1
|
Wang ZY, Sun MH, Zhang Q, Li PF, Wang K, Li XM. Advances in Point-of-Care Testing of microRNAs Based on Portable Instruments and Visual Detection. BIOSENSORS 2023; 13:747. [PMID: 37504145 PMCID: PMC10377738 DOI: 10.3390/bios13070747] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that are approximately 22 nt in length and regulate gene expression post-transcriptionally. miRNAs play a vital role in both physiological and pathological processes and are regarded as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, and so on. Accurate detection of miRNA expression level in clinical samples is important for miRNA-guided diagnostics. However, the common miRNA detection approaches like RNA sequencing, qRT-PCR, and miRNA microarray are performed in a professional laboratory with complex intermediate steps and are time-consuming and costly, challenging the miRNA-guided diagnostics. Hence, sensitive, highly specific, rapid, and easy-to-use detection of miRNAs is crucial for clinical diagnosis based on miRNAs. With the advantages of being specific, sensitive, efficient, cost-saving, and easy to operate, point-of-care testing (POCT) has been widely used in the detection of miRNAs. For the first time, we mainly focus on summarizing the research progress in POCT of miRNAs based on portable instruments and visual readout methods. As widely available pocket-size portable instruments and visual detection play important roles in POCT, we provide an all-sided discussion of the principles of these methods and their main limitations and challenges, in order to provide a guide for the development of more accurate, specific, and sensitive POCT methods for miRNA detection.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Ming-Hui Sun
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Qun Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
2
|
Kang Y, Zhang J, Zhao L, Yan H. Colorimetric miRNA detection based on self-primer-initiated CRISPR-Cas12a-assisted amplification. Biotechniques 2023; 74:172-178. [PMID: 37128982 DOI: 10.2144/btn-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
miRNAs alter significantly throughout pregnancy to support the development of the fetus. However, sensitive detection of miRNA remains a challenge. Herein, a reliable miRNA detection approach integrating self-assembly-triggered signal amplification and CRISPR-Cas12a-system cleavage-based color generation is described. The colorimetric approach contains three signal amplification processes. The first signal amplification is formed by the released miRNA in a chain extension process. The produced sequence that is similar to the target miRNA initiates the second signal recycle. Finally, CRISPR-Cas12a-based transcleavage on linker sequences induces the third signal amplification. The method exhibits high sensitivity and a low limit of detection of 254 aM, showing promising prospects in disease diagnosis.
Collapse
Affiliation(s)
- Ying Kang
- Obstetrics Department I, Northwest Women & Children's Hospital, Xi'an, Shaanxi Province, 710061, China
| | - Jingjing Zhang
- Obstetrics Department I, Northwest Women & Children's Hospital, Xi'an, Shaanxi Province, 710061, China
| | - Lijuan Zhao
- Obstetrics Department I, Northwest Women & Children's Hospital, Xi'an, Shaanxi Province, 710061, China
| | - Hongli Yan
- Department of Obstetrics & Gynecology, Northwest Women & Children's Hospital, Xi'an, Shaanxi Province, 710061, China
| |
Collapse
|
3
|
Shi H, Bi X, Zhang J, Duan S, Yan J, Jia H. Simple and sensitive detection of microRNA based on guanine-rich DNA-enhanced fluorescence of DNA-templated silver clusters. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Aamri ME, Mohammadi H, Amine A. Novel Label-free Colorimetric and Electrochemical Detection for MiRNA-21 Based on the Complexation of Molybdate with Phosphate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Wijesinghe KM, Kanak MA, Harrell JC, Dhakal S. Single-Molecule Sensor for High-Confidence Detection of miRNA. ACS Sens 2022; 7:1086-1094. [PMID: 35312280 PMCID: PMC9112324 DOI: 10.1021/acssensors.1c02748] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) play a crucial role in regulating gene expression and have been linked to many diseases. Therefore, sensitive and accurate detection of disease-linked miRNAs is vital to the emerging revolution in early diagnosis of diseases. While the detection of miRNAs is a challenge due to their intrinsic properties such as small size, high sequence similarity among miRNAs and low abundance in biological fluids, the majority of miRNA-detection strategies involve either target/signal amplification or involve complex sensing designs. In this study, we have developed and tested a DNA-based fluorescence resonance energy transfer (FRET) sensor that enables ultrasensitive detection of a miRNA biomarker (miRNA-342-3p) expressed by triple-negative breast cancer (TNBC) cells. The sensor shows a relatively low FRET state in the absence of a target but it undergoes continuous FRET transitions between low- and high-FRET states in the presence of the target. The sensor is highly specific, has a detection limit down to low femtomolar (fM) without having to amplify the target, and has a large dynamic range (3 orders of magnitude) extending to 300 000 fM. Using this strategy, we demonstrated that the sensor allows detection of miRNA-342-3p in the miRNA-extracts from cancer cell lines and TNBC patient-derived xenografts. Given the simple-to-design hybridization-based detection, the sensing platform developed here can be used to detect a wide range of miRNAs enabling early diagnosis and screening of other genetic disorders.
