseudomonas fluorescens, Pseudomonas aeruginosa, and Staphylococcus aureus in nonselective medium: pre-enrichment in brain heart infusion (BHI) (incubation at 35 °C, 24 h) and enrichment in tryptone soy agar (TSA) (incubation at 35 °C, 24 h), whereas Salmonella differentiation from E. coli and P. fluorescens was also evaluated in selective media, bismuth sulfite agar (BSA), xylose lysine deoxycholate agar (XLD), and brilliant green agar (BGA) (incubation at 35 °C, 24 h). The obtained data were compared by principal component analysis (PCA) and different machine learning algorithms: multilayer perceptron (MLP), linear discriminant analysis (LDA), instance-based (IBk), and Logistic Model Trees (LMT). For the nonselective media, under optimized conditions, taking merged data of BHI + TSA (total incubation time of 48 h), an accuracy of 85% was obtained with MLP, LDA, and LMT, while five separated clusters were presented in PCA, each cluster corresponding to a bacterium. In addition, for evaluation of the e-nose for discrimination of Salmonella using selective media, considering the combination of BSA + XLD and total incubation of 72 h, the PCA showed three separated and well-defined clusters corresponding to Salmonella, E. coli, and P. fluorescens, and an accuracy of 100% was obtained for all classifiers.
Collapse
Affiliation(s)
- Wellington Belarmino Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| | - Wanderson Sirley Reis Teixeira
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), 18618-681, Botucatu, SP, Brazil.
| | - Aryele Nunes da Cruz Encide Sampaio
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), 18618-681, Botucatu, SP, Brazil.
| | - Otávio Augusto Martins
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), 18618-681, Botucatu, SP, Brazil.
| | - Evelyn Perez Cervantes
- Instituto de Matemática e Estatística, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil.
| | - Mateus de Souza Ribeiro Mioni
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), 14884-900, Jaboticabal, SP, Brazil.
| | - Jonas Gruber
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| | - Juliano Gonçalves Pereira
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), 18618-681, Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Paramithiotis S. Molecular Targets for Foodborne Pathogenic Bacteria Detection. Pathogens 2023; 12:pathogens12010104. [PMID: 36678453 PMCID: PMC9865778 DOI: 10.3390/pathogens12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The detection of foodborne pathogenic bacteria currently relies on their ability to grow on chemically defined liquid and solid media, which is the essence of the classical microbiological approach. Such procedures are time-consuming and the quality of the result is affected by the selectivity of the media employed. Several alternative strategies based on the detection of molecular markers have been proposed. These markers may be cell constituents, may reside on the cell envelope or may be specific metabolites. Each marker provides specific advantages and, at the same time, suffers from specific limitations. The food matrix and chemical composition, as well as the accompanying microbiota, may also severely compromise detection. The aim of the present review article is to present and critically discuss all available information regarding the molecular targets that have been employed as markers for the detection of foodborne pathogens. Their strengths and limitations, as well as the proposed alleviation strategies, are presented, with particular emphasis on their applicability in real food systems and the challenges that are yet to be effectively addressed.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
8
|
Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Harakeh S, Applegate BM, Bhunia AK. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment. BIOSENSORS 2022; 12:bios12100905. [PMID: 36291042 PMCID: PMC9599427 DOI: 10.3390/bios12100905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Foodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result. The specificity and sensitivity of assays for live pathogen detection may also depend on the nature of the samples being analyzed and the immunological or molecular reagents used. Bacteriophage-based biosensors offer several benefits, including specificity to their host organism, the detection of only live pathogens, and resistance to extreme environmental factors such as organic solvents, high temperatures, and a wide pH range. Phage-based biosensors are receiving increasing attention owing to their high degree of accuracy, specificity, and reduced assay times. These characteristics, coupled with their abundant supply, make phages a novel bio-recognition molecule in assay development, including biosensors for the detection of foodborne bacterial pathogens to ensure food safety. This review provides comprehensive information about the different types of phage-based biosensor platforms, such as magnetoelastic sensors, quartz crystal microbalance, and electrochemical and surface plasmon resonance for the detection of several foodborne bacterial pathogens from various representative food matrices and environmental samples.