Collapse
Affiliation(s)
- Kalani M. Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mazhar A. Kanak
- Division of Transplant Surgery, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - J. Chuck Harrell
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
6
|
Amoshahi H, Shafiee MRM, Kermani S, Mirmohammadi M. A Biosensor for Detection of miR‐106 a by Using Duplex‐Specific Nuclease, Assisted Target, Magnetic Nanoparticles, Gold Nanoparticles and Enzymatic Signal Amplification. ChemistrySelect 2022. [DOI: 10.1002/slct.202103115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hamzeh Amoshahi
- Department of Chemistry, Najafabad Branch Islamic Azad University Najafabad Iran
| | | | - Shabnam Kermani
- Department of Tissue Engineering Najafabad Branch, Islamic Azad University Najafabad Iran
| | | |
Collapse
|
7
|
Djebbi K, Shi B, Weng T, Bahri M, Elaguech MA, Liu J, Tlili C, Wang D. Highly Sensitive Fluorescence Assay for miRNA Detection: Investigation of the DNA Spacer Effect on the DSN Enzyme Activity toward Magnetic-Bead-Tethered Probes. ACS OMEGA 2022; 7:2224-2233. [PMID: 35071911 PMCID: PMC8771974 DOI: 10.1021/acsomega.1c05775] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/29/2021] [Indexed: 05/28/2023]
Abstract
Researchers have recently designed various biosensors combining magnetic beads (MBs) and duplex-specific nuclease (DSN) enzyme to detect miRNAs. Yet, the interfacial mechanisms for surface-based hybridization and DSN-assisted target recycling are relatively not well understood. Thus, herein, we developed a highly sensitive and selective fluorescent biosensor to study the phenomenon that occurs on the local microenvironment surrounding the MB-tethered DNA probe via detecting microRNA-21 as a model. Using the above strategy, we investigated the influence of different DNA spacers, base-pair orientations, and surface densities on DSN-assisted target recycling. As a result, we were able to detect as low as 170 aM of miR-21 under the optimized conditions. Moreover, this approach exhibits a high selectivity in a fully matched target compared to a single-base mismatch, allowing the detection of miRNAs in serum with improved recovery. These results are attributed to the synergetic effect between the DSN enzyme activity and the neutral DNA spacer (triethylene glycol: TEG) to improve the miRNA detection's sensitivity. Finally, our strategy could create new paths for detecting microRNAs since it obliterates the enzyme-mediated cascade reaction used in previous studies, which is more expensive, more time-consuming, less sensitive, and requires double catalytic reactions.
Collapse
Affiliation(s)
- Khouloud Djebbi
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, P. R. China
- Chongqing
School, University of Chinese Academy of
Sciences (UCAS), Chongqing 400714, P. R. China
- University
of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Biao Shi
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, P. R. China
- Chongqing
School, University of Chinese Academy of
Sciences (UCAS), Chongqing 400714, P. R. China
| | - Ting Weng
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, P. R. China
- Chongqing
School, University of Chinese Academy of
Sciences (UCAS), Chongqing 400714, P. R. China
| | - Mohamed Bahri
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, P. R. China
- Chongqing
School, University of Chinese Academy of
Sciences (UCAS), Chongqing 400714, P. R. China
- University
of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Mohamed Amin Elaguech
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, P. R. China
- Chongqing
School, University of Chinese Academy of
Sciences (UCAS), Chongqing 400714, P. R. China
- University
of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Jin Liu
- Chongqing
School, University of Chinese Academy of
Sciences (UCAS), Chongqing 400714, P. R. China
- Department
of Pathology, Chongqing General Hospital, University of Chinese Academy of Sciences (UCAS), Chongqing 400013, P. R. China
| | - Chaker Tlili
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, P. R. China
- Chongqing
School, University of Chinese Academy of
Sciences (UCAS), Chongqing 400714, P. R. China
| | - Deqiang Wang
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, P. R. China
- Chongqing
School, University of Chinese Academy of
Sciences (UCAS), Chongqing 400714, P. R. China
- University
of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| |
Collapse
|
8
|
Zha Y, Li Y, Hu P, Lu S, Ren H, Liu Z, Yang H, Zhou Y. Duplex-Specific Nuclease-Triggered Fluorescence Immunoassay Based on Dual-Functionalized AuNP for Acetochlor, Metolachlor, and Propisochlor. Anal Chem 2021; 93:13886-13892. [PMID: 34623153 DOI: 10.1021/acs.analchem.1c02736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Given the great harm of pesticide residues to the environment and public health, exploring ultrasensitive and low-cost methods for their quantitative analysis becomes intensely necessary. Herein, we proposed a double-functionalized gold nanoparticle (AuNP) probe as a signal amplification immunoassay for the detection of acetochlor (ATC), metolachlor, and propisochlor. The AuNP was modified with IgG and fluorophore-labeled duplex DNA by a polyadenine-based freezing method. The quenched fluorescence can be effectively recovered via duplex-specific nuclease (DSN) with excellent cleaving activity. This approach provided limits of detection (LODs) down to 0.03 ng/mL for ATC, 0.10 ng/mL for metolachlor, 0.14 ng/mL for propisochlor, and 0.08 ng/mL for their mixture. The average recoveries of ATC, metolachlor, and propisochlor were 93.0-106.6% from a corn sample, which are in good agreement with the commercial kit (R2 = 0.9995). This "turn-off" fluorescence immunoassay presents considerable potential in the analysis of chloroacetamide herbicide due to its simple process of probe preparing and ultrahigh sensitivity.
Collapse
Affiliation(s)
- Yonghong Zha
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Yansong Li
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Pan Hu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Shiying Lu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Honglin Ren
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Zengshan Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Hualin Yang
- College of Life Science, Yangtze University, Jingzhou 434023, P. R. China
| | - Yu Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China.,College of Animal Science, Yangtze University, Jingzhou 434023, P. R. China
| |
Collapse
|
9
|
Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer. Biomedicines 2021; 9:biomedicines9080964. [PMID: 34440168 PMCID: PMC8391662 DOI: 10.3390/biomedicines9080964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022] Open
Abstract
Primary liver cancer is an aggressive, lethal malignancy that ranks as the fourth leading cause of cancer-related death worldwide. Its 5-year mortality rate is estimated to be more than 95%. This significant low survival rate is due to poor diagnosis, which can be referred to as the lack of sufficient and early-stage detection methods. Many liver cancer-associated non-coding RNAs (ncRNAs) have been extensively examined to serve as promising biomarkers for precise diagnostics, prognostics, and the evaluation of the therapeutic progress. For the simple, rapid, and selective ncRNA detection, various nanomaterial-enhanced biosensors have been developed based on electrochemical, optical, and electromechanical detection methods. This review presents ncRNAs as the potential biomarkers for the early-stage diagnosis of liver cancer. Moreover, a comprehensive overview of recent developments in nanobiosensors for liver cancer-related ncRNA detection is provided.
Collapse
|
10
|
Multifunctional nanoparticles as optical biosensing probe for breast cancer detection: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112249. [PMID: 34225888 DOI: 10.1016/j.msec.2021.112249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Optical biosensors show attractive performance in medical sensing in the event of using different nanoparticles in their design. Owing to their unique optical characteristics and biological compatibility, gold nanoparticles (GNPs), silver nanoparticles (AgNPs), bimetallic nanoparticles and magnetic nanoparticles have been broadly implemented in making sensing tools. The functionalization of these nanoparticles with different components provides an excellent opportunity to assemble selective and sensitive sensing materials to detect various biological molecules related to breast cancer. This review summarizes the recent application of optical biosensing devices based on nanomaterials and discusses their pros and cons to improve breast cancer detection in real samples. In particular, the main constituent elements of these optical biosensors including recognition and transducer elements, types of applied nanostructures, analytical sensing procedures, sensor detection ranges and limit of detection (LOD), are expressed in detail.
Collapse
|
11
|
Zhuang J, Wan H, Zhang X. Electrochemical detection of miRNA-100 in the sera of gastric cancer patients based on DSN-assisted amplification. Talanta 2021; 225:121981. [PMID: 33592729 DOI: 10.1016/j.talanta.2020.121981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/25/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is a common malignant digestive tract tumor that leads to high mortality worldwide. Early diagnosis of GC is very important for adequate treatment. However, a rapid, specific and sensitive method for the detection of GC is currently not available. Here, a biosensor CPs/AuNP-AuE, the gold nanoparticle (AuNP)-modified Au electrode (AuE) which was coupled with DNA capture probes (CPs), was developed to detect the content of miR-100 in the sera of GC patients. The results showed that AuNPs were uniformly deposited on the surface of AuE. AuNPs enhanced the electrical conductivity and improved the effective area of AuE. CPs were successfully assembled on AuNP-AuE that could be digested by duplex-specific nuclease (DSN) from the miR-100/CPs complex on the electrode, improving the sensitivity of the biosensor by recycling miR-100. The data revealed that the biosensor was highly specific for the detection of miR-100, which had the ability to distinguish one base-pair mistake in miR-100. The detection of the biosensor for miR-100 ranged from 100 aM to 10 pM and the limit of detection (LOD) was estimated to be 100 aM. The detection results of 100 human sera samples using this biosensor indicated that the cutoff for the detection of gastric cancer was 5 fM. Therefore the biosensor developed in our study served as a rapid, specific and sensitive strategy for the detection of gastric cancer in clinic.
Collapse
Affiliation(s)
- Jianjian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haitao Wan
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Liu L, Deng D, Wu D, Hou W, Wang L, Li N, Sun Z. Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis. Anal Chim Acta 2021; 1149:338199. [DOI: 10.1016/j.aca.2021.338199] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023]
|
13
|
Chen J, Jin T, Li J, Zhang X, Liu F, Tan C, Tan Y. One-Pot Simultaneous Detection of Multiple DNA and MicroRNA by Integrating the Cationic-Conjugated Polymer and Nuclease-Assisted Cyclic Amplification. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Junyue Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Tian Jin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Jingfeng Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xinyan Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
14
|
Wu Y, Cui S, Li Q, Zhang R, Song Z, Gao Y, Chen W, Xing D. Recent advances in duplex-specific nuclease-based signal amplification strategies for microRNA detection. Biosens Bioelectron 2020; 165:112449. [DOI: 10.1016/j.bios.2020.112449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
15
|
Ge J, Hu Y, Deng R, Li Z, Zhang K, Shi M, Yang D, Cai R, Tan W. Highly Sensitive MicroRNA Detection by Coupling Nicking-Enhanced Rolling Circle Amplification with MoS2 Quantum Dots. Anal Chem 2020; 92:13588-13594. [DOI: 10.1021/acs.analchem.0c03405] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jia Ge
- College of Chemistry, Green Catalysis Center, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yun Hu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Kaixiang Zhang
- College of Chemistry, Green Catalysis Center, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Muling Shi
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Dan Yang
- Centre of Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn 3122, Australia
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, Florida 32615, United States
| |
Collapse
|
16
|
Wu A, Ji H, Li Y, Liu R, Hu Z, Ju S, Wang F. Establishment of a direct quantitative method for measurement of microRNA-224 in serum by UHPLC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122199. [DOI: 10.1016/j.jchromb.2020.122199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022]
|
17
|
Juthani N, Doyle PS. A platform for multiplexed colorimetric microRNA detection using shape-encoded hydrogel particles. Analyst 2020; 145:5134-5140. [PMID: 32567641 PMCID: PMC7392806 DOI: 10.1039/d0an00938e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a platform utilizing a reporter enzyme, which produces a chromogenic indigo precipitate that preferentially localizes within a hydrogel microparticle. The 3D network of the hydrogel maintains the rapid target binding kinetics found in solution, while multiplexed target detection is achieved through shape-encoding of the particles. Moreover, the precipitate-laden hydrogels can be imaged with a simple phone camera setup. We used this system to detect microRNA (miRNA) down to 0.22 fmol. We then showed the compatibility of this system with real samples by performing multiplexed miRNA measurements from total RNA from matched colon cancer and normal adjacent tissue.