Collapse
Affiliation(s)
- Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bruce M. Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Yu T, Sun Z, Cao X, Pang Q, Deng H. Recent trends in T7 phage application in diagnosis and treatment of various diseases. Int Immunopharmacol 2022; 110:109071. [DOI: 10.1016/j.intimp.2022.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
10
|
Abril AG, Carrera M, Notario V, Sánchez-Pérez Á, Villa TG. The Use of Bacteriophages in Biotechnology and Recent Insights into Proteomics. Antibiotics (Basel) 2022; 11:653. [PMID: 35625297 PMCID: PMC9137636 DOI: 10.3390/antibiotics11050653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Phages have certain features, such as their ability to form protein-protein interactions, that make them good candidates for use in a variety of beneficial applications, such as in human or animal health, industry, food science, food safety, and agriculture. It is essential to identify and characterize the proteins produced by particular phages in order to use these viruses in a variety of functional processes, such as bacterial detection, as vehicles for drug delivery, in vaccine development, and to combat multidrug resistant bacterial infections. Furthermore, phages can also play a major role in the design of a variety of cheap and stable sensors as well as in diagnostic assays that can either specifically identify specific compounds or detect bacteria. This article reviews recently developed phage-based techniques, such as the use of recombinant tempered phages, phage display and phage amplification-based detection. It also encompasses the application of phages as capture elements, biosensors and bioreceptors, with a special emphasis on novel bacteriophage-based mass spectrometry (MS) applications.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Vicente Notario
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
| |
Collapse
|
11
|
Alonzo LF, Jain P, Hinkley T, Clute-Reinig N, Garing S, Spencer E, Dinh VTT, Bell D, Nugen S, Nichols KP, Le Ny ALM. Rapid, sensitive, and low-cost detection of Escherichia coli bacteria in contaminated water samples using a phage-based assay. Sci Rep 2022; 12:7741. [PMID: 35562180 PMCID: PMC9095594 DOI: 10.1038/s41598-022-11468-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Inadequate drinking water quality is among the major causes of preventable mortality, predominantly in young children. Identifying contaminated water sources remains a significant challenge, especially where resources are limited. The current methods for measuring Escherichia coli (E. coli), the WHO preferred indicator for measuring fecal contamination of water, involve overnight incubation and require specialized training. In 2016, UNICEF released a Target Product Profile (TPP) to incentivize product innovations to detect low levels of viable E. coli in water samples in the field in less than 6 h. Driven by this challenge, we developed a phage-based assay to detect and semi-quantify E. coli. We formulated a phage cocktail containing a total of 8 phages selected against an extensive bacterial strain library and recombined with the sensitive NanoLuc luciferase reporter. The assay was optimized to be processed in a microfluidic chip designed in-house and was tested against locally sourced sewage samples and on drinking water sources in Nairobi, Kenya. With this assay, combined with the microfluidic chip platform, we propose a complete automated solution to detect and semi-quantify E. coli at less than 10 MPN/100 mL in 5.5 h by minimally trained personnel.
Collapse
Affiliation(s)
- Luis F Alonzo
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Global Health Labs, 14360 Eastgate Way, Bellevue, WA, 98007, USA
| | - Paras Jain
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Troy Hinkley
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
| | - Nick Clute-Reinig
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
| | - Spencer Garing
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Global Health Labs, 14360 Eastgate Way, Bellevue, WA, 98007, USA
| | - Ethan Spencer
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Global Health Labs, 14360 Eastgate Way, Bellevue, WA, 98007, USA
| | - Van T T Dinh
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
| | - David Bell
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sam Nugen
- Independent Consultant, Issaquah, WA, 98027, USA
| | - Kevin P Nichols
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
| | - Anne-Laure M Le Ny
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA.
- Global Health Labs, 14360 Eastgate Way, Bellevue, WA, 98007, USA.
| |
Collapse
|
12
|
El-Moghazy AY, Wisuthiphaet N, Yang X, Sun G, Nitin N. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Yue H, Li Y, Yang M, Mao C. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103645. [PMID: 34914854 PMCID: PMC8811829 DOI: 10.1002/advs.202103645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Bacteriophages, also known as phages, are specific antagonists against bacteria. T7 phage has drawn massive attention in precision medicine owing to its distinctive advantages, such as short replication cycle, ease in displaying peptides and proteins, high stability and cloning efficiency, facile manipulation, and convenient storage. By introducing foreign gene into phage DNA, T7 phage can present foreign peptides or proteins site-specifically on its capsid, enabling it to become a nanoparticle that can be genetically engineered to screen and display a peptide or protein capable of recognizing a specific target with high affinity. This review critically introduces the biomedical use of T7 phage, ranging from the detection of serological biomarkers and bacterial pathogens, recognition of cells or tissues with high affinity, design of gene vectors or vaccines, to targeted therapy of different challenging diseases (e.g., bacterial infection, cancer, neurodegenerative disease, inflammatory disease, and foot-mouth disease). It also discusses perspectives and challenges in exploring T7 phage, including the understanding of its interactions with human body, assembly into scaffolds for tissue regeneration, integration with genome editing, and theranostic use in clinics. As a genetically modifiable biological nanoparticle, T7 phage holds promise as biomedical imaging probes, therapeutic agents, drug and gene carriers, and detection tools.