Collapse
Affiliation(s)
- Nidhi Juthani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
18
|
Lee H, Lee J, Lee SG, Doyle PS. Hydrogel-Based Colorimetric Assay for Multiplexed MicroRNA Detection in a Microfluidic Device. Anal Chem 2020; 92:5750-5755. [PMID: 32207967 PMCID: PMC7178251 DOI: 10.1021/acs.analchem.9b05043] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Although microRNA
(miRNA) expression levels provide important information
regarding disease states owing to their unique dysregulation patterns
in tissues, translation of miRNA diagnostics into point-of-care (POC)
settings has been limited by practical challenges. Here, we developed
a hydrogel-based microfluidic platform for colorimetric profiling
of miRNAs, without the use of complex external equipment for fluidics
and imaging. For sensitive and reliable measurement without the risk
of sequence bias, we employed a gold deposition-based signal amplification
scheme and dark-field imaging, and seamlessly integrated a previously
developed miRNA assay scheme into this platform. The assay demonstrated
a limit of detection of 260 fM, along with multiplexing of small panels
of miRNAs in healthy and cancer samples. We anticipate this versatile
platform to facilitate a broad range of POC profiling of miRNAs in
cancer-associated dysregulation with high-confidence by exploiting
the unique features of hydrogel substrate in an on-chip format and
colorimetric analysis.
Collapse
Affiliation(s)
- Hyewon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jiseok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, The United States
| |
Collapse
|
19
|
|
20
|
Ge J, Qi Z, Zhang L, Shen X, Shen Y, Wang W, Li Z. Label-free and enzyme-free detection of microRNA based on a hybridization chain reaction with hemin/G-quadruplex enzymatic catalysis-induced MoS 2 quantum dots via the inner filter effect. NANOSCALE 2020; 12:808-814. [PMID: 31830179 DOI: 10.1039/c9nr08154b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new simple, sensitive and specific strategy for microRNA analysis has been described based on a hybridization chain reaction with hemin/G-quadruplex enzymatic catalysis-induced MoS2 quantum dots via the inner filter effect. The target microRNA triggers the hybridization chain reaction between two DNA probes to generate long dsDNA with many hemin/G-quadruplex DNAzymes in the presence of hemin. With the assistance of H2O2, the produced hemin/G-quadruplex DNAzyme could oxidize o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP) directly, resulting in the fluorescence quenching of MoS2 quantum dots via the inner filter effect. As an example, the fluorescence response of MoS2 quantum dots is linearly related with the logarithm of the microRNA let-7a concentration with a detection limit of 42 fM. The proposed label-free assay has promising potential to be applied in practical diagnosis.
Collapse
Affiliation(s)
- Jia Ge
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Iglesias MS, Grzelczak M. Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:263-284. [PMID: 32082965 PMCID: PMC7006498 DOI: 10.3762/bjnano.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The possibility of detecting genetic mutations rapidly in physiological media through liquid biopsy has attracted the attention within the materials science community. The physical properties of nanoparticles combined with robust transduction methods ensure an improved sensitivity and specificity of a given assay and its implementation into point-of-care devices for common use. Covering the last twenty years, this review gives an overview of the state-of-the-art of the research on the use of gold nanoparticles in the development of colorimetric biosensors for the detection of single-nucleotide polymorphism as cancer biomarker. We discuss the main mechanisms of the assays that either are assisted by DNA-based molecular machines or by enzymatic reactions, summarize their performance and provide an outlook towards future developments.
Collapse
Affiliation(s)
- María Sanromán Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-Sebastián, Spain
| | - Marek Grzelczak
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
22
|
A label-free colorimetric detection of microRNA via G-quadruplex-based signal quenching strategy. Anal Chim Acta 2019; 1079:207-211. [DOI: 10.1016/j.aca.2019.06.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 11/19/2022]
|
23
|
Wang H, Rao H, Luo M, Xue X, Xue Z, Lu X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Huang J, Shangguan J, Guo Q, Ma W, Wang H, Jia R, Ye Z, He X, Wang K. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst 2019; 144:4917-4924. [PMID: 31313769 DOI: 10.1039/c9an01013k] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are attractive candidates for biomarkers for early cancer diagnosis, and play vital roles in physiological and pathological processes. In this work, we developed a colorimetric and fluorescent dual-mode sensor for miRNA detection based on the optical properties of gold nanoparticles (AuNPs) and the duplex-specific nuclease (DSN)-assisted signal amplification technique. In brief, FAM labelled hairpin probes (HPs) were immobilized on AuNPs, and fluorescence was efficiently quenched by the vicinity of the fluorophores to the AuNPs surface. In the presence of target miRNAs, the HPs could specifically hybridize with miRNAs and the DNA strand in the DNA/RNA heteroduplexes could be subsequently hydrolyzed by DSN. As a result, numbers of fluorophores were released into the solution, resulting in obvious fluorescence signal recovery. Meanwhile, the target miRNAs were able to participate in other hybridization reactions. With the DSN-assisted signal amplification technique, lots of gold nanoparticles were produced with short-chain DNA on their surface, which could aggregate in salt solution and result in a colorimetric detection. The proposed dual-mode strategy offers a sensitive, accurate and selective detection method for miRNAs. One reason is that the stem of the HPs was elaborately designed to avoid hydrolyzation by DSN under optimal conditions, which ensures a relatively low background and high sensitivity. The other is that the dual-mode strategy is more beneficial for enhancing the accuracy and reproducibility of the measurements. Moreover, the unique selective-cutting ability and single-base mismatch differentiation capability of the DSN also give rise to a satisfactory selectivity. This demonstrated that the developed method could quantitatively detect miR-21 down to 50 pM with a linear calibration range from 50 pM to 1 nM, and the analytical assay of target miRNAs in cell lysate samples revealed its great potential for application in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Zi Ye
- High School of Yali, Changsha, Hunan 410007, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
25
|
Zhang Y, Tian J, Li K, Tian H, Xu W. Label-free visual biosensor based on cascade amplification for the detection of Salmonella. Anal Chim Acta 2019; 1075:144-151. [PMID: 31196420 DOI: 10.1016/j.aca.2019.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Salmonella is a widely distributed, extremely harmful bacteria, the presence of which requires confirmation via an on-site visual biosensor. In this study, we constructed a label-free, cascade amplification visualization biosensor for the sensitive and rapid detection of Salmonella enterica subsp. enterica serovar typhimurium based on the RDTG principle (recombinase polymerase amplification (RPA), duplex-specific enzyme (DSN) cleavage, terminal deoxynucleotidyl transferase (TdT) extension and G-quadruplexes output). Following DNA extraction of Salmonella spp., the first step in the construction involved the recognition and amplification of nucleic acids, carried out by RPA, to achieve the first signal amplification within 10 min. This RPA product was then specifically cleaved by DSN to produce a large number of small double-stranded DNA (dsDNA) products with 3'-OH within 15 min to achieve the second signal amplification. Thereafter, TdT was employed to empower these small 3'-OH dsDNA products to extend and produce a large number of long G-rich single-stranded DNAs (ssDNAs) within 20 min, thus realizing the third signal increase. These long G-rich ssDNA products displayed a color change that could be directly observed through the naked eye by adding H2O2/3,3',5,5'-tetramethylbenzidine (TMB). The RDTG biosensor for the detection of Salmonella spp. has several advantages, including a low limit of 6 cfu/mL. It is an isothermal-free instrument, simple to operate, with a rapid detection time of less than 1.5 h. Furthermore, it can be visually characterized and quantified by a microplate reader to detect Salmonella spp., in food and environmental samples, and it has broad application prospects.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Food Science and Technology Agricultural University of Hebei, 071001, Baoding, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jingjing Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kai Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongtao Tian
- College of Food Science and Technology Agricultural University of Hebei, 071001, Baoding, China.
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
26
|
Li X, Huang N, Zhang L, Zhao J, Zhao S. A T7 exonuclease assisted dual-cycle signal amplification assay of miRNA using nanospheres-enhanced fluorescence polarization. Talanta 2019; 202:297-302. [PMID: 31171185 DOI: 10.1016/j.talanta.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Based on streptavidin coated nanospheres and T7 exonuclease assisted dual-cycle signal amplification, we developed a novel sensitive fluorescence polarization detection method for miRNA. When target miRNA was present in the system, hairpin probe hybridized with miRNA, forming a double-stranded structure. The 5' end of hairpin probe was then recognized and digested by T7 exonuclease, releasing the non-degraded single strand DNA fragments and miRNA. The released target miRNA could trigger the next cycle of hybridization and digestion, releasing more non-degraded fragments from hairpin probe. The fragments could hybridize with a signal probe (with carboxyfluorescein modification at 5'-end and biotin modification at 3'-end). The formed blunt 5'-end of signal probe was then recognized and degraded by T7 exonuclease, releasing the fragments and the fluorophore carboxyfluorescein. The next cycle of hybridization and digestion of signal probe was triggered by the released fragment at the same time. The free carboxyfluorescein cannot connect with streptavidin coated nanospheres which were used as the fluorescence polarization signal amplifier. So, there was a big change of fluorescence polarization signal after adding miRNA into the detection system, due to the different fluorescence polarization signal between nanospheres-captured intact signal probe and free carboxyfluorescein. The detection limit of this method is about 0.001 nM, and it has a good selectivity. In addition, it was also applicable to determine target miRNA in total miRNA extracts and compare the expression level of target miRNA in different cells. Consequently, the proposed method is expected to be used for the potential cancer diagnosis and the related biomedical research.
Collapse
Affiliation(s)
- Xiaoting Li
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004, PR China
| | - Nian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, 541004, PR China
| | - Liangliang Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004, PR China
| | - Jingjin Zhao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, 541004, PR China.
| | - Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004, PR China
| |
Collapse
|
27
|
Wang YH, He LL, Huang KJ, Chen YX, Wang SY, Liu ZH, Li D. Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. Analyst 2019; 144:2849-2866. [DOI: 10.1039/c9an00081j] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent efforts in the application of nanomaterials as sensing elements in electrochemical and optical miRNAs assays.
Collapse
Affiliation(s)
- Yi-Han Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Liu-Liu He
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ying-Xu Chen
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Shu-Yu Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Zhen-Hua Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Dan Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
28
|
Yang Z, Qin L, Yang D, Chen W, Qian Y, Jin J. Signal amplification method for miR-205 assay through combining graphene oxide with duplex-specific nuclease. RSC Adv 2019; 9:27341-27346. [PMID: 35529221 PMCID: PMC9070658 DOI: 10.1039/c9ra04663a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022] Open
Abstract
Since microRNA-205 (miR-205) is a predictive biomarker for anti-radiation of nasopharyngeal carcinoma (NPC), quantitative detection of miR-205 is important for developing personalized strategies for the treatment of NPC. In this investigation, based on the graphene oxide sensor and duplex specific nuclease (DSN) for fluorescence signal amplification, a highly sensitive detection method for miR-205 was designed. A target-recycling mechanism is employed, where a single miR-205 target triggers the cleavage of many DNA signal probes. The method shows the ability to analyze miR-205 in solution, and it can detect miR-205 at concentrations as low as 132 pmol L−1 with a linear range of 5–40 nmol L−1. Furthermore, the method is specific in that it distinguishes between a target miRNA and a sequence with single base, double base and three base mismatches, as well as other miRNAs. Considering simplicity and excellent sensitivity/specificity, it is promising for applications in radioresistance studies as well as the early clinical diagnosis of NPC. A signal amplified method for detecting a biomarker of radiation-resistant nasopharyngeal carcinoma using graphene oxide and duplex-specific nuclease was constructed.![]()
Collapse
Affiliation(s)
- Zhaoqi Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Lan Qin
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Dutao Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Weixia Chen
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Yue Qian
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Jian Jin
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
29
|
MicroRNA detection based on duplex-specific nuclease-assisted target recycling and gold nanoparticle/graphene oxide nanocomposite-mediated electrocatalytic amplification. Biosens Bioelectron 2018; 127:188-193. [PMID: 30611105 DOI: 10.1016/j.bios.2018.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 01/19/2023]
Abstract
DNA technology based bio-responsive nanomaterials have been widely studied as promising tools for biomedical applications. Gold nanoparticles (AuNPs) and graphene oxide (GO) sheets are representative zero- and two-dimensional nanomaterials that have long been combined with DNA technology for point-of-care diagnostics. Herein, a cascade amplification system based on duplex-specific nuclease (DSN)-assisted target recycling and electrocatalytic water-splitting is demonstrated for the detection of microRNA. Target microRNAs can form DNA: RNA heteroduplexes with DNA probes on the surface of AuNPs, which can be hydrolyzed by DSN. MicroRNAs are preserved during the reaction and released into the suspension for the digestion of multiple DNA probes. After the DSN-based reaction, AuNPs are collected and mixed with GO to form AuNP/GO nanocomposite on an electrode for the following electrocatalytic amplification. The utilization of AuNP/GO nanocomposite offers large surface area, exceptional affinity to water molecules, and facilitated mass diffusion for the water-splitting reaction. For let-7b detection, the proposed biosensor achieved a limit detection of 1.5 fM in 80 min with a linear detection range of approximately four orders of magnitude. Moreover, it has the capability of discriminating non-target microRNAs containing even single-nucleotide mismatches, thus holding considerable potential for clinical diagnostics.