Collapse
Affiliation(s)
- Hui Yue
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Yan Li
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Chuanbin Mao
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
- Department of Chemistry and BiochemistryStephenson Life Science Research CenterInstitute for Biomedical Engineering, Science and TechnologyUniversity of Oklahoma101 Stephenson ParkwayNormanOklahoma73019‐5251USA
| |
Collapse
|
14
|
Milho C, Sillankorva S. Implication of a gene deletion on a Salmonella Enteritidis phage growth parameters. Virus Res 2022; 308:198654. [PMID: 34902446 DOI: 10.1016/j.virusres.2021.198654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 01/21/2023]
Abstract
Synthetic biology has been applied countless times for the modification and improvement of bacterial strains and for the synthesis of products that do not exist in nature. Phages are natural predators of bacteria controlling their population levels; however, their genomes carry several genes with unknown functions. In this work, Bacteriophage Recombineering of Electroporated DNA was used to assess the influence of deletion of a single gene with unknown function in the overall replication parameters of Salmonella phage PVP-SE2. Deletion of ORF_01, transcribed immediately after infection, reduced both the latent and rise periods by 5 min in PVP-SE2ΔORF_01 compared to the wild-type phage. A direct consequence of the deletion led to a smaller progeny release per infected cell by the mutant compared to the wild-type phage. Despite the difference in growth characteristics, the mutant phage remained infective towards exponentially growing cells. The mutation engineered endured for at least ten passages, showing that there is no reversion back to the wild-type sequence. This study provides proof of concept that methodologies used for phage engineering should always be complemented by phage growth characterization to assess whether a mutation can trigger undesirable characteristics.
Collapse
Affiliation(s)
- C Milho
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - S Sillankorva
- INL- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
15
|
Wisuthiphaet N, Yang X, Young GM, Nitin N. Application of Engineered Bacteriophage T7 in the Detection of Bacteria in Food Matrices. Front Microbiol 2021; 12:691003. [PMID: 34421846 PMCID: PMC8377434 DOI: 10.3389/fmicb.2021.691003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Detection of pathogens in a food matrix is challenging due to various constraints including complexity and the cost of sample preparation for microbial analysis from food samples, time period for the detection of pathogens, and high cost and specialized resources required for advanced molecular assays. To address some of these key challenges, this study illustrates a simple and rapid colorimetric detection of target bacteria in distinct food matrices, including fresh produce, without prior isolation of bacteria from a food matrix. This approach combines bacteriophage-induced expression of an exogenous enzyme, alkaline phosphatase, the specific colorimetric substrate that generates insoluble color products, and a simple filtration method to localize the generation of colored signal. Using this approach, this study demonstrates the specific detection of inoculated Escherichia coli in coconut water and baby spinach leaves. Without isolating bacteria from the selected food matrices and using a food sample size that is representative of industrial samples, the inoculated samples were added to the enrichment broth for a short period (5 h) and incubated with an engineered bacteriophage T7 with a phoA gene. The incubation period with the engineered bacteriophage was 30 min for liquid samples and 2 h for fresh produce samples. The samples were then filtered through a 0.2-micron polycarbonate membrane and incubated with a colorimetric substrate, i.e., nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP). This substrate forms a dark purple precipitate upon interactions with the released enzyme on a filter membrane. This approach successfully detected 10 CFU/ml of E. coli in coconut water and 102 CFU/g of E. coli on baby spinach leaves with 5 h of enrichment. Success of this approach illustrates potential for detecting target bacteria in food systems using a simple visual assay and/or quantitative colorimetric measurements.
Collapse
Affiliation(s)
- Nicharee Wisuthiphaet
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Xu Yang
- Department of Nutrition and Food Science, California State Polytechnic University Pomona, Pomona, CA, United States
| | - Glenn M Young
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Jiang L, Qu X, Sun W, Zhang M, Wang Y, Wang Y, Zhao Y, Zhang F, Leng Y, Liu S, Yu J, Huang J. A three-dimensional dynamic DNA walker-mediated branching hybridization chain reaction for the ultrasensitive fluorescence sensing of ampicillin. Analyst 2021; 146:5413-5420. [PMID: 34346408 DOI: 10.1039/d0an02226h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, a novel, rapid and ultrasensitive fluorescence strategy using the three-dimensional (3D) dynamic DNA walker (DW)-induced branched hybridization chain reaction (bHCR) has been proposed for the detection of ampicillin (AMP). The sensing system was composed of an Nt·Bbvcl-powered DNA walker blocked by an AMP aptamer, hairpin-shaped DNA track probe (TP) and four kinds of metastable hairpin probes as the substrates of bHCR, which triggered the formation of the split G-quadruplex as the signal molecule. Due to the reasonable design, the specific binding between AMP and its aptamer activated the DW, and the DW moved on the surface of the gold nanoparticles (AuNPs) with the help of Nt·Bbvcl to produce primer probes (PPs), which induced bHCR. The products of the bHCR gathered two split G-quadruplex sequences together to form one complete G-quadruplex. The formed G-quadruplex emitted a strong fluorescence signal in the presence of thioflavin-T (ThT) to achieve the purpose of detecting AMP. The sensitivity of this method was greatly improved by the use of the 3D DNA walker and bHCR. The split G-quadruplex enhanced the signal-to-noise ratio (SNR). Under the optimal experimental conditions, a good correlation was obtained between the fluorescence intensity of the sensing system and the concentration of AMP ranging from 5 pM to 500 nM with a limit of detection (LOD) of 3.68 pM. Simultaneously, the method has been applied to the detection of antibiotics in spiked milk samples with satisfactory results.
Collapse
Affiliation(s)
- Long Jiang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen A, Wang D, Nugen SR, Chen J. An Engineered Reporter Phage for the Fluorometric Detection of Escherichia coli in Ground Beef. Microorganisms 2021; 9:microorganisms9020436. [PMID: 33669833 PMCID: PMC7922204 DOI: 10.3390/microorganisms9020436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Despite enhanced sanitation implementations, foodborne bacterial pathogens still remain a major threat to public health and generate high costs for the food industry. Reporter bacteriophage (phage) systems have been regarded as a powerful technology for diagnostic assays for their extraordinary specificity to target cells and cost-effectiveness. Our study introduced an enzyme-based fluorescent assay for detecting the presence of E. coli using the T7 phage engineered with the lacZ operon which encodes beta-galactosidase (β-gal). Both endogenous and overexpressed β-gal expression was monitored using a fluorescent-based method with 4-methylumbelliferyl β-d-galactopyranoside (MUG) as the substrate. The infection of E. coli with engineered phages resulted in a detection limit of 10 CFU/mL in ground beef juice after 7 h of incubation. In this study, we demonstrated that the overexpression of β-gal coupled with a fluorogenic substrate can provide a straightforward and sensitive approach to detect the potential biological contamination in food samples. The results also suggested that this system can be applied to detect E. coli strains isolated from environmental samples, indicating a broader range of bacterial detection.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
| | - Danhui Wang
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
- Correspondence:
| | - Juhong Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments. Viruses 2020; 12:v12090944. [PMID: 32858938 PMCID: PMC7552063 DOI: 10.3390/v12090944] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fast and reliable detection of bacterial pathogens in clinical samples, contaminated food products, and water supplies can drastically improve clinical outcomes and reduce the socio-economic impact of disease. As natural predators of bacteria, bacteriophages (phages) have evolved to bind their hosts with unparalleled specificity and to rapidly deliver and replicate their viral genome. Not surprisingly, phages and phage-encoded proteins have been used to develop a vast repertoire of diagnostic assays, many of which outperform conventional culture-based and molecular detection methods. While intact phages or phage-encoded affinity proteins can be used to capture bacteria, most phage-inspired detection systems harness viral genome delivery and amplification: to this end, suitable phages are genetically reprogrammed to deliver heterologous reporter genes, whose activity is typically detected through enzymatic substrate conversion to indicate the presence of a viable host cell. Infection with such engineered reporter phages typically leads to a rapid burst of reporter protein production that enables highly sensitive detection. In this review, we highlight recent advances in infection-based detection methods, present guidelines for reporter phage construction, outline technical aspects of reporter phage engineering, and discuss some of the advantages and pitfalls of phage-based pathogen detection. Recent improvements in reporter phage construction and engineering further substantiate the potential of these highly evolved nanomachines as rapid and inexpensive detection systems to replace or complement traditional diagnostic approaches.