Collapse
|
30
|
Coutinho C, Somoza Á. MicroRNA sensors based on gold nanoparticles. Anal Bioanal Chem 2018; 411:1807-1824. [PMID: 30390112 DOI: 10.1007/s00216-018-1450-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs, the dysregulation of which has been associated with the progression of several human diseases, including cancer. Interestingly, these molecules can be used as biomarkers for early disease diagnosis and can be found in a variety of body fluids and tissue samples. However, their specific properties and very low concentrations make their detection rather challenging. In this regard, current detection methods are complex, cost-ineffective, and of limited application in point-of-care settings or resource-limited facilities. Recently, nanotechnology-based approaches have emerged as promising alternatives to conventional miRNA detection methods and paved the way for research towards sensitive, fast, and low-cost detection systems. In particular, due to their exceptional properties, the use of gold nanoparticles (AuNPs) has significantly improved the performance of miRNA biosensors. This review discusses the application of AuNPs in different miRNA sensor modalities, commenting on recently reported examples. A practical overview of each modality is provided, highlighting their future use in clinical diagnosis. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Catarina Coutinho
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain.
| |
Collapse
|
31
|
Xu Y, Geng N, Zheng X, Luo X, Wu M, Zhang H. DNA logic circuits based amplification system for quencher-free and highly sensitive detection of DNA and adenosine triphosphate. J Pharm Biomed Anal 2018; 161:393-398. [PMID: 30205303 DOI: 10.1016/j.jpba.2018.08.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 11/30/2022]
Abstract
We fabricated a quencher-free and enzyme-free fluorescence detection system by employing the DNA logic circuits as signal amplifier and 2-aminopurine as signal indicator, and applied it to detect DNA and adenosine triphosphate (ATP). The assay system consisted of three hairpin probes with a sequestered 2-aminopurine molecule in each stem domain which was defined as inputs A, B and C of the logic operation. These three hairpin inputs kept stability and coexisted in reaction solution without target. However, adding target to the system would break the stability and initiate a dynamic assembly of the three inputs through toehold mediated displacement, resulting in the formation of three way junction and the liberation of 2-aminopurine from duplex structure. The structural circumstance changes from duplex to single stand switched the signal from "off" to "on" due to the disarming of base stack interaction, thus attaining amplified fluorescence detection without any extra quencher and avoiding the limitation of distance-independent signal conversion in conventional methods. A limit of detection of 0.46 pM was achieved for target DNA with high discrimination capability. Moreover, the sensing system was expandable for ATP detection. Importantly, the method was simple and easy-to-operate. These features make the DNA logic circuits adaptable as an enzyme-free and quencher-free amplifier, and thus the proposed method offers a powerful platform for DNA and ATP determination, and even other biotargets in clinical diagnosis.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou, China.
| | - Nana Geng
- Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi 563099, Guizhou, China
| | - Xiang Zheng
- Department of Cell Biology and Genetics, Zunyi Medical University, Zunyi 563099, Guizhou, China
| | - Xiangrong Luo
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou, China
| | - Mingsong Wu
- Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi 563099, Guizhou, China
| | - Hua Zhang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou, China.
| |
Collapse
|
32
|
Abstract
Coinfections involving viruses are being recognized to influence the disease pattern that occurs relative to that with single infection. Classically, we usually think of a clinical syndrome as the consequence of infection by a single virus that is isolated from clinical specimens. However, this biased laboratory approach omits detection of additional agents that could be contributing to the clinical outcome, including novel agents not usually considered pathogens. The presence of an additional agent may also interfere with the targeted isolation of a known virus. Viral interference, a phenomenon where one virus competitively suppresses replication of other coinfecting viruses, is the most common outcome of viral coinfections. In addition, coinfections can modulate virus virulence and cell death, thereby altering disease severity and epidemiology. Immunity to primary virus infection can also modulate immune responses to subsequent secondary infections. In this review, various virological mechanisms that determine viral persistence/exclusion during coinfections are discussed, and insights into the isolation/detection of multiple viruses are provided. We also discuss features of heterologous infections that impact the pattern of immune responsiveness that develops.
Collapse
|
33
|
Park Y, Lee CY, Kang S, Kim H, Park KS, Park HG. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction. NANOTECHNOLOGY 2018; 29:085501. [PMID: 29269591 DOI: 10.1088/1361-6528/aaa3a3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.