Collapse
|
19
|
Zurier HS, Duong MM, Goddard JM, Nugen SR. Engineering Biorthogonal Phage-Based Nanobots for Ultrasensitive, In Situ Bacteria Detection. ACS APPLIED BIO MATERIALS 2020; 3:5824-5831. [PMID: 34179727 DOI: 10.1021/acsabm.0c00546] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Advances in synthetic biology, nanotechnology, and genetic engineering are allowing parallel advances in areas such as drug delivery and rapid diagnostics. Although our current visions of nanobots may be far off, a generation of nanobots synthesized by engineering viruses is approaching. Such tools can be used to solve complex problems where current methods do not meet current demands. Assuring safe drinking water is crucial for minimizing the spread of waterborne illnesses. Although extremely low levels of fecal contamination in drinking water are sufficient to cause a public health risk, it remains challenging to rapidly detect Escherichia coli, the standard fecal indicator organism. Current methods sensitive enough to meet regulatory standards suffer from either prohibitively long incubation times or requirement of expensive, impractical equipment. Bacteriophages, tuned by billions of years of evolution to bind viable bacteria and readily engineered to produce custom proteins, are uniquely suited to bacterial detection. We have developed a biosensor platform based on magnetized phages encoding luminescent reporter enzymes. This system utilizes bio-orthogonally functionalized phages to enable site-specific conjugation to magnetic nanoparticles. The resulting phage-based nanobots, when combined with standard, portable field equipment, allow for detection of <10 cfu/100 mL of viable E. coli within 7 h, faster than any methods published to date.
Collapse
Affiliation(s)
- Hannah S Zurier
- Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, United States
| | - Michelle M Duong
- Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, United States
| | - Julie M Goddard
- Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, United States
| | - Sam R Nugen
- Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Foddai ACG, Grant IR. Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol 2020; 104:4281-4288. [PMID: 32215710 PMCID: PMC7190587 DOI: 10.1007/s00253-020-10542-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
Abstract
The ability to rapidly detect viable pathogens in food is important for public health and food safety reasons. Culture-based detection methods, the traditional means of demonstrating microbial viability, tend to be laborious, time consuming and slow to provide results. Several culture-independent methods to detect viable pathogens have been reported in recent years, including both nucleic acid-based (PCR combined with use of cell viability dyes or reverse-transcriptase PCR to detect messenger RNA) and phage-based (plaque assay or phage amplification and lysis plus PCR/qPCR, immunoassay or enzymatic assay to detect host DNA, progeny phages or intracellular components) methods. Some of these newer methods, particularly phage-based methods, show promise in terms of speed, sensitivity of detection and cost compared with culture for food testing. This review provides an overview of these new approaches and their food testing applications, and discusses their current limitations and future prospects in relation to detection of viable pathogens in food. KEY POINTS: • Cultural methods may be 'gold standard' for assessing viability of pathogens, but they are too slow. • Nucleic acid-based methods offer speed of detection but not consistently proof of cell viability. • Phage-based methods appear to offer best alternative to culture for detecting viable pathogens.
Collapse
Affiliation(s)
- Antonio C G Foddai
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK.
| |
Collapse
|
21
|
Wang D, Hinkley T, Chen J, Talbert JN, Nugen SR. Phage based electrochemical detection of Escherichia coli in drinking water using affinity reporter probes. Analyst 2019; 144:1345-1352. [PMID: 30564809 DOI: 10.1039/c8an01850b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The monitoring of drinking water for indicators of fecal contamination is crucial for ensuring a safe supply. In this study, a novel electrochemical method was developed for the rapid and sensitive detection of Escherichia coli (E. coli) in drinking water. This strategy is based on the use of engineered bacteriophages (phages) to separate and concentrate target E. coli when conjugated with magnetic beads, and to facilitate the detection by expressing gold binding peptides fused alkaline phosphatase (GBPs-ALP). The fusion protein GBPs-ALP has both the enzymatic activity and the ability to directly bind onto a gold surface. This binding-peptide mediated immobilization method provided a novel and simple approach to immobilize proteins on a solid surface, requiring no post-translational modifications. The concentration of E. coli was determined by measuring the activity of the ALP on gold electrodes electrochemically using linear sweep voltammetry (LSV). This approach was successfully applied in the detection of E. coli in drinking water. We were able to detect 105 CFU mL-1 of E. coli within 4 hours. After 9 hours of preincubation, 1 CFU of E. coli in 100 mL of drinking water was detected with a total assay time of 12 hours. This approach compares favorably to the current EPA method and has the potential to be applied to detect different bacteria in other food matrices.
Collapse
Affiliation(s)
- Danhui Wang
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
22
|
Wisuthiphaet N, Yang X, Young GM, Nitin N. Rapid detection of Escherichia coli in beverages using genetically engineered bacteriophage T7. AMB Express 2019; 9:55. [PMID: 31004244 PMCID: PMC6474890 DOI: 10.1186/s13568-019-0776-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/09/2019] [Indexed: 11/10/2022] Open
Abstract
Foodborne illness due to bacterial contamination is a significant issue impacting public health that demands new technology which is practical to implement by food industry. Detection of bacteria in food products and production facilities is a crucial strategy supporting food safety assessments. Bacteriophages were investigated as a tool for bacterial detection due to their ability to infect specific strain of host bacteria in order to improve sensitivity, specificity, and rapidity of bacterial detection. The results of this investigation reveal a novel method for rapid detection. The method employs a genetically engineered bacteriophage, phage T7-ALP, which expresses alkaline phosphatase. Upon infection of Escherichia coli, overexpression of alkaline phosphatase provides an opportunity for rapid sensitive detection of a signal indicative of bacterial presence in model beverage samples as low as 100 bacteria per gram. The method employs a fluorescent precipitated substrate, ELF-97, as a substrate for alkaline phosphatase activity coupled with fluorescence imaging and image analysis allowing single-cell imaging results in high detection sensitivity. The method is easily completed within less than 6 h enabling it to be deployed within most large industrial food processing facilities that have routine 8-h operational shifts.
Collapse
Affiliation(s)
| | - Xu Yang
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Glenn M Young
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA, USA.
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
23
|
Chen J, Picard RA, Wang D, Nugen SR. Lyophilized Engineered Phages for Escherichia coli Detection in Food Matrices. ACS Sens 2017; 2:1573-1577. [PMID: 29043791 DOI: 10.1021/acssensors.7b00561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ease of use, low cost, and convenient transport are the key requirements for a commercial bacteria detection kit designed for resource-limited settings. Here, we report the colorimetric detection of Escherichia coli (E. coli) in food samples using freeze-dried engineered bacteriophages (phages). In this approach, we have engineered T7 phages to carry the lacZ operon driven by T7 promoter to overexpress reporter enzymes. The engineered phages were freeze-dried in a water-soluble polymer for storage and transportation. When used for the detection of E. coli cells, the intracellular enzyme [β-galactosidase (β-gal)] was overexpressed and released into the surrounding media, providing an enzyme-amplified colorimetric signal. Using this strategy, we were able to detect E. coli cells at the concentration of 102 CFU mL-1 in food samples without the need for sophisticated instruments or skilled operators.
Collapse
Affiliation(s)
- Juhong Chen
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Rachael A. Picard
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Danhui Wang
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Sam R. Nugen
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov Today 2017; 23:448-455. [PMID: 29158194 DOI: 10.1016/j.drudis.2017.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
Fast and reliable bacteria detection is crucial for lowering the socioeconomic burden related to bacterial infections (e.g., in healthcare, industry or security). Bacteriophages (i.e., viruses with bacterial hosts) pose advantages such as great specificity, robustness, toughness and cheap preparation, making them popular biorecognition elements in biosensors and other assays for bacteria detection. There are several possible designs of bacteriophage-based biosensors. Here, we focus on developments based on whole virions as recognition agents. We divide the review into sections dealing with phage lysis as an analytical signal, phages as capturing elements in assays and phage-based sensing layers, putting the main focus on development reported within the past three years but without omitting the fundamentals.