Collapse
Affiliation(s)
- Yeonkyung Park
- Department of Chemical and Biomolecular Engineering (BK21+Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | | | | | | | | |
Collapse
|
34
|
Hakimian F, Ghourchian H, Hashemi AS, Arastoo MR, Behnam Rad M. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci Rep 2018; 8:2943. [PMID: 29440644 PMCID: PMC5811613 DOI: 10.1038/s41598-018-20229-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
An ultrasensitive optical biosensor for microRNA-155 (miR-155) was developed to diagnose breast cancer at early stages. At first, the probe DNA covalently bind to the negatively charged gold nanoparticles (citrate-capped AuNPs). Then, the target miR-155 electrostatically adsorb onto the positively charged gold nanoparticles (polyethylenimine-capped AuNP) surface. Finally, by mixing citrate-capped AuNP/probe and polyethylenimine-capped AuNP/miR-155, hybridization occurs and the optical signal of the mixture give a measure to quantify the miR-155 content. The proposed biosensor is able to specify 3-base-pair mismatches and genomic DNA from target miR-155. The novelty of this biosensor is in its ability to trap the label-free target by its branched positively charged polyethylenimine. This method increases loading the target on the polyethylenimine-capped AuNPs' surface. So, proposed sensor enables miR-155 detection at very low concentrations with the detection limit of 100 aM and a wide linear range from 100 aM to 100 fM.
Collapse
Affiliation(s)
- Fatemeh Hakimian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Azam Sadat Hashemi
- Hematology, Oncology & Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Reza Arastoo
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohammad Behnam Rad
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
Xu F, Luo L, Shi H, He X, Lei Y, Tang J, He D, Qiao Z, Wang K. Label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy. Anal Chim Acta 2018; 1010:54-61. [PMID: 29447671 DOI: 10.1016/j.aca.2018.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 11/17/2022]
Abstract
Poly(thymine)-hosted copper nanoparticles (poly T-CuNPs) have emerged as a promising label-free fluorophore for bioanalysis, but its application in RNA-related studies is still rarely explored. Herein, by utilizing duplex-specific nuclease (DSN) as a convertor to integrate target recycling mechanism into terminal deoxynucleotidyl transferase (TdT)-mediated superlong poly T-CuNPs platform, a specific and sensitive method for microRNA detection has been developed. In this strategy, a 3'-phosphorylated DNA probe can hybridize with target RNA and then be cut by DSN to produce 3'-hydroxylated fragments, which can be further tailed by TdT with superlong poly T for fluorescent CuNPs synthesis. As proof of concept, an analysis of let-7d was achieved with a good linear correlation between 20 and 1000 pM (R2 = 0.9965) and a detection limit of 20 pM. Moreover, both homologous and heterologous microRNAs were also effectively discriminated. This strategy might pave a brand-new way for designing label-free and sensitive microRNA assays.
Collapse
Affiliation(s)
- Fengzhou Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Lan Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| |
Collapse
|
36
|
Moody L, He H, Pan YX, Chen H. Methods and novel technology for microRNA quantification in colorectal cancer screening. Clin Epigenetics 2017; 9:119. [PMID: 29090038 PMCID: PMC5655825 DOI: 10.1186/s13148-017-0420-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 02/08/2023] Open
Abstract
The screening and diagnosis of colorectal cancer (CRC) currently relies heavily on invasive endoscopic techniques as well as imaging and antigen detection tools. More accessible and reliable biomarkers are necessary for early detection in order to expedite treatment and improve patient outcomes. Recent studies have indicated that levels of specific microRNA (miRNA) are altered in CRC; however, measuring miRNA in biological samples has proven difficult, given the complicated and lengthy PCR-based procedures used by most laboratories. In this manuscript, we examine the potential of miRNA as CRC biomarkers, summarize the methods that have commonly been employed to quantify miRNA, and focus on novel strategies that can improve or replace existing technology for feasible implementation in a clinical setting. These include isothermal amplification techniques that can potentially eliminate the need for specialized thermocycling equipment. Additionally, we propose the use of near-infrared (NIR) probes which can minimize autofluorescence and photobleaching and streamline quantification without tedious sample processing. We suggest that novel miRNA quantification tools will be necessary to encourage new discoveries and facilitate their translation to clinical practice.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Hongshan He
- Department of Chemistry, Eastern Illinois University, Charleston, IL 62910 USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| |
Collapse
|
37
|
Xia N, Liu K, Zhou Y, Li Y, Yi X. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification. Int J Nanomedicine 2017; 12:5013-5022. [PMID: 28761341 PMCID: PMC5516875 DOI: 10.2147/ijn.s138656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
miRNAs have emerged as new biomarkers for the detection of a wide variety of cancers. By employing duplex-specific nuclease for signal amplification and gold nanoparticles (AuNPs) as the carriers of detection probes, a novel electrochemical assay of miRNAs was performed. The method is based on conversion of the well-known colorimetric assay into electrochemical analysis with enhanced sensitivity. DNA capture probes immobilized on the electrode surface and ferrocene (Fc)-labeled DNA detection probes (denoted "Fc-DNA-Fc") presented in the solution induced the assembly of positively charged AuNPs on the electrode surface through the electrostatic interaction. As a result, a large number of Fc-DNA-Fc molecules were attached on the electrode surface, thus amplifying the electrochemical signal. When duplex-specific nuclease was added to recycle the process of miRNA-initiated digestion of the immobilized DNA probes, Fc-DNA-Fc-induced assembly of AuNPs on the electrode surface could not occur. This resulted in a significant fall in the oxidation current of Fc. The current was found to be inversely proportional to the concentration of miRNAs in the range of 0-25 fM, and a detection limit of 0.1 fM was achieved. Moreover, this work presents a new method for converting colorimetric assays into sensitive electrochemical analyses, and thus would be valuable for design of novel chemical/biosensors.