Collapse
Affiliation(s)
- Łukasz Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Janczuk-Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
25
|
Wei TY, Cheng CM. Synthetic Biology-Based Point-of-Care Diagnostics for Infectious Disease. Cell Chem Biol 2017; 23:1056-1066. [PMID: 27662252 DOI: 10.1016/j.chembiol.2016.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 02/09/2023]
Abstract
Infectious diseases outpace all other causes of death in low-income countries, posing global health risks, laying stress on healthcare systems and societies, and taking an avoidable human toll. One solution to this crisis is early diagnosis of infectious disease, which represents a powerful way to optimize treatment, increase patient survival rate, and decrease healthcare costs. However, conventional early diagnosis methods take a long time to generate results, lack accuracy, and are known to seriously underperform with regard to fungal and viral infections. Synthetic biology offers a fast and highly accurate alternative to conventional infectious disease diagnosis. In this review, we outline obstacles to infectious disease diagnostics and discuss two emerging alternatives: synthetic viral diagnostic systems and biosensors. We argue that these synthetic biology-based approaches may overcome diagnostic obstacles in infectious disease and improve health outcomes.
Collapse
Affiliation(s)
- Ting-Yen Wei
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
26
|
Chen J, Alcaine SD, Jackson AA, Rotello VM, Nugen SR. Development of Engineered Bacteriophages for Escherichia coli Detection and High-Throughput Antibiotic Resistance Determination. ACS Sens 2017; 2:484-489. [PMID: 28723178 DOI: 10.1021/acssensors.7b00021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
T7 bacteriophages (phages) have been genetically engineered to carry the lacZ operon, enabling the overexpression of beta-galactosidase (β-gal) during phage infection and allowing for the enhanced colorimetric detection of Escherichia coli (E. coli). Following the phage infection of E. coli, the enzymatic activity of the released β-gal was monitored using a colorimetric substrate. Compared with a control T7 phage, our T7lacZ phage generated significantly higher levels of β-gal expression following phage infection, enabling a lower limit of detection for E. coli cells. Using this engineered T7lacZ phage, we were able to detect E. coli cells at 10 CFU·mL-1 within 7 h. Furthermore, we demonstrated the potential for phage-based sensing of bacteria antibiotic resistance profiling using our T7lacZ phage, and subsequent β-gal expression to detect antibiotic resistant profile of E. coli strains.
Collapse
Affiliation(s)
- Juhong Chen
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New
York 14853, United States
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Samuel D. Alcaine
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New
York 14853, United States
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Angelyca A. Jackson
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New
York 14853, United States
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Sam R. Nugen
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New
York 14853, United States
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
27
|
Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM. Integrating recognition elements with nanomaterials for bacteria sensing. Chem Soc Rev 2017; 46:1272-1283. [PMID: 27942636 PMCID: PMC5339056 DOI: 10.1039/c6cs00313c] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pathogenic bacterial contamination is a major threat to human health and safety. In this review, we summarize recent strategies for the integration of recognition elements with nanomaterials for the detection and sensing of pathogenic bacteria. Nanoprobes can provide sensitive and specific detection of bacterial cells, which can be applied across multiple applications and industries.
Collapse
Affiliation(s)
- Juhong Chen
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, USA. and Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, USA
| | - Stephanie M Andler
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, USA. and Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, USA
| | - Julie M Goddard
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, USA. and Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, USA
| | - Sam R Nugen
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, USA. and Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
28
|
Wang D, Chen J, Nugen SR. Electrochemical Detection of Escherichia coli from Aqueous Samples Using Engineered Phages. Anal Chem 2017; 89:1650-1657. [DOI: 10.1021/acs.analchem.6b03752] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Danhui Wang
- Department
of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department
of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Juhong Chen
- Department
of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department
of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Sam R. Nugen
- Department
of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department
of Food Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Bárdy P, Pantůček R, Benešík M, Doškař J. Genetically modified bacteriophages in applied microbiology. J Appl Microbiol 2016; 121:618-33. [PMID: 27321680 DOI: 10.1111/jam.13207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 01/18/2023]
Abstract
Bacteriophages represent a simple viral model of basic research with many possibilities for practical application. Due to their ability to infect and kill bacteria, their potential in the treatment of bacterial infection has been examined since their discovery. With advances in molecular biology and gene engineering, the phage application spectrum has been expanded to various medical and biotechnological fields. The construction of bacteriophages with an extended host range or longer viability in the mammalian bloodstream enhances their potential as an alternative to conventional antibiotic treatment. Insertion of active depolymerase genes to their genomes can enforce the biofilm disposal. They can also be engineered to transfer various compounds to the eukaryotic organisms and the bacterial culture, applicable for the vaccine, drug or gene delivery. Phage recombinant lytic enzymes can be applied as enzybiotics in medicine as well as in biotechnology for pathogen detection or programmed cell death in bacterial expression strains. Besides, modified bacteriophages with high specificity can be applied as bioprobes in detection tools to estimate the presence of pathogens in food industry, or utilized in the control of food-borne pathogens as part of the constructed phage-based biosorbents.
Collapse
Affiliation(s)
- P Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - R Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - J Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
30
|
The best of both worlds: reaping the benefits from mammalian and bacterial therapeutic circuits. Curr Opin Chem Biol 2016; 34:11-19. [PMID: 27236825 DOI: 10.1016/j.cbpa.2016.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/06/2016] [Indexed: 11/24/2022]
Abstract
Synthetic biology has revolutionized the field of biology in the last two decades. By taking apart natural systems and recombining engineered parts in novel constellations, it has not only unlocked a staggering variety of biological control mechanisms but it has also created a panoply of biomedical achievements, such as innovative diagnostics and therapies. The most common mode of action in the field of synthetic biology is mediated by synthetic gene circuits assembled in a systematic and rational manner. This review covers the most recent therapeutic gene circuits implemented in mammalian and bacterial cells designed for the diagnosis and therapy of an extensive array of diseases. Highlighting new tools for therapeutic gene circuits, we describe a future that holds a plethora of potentialities for the medicine of tomorrow.
Collapse
|
31
|
Talbert JN, Alcaine SD, Nugen SR. Engineering bacteriophage for a pragmatic low-resource setting bacterial diagnostic platform. Bioengineered 2016; 7:132-6. [PMID: 27246532 PMCID: PMC4927197 DOI: 10.1080/21655979.2016.1184386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022] Open
Abstract
Bacteriophages represent multifaceted building blocks that can be incorporated as substitutes for, or in unison with other detection methods, to create powerful new diagnostics for the detection of bacteria. The ease of phage manipulation, production, and detection speed clearly highlights that there remains unrealized opportunities to leverage these phage-based components in diagnostics amenable to resource-limited settings. The passage of regulations like the Food Safety Modernization act, and the ever increasing extent of global trade and travel, will create further demand for these types of diagnostics. While phage-based diagnostics have begun to entering the market place, further research is needed to ensure the potential benefits of phage-based technologies for public health are fully realized. We are just beginning to explore the possibilities that phage-based detection can offer us in the future. The combination of engineered phages as well as engineered enzymes could result in ultrasensitive detection systems for low-resource settings. Because the reporter enzyme is synthesized in vivo, we need to consider the options outside of normal enzyme reporters. In this case, common enzyme issues such as purification and long-term stability are less important. Phage-based diagnostics were conceptualized from out-of-the box thinking and the evolution of these systems should be as well.
Collapse
Affiliation(s)
- Joey N. Talbert
- Department of Food Science and Nutrition, Iowa State University, Ames, IA
| | | | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY, USA
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
32
|
Alcaine SD, Law K, Ho S, Kinchla AJ, Sela DA, Nugen SR. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria. Biosens Bioelectron 2016; 82:14-9. [PMID: 27031186 DOI: 10.1016/j.bios.2016.03.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/10/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays. We have demonstrated a greater than 10-fold increase in sensitivity using a phage-based protein reporter, maltose-binding protein, over the detection of replicated T7 phage viron itself, and a greater then 100-fold increase in sensitivity using a phage-based enzymatic reporter, alkaline phosphatase. This increase in sensitivity enabled us to detect 10(3)CFU/mL of Escherichia coli in broth after 7h, and by adding a filter concentration step, the ability to detect a regulatory relevant E. coli concentration of 100CFU/100mL in inoculated river water after 9h, where the current standard requires days for results. The combination of the paper fluidic format with phage-based detection provides a platform for the development of novel diagnostics that are sensitive, rapid, and easy to use.
Collapse
Affiliation(s)
- S D Alcaine
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - K Law
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| | - S Ho
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| | - A J Kinchla
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - D A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, United States; Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| | - S R Nugen
- Department of Food Science, University of Massachusetts, Amherst, MA, United States; Department of Microbiology, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|