Collapse
Affiliation(s)
- Ning Xia
- Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang.,College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Ke Liu
- Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang
| | - Yingying Zhou
- Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang
| | - Yuanyuan Li
- Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
38
|
Xu F, Zhou W, Cao J, Xu Q, Jiang D, Chen Y. A Combination of DNA-peptide Probes and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS): A Quasi-Targeted Proteomics Approach for Multiplexed MicroRNA Quantification. Theranostics 2017; 7:2849-2862. [PMID: 28824720 PMCID: PMC5562220 DOI: 10.7150/thno.19113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023] Open
Abstract
The distorted and unique expression of microRNAs (miRNAs) in cancer makes them an attractive source of biomarker. There is much evidence indicating that a panel of miRNAs, termed "miRNA fingerprints", is more specific and informative than an individual miRNA as biomarker. Thus, multiplex assays for simultaneous quantification of multiple miRNAs could be more potent in clinical practice. However, current available assays normally require pre-enrichment, amplification and labeling steps, and most of them are semi-quantitative or lack of multiplexing capability. In this study, we developed a quasi-targeted proteomics assay for multiplexed miRNA quantification by a combination of DNA-peptide probes and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Specifically, the signal of target miRNAs (i.e., miR-21, miR-let7a, miR-200c, miR-125a and miR-15b) was converted into the mass response of reporter peptides by hybridization of miRNAs with DNA-peptide probes and subsequent tryptic digestion to release the peptides. After a careful optimization of conditions related to binding, conjugation, hybridization and multiple reaction monitoring (MRM) detection, the assay was validated for each miRNA and the limit of quantification (LOQ) for all the miRNAs can achieve 1 pM. Moreover, crosstalk between DNA-peptide probes in multiplex assay was sophisticatedly evaluated. Using this quasi-targeted proteomics assay, the level of target miRNAs was determined in 3 human breast cell lines and 36 matched pairs of breast tissue samples. Finally, simplex assay and qRT-PCR were also performed for a comparison. This approach grafts the strategy of targeted proteomics into miRNA quantification and may offer a new way for multiplexed miRNA profiling.
Collapse
Affiliation(s)
- Feifei Xu
- Nanjing Medical University, Nanjing, 211166, China
| | - Weixian Zhou
- Nanjing Medical University, Nanjing, 211166, China
| | | | - Qingqing Xu
- Nanjing Medical University, Nanjing, 211166, China
| | | | - Yun Chen
- Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
39
|
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS NANO 2017; 11:5238-5292. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
40
|
Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2238-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Ali Z, Wang J, Tang Y, Liu B, He N, Li Z. Simultaneous detection of multiple viruses based on chemiluminescence and magnetic separation. Biomater Sci 2017; 5:57-66. [DOI: 10.1039/c6bm00527f] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, a DNA hybridization based chemiluminescent detection method has been proposed for reliable detection of multiple pathogens. The use of surface modified magnetic nanoparticles can help to integrate this system into an automated platform for high throughput applications.
Collapse
Affiliation(s)
- Zeeshan Ali
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Jiuhai Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Yongjun Tang
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- P. R. China
| | - Bin Liu
- Department of Biomedical Engineering
- School of Basic Medical Sciences
- Nanjing Medical University
- Nanjing 210029
- China
| | - Nongyue He
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Zhiyang Li
- Department of Clinical Laboratory
- the Affiliated Drum Tower Hospital of Nanjing University Medical School
- Nanjing 210008
- P. R. China
| |
Collapse
|
42
|
Fiammengo R. Can nanotechnology improve cancer diagnosis through miRNA detection? Biomark Med 2017; 11:69-86. [DOI: 10.2217/bmm-2016-0195] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
miRNAs are key regulators of gene expression, and alterations in their expression levels correlate with the onset and progression of cancer. Although miRNAs have been proposed as biomarkers for cancer diagnosis, their application in routine clinical praxis is yet to come. Current quantification strategies have limitation, and there is a great interest in developing innovative ones. Since a few years, nanotechnology-based approaches for miRNA quantification are emerging at fast pace but there is urgent need to go beyond the proof-of-concept stage. Nanotechnology will have a strong impact on cancer diagnosis through miRNA detection only if it is demonstrated that the newly developed approaches are indeed working on ‘real-world’ samples under standardized conditions.
Collapse
Affiliation(s)
- Roberto Fiammengo
- Center for Biomolecular Nanotechnologies@UniLe – Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, Lecce, Italy
| |
Collapse
|
43
|
A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2030-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Biosens Bioelectron 2016; 86:1011-1016. [DOI: 10.1016/j.bios.2016.07.042] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/02/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
|
45
|
Persano S, Guevara ML, Wolfram J, Blanco E, Shen H, Ferrari M, Pompa PP. Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection. ACS OMEGA 2016; 1:448-455. [PMID: 27713932 PMCID: PMC5046170 DOI: 10.1021/acsomega.6b00109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/06/2016] [Indexed: 05/11/2023]
Abstract
We describe a new method for the detection of miRNA in biological samples. This technology is based on the isothermal nicking enzyme amplification reaction and subsequent hybridization of the amplification product with gold nanoparticles and magnetic microparticles (barcode system) to achieve naked-eye colorimetric detection. This platform was used to detect a specific miRNA (miRNA-10b) associated with breast cancer, and attomolar sensitivity was demonstrated. The assay was validated in cell culture lysates from breast cancer cells and in serum from a mouse model of breast cancer.
Collapse
Affiliation(s)
- Stefano Persano
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
- Istituto
Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
- Università
del Salento, Via Provinciale
Monteroni, 73100 Lecce, Italy
| | - Maria L. Guevara
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
| | - Joy Wolfram
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
| | - Elvin Blanco
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
| | - Haifa Shen
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
- Department of Cell
and Developmental Biology and Department of Medicine, Weill Cornell Medicine, 1330 York Avenue, New York 10065, New York, United
States
| | - Mauro Ferrari
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
- Department of Cell
and Developmental Biology and Department of Medicine, Weill Cornell Medicine, 1330 York Avenue, New York 10065, New York, United
States
| | - Pier Paolo Pompa
- Istituto
Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
| |
Collapse
|
46
|
Sanromán-Iglesias M, Lawrie CH, Schäfer T, Grzelczak M, Liz-Marzán LM. Sensitivity Limit of Nanoparticle Biosensors in the Discrimination of Single Nucleotide Polymorphism. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María Sanromán-Iglesias
- CIC biomaGUNE, Paseo de Miramón
182, 20009 Donostia-San
Sebastián, Spain
- Molecular
Oncology Group, Biodonostia Research Institute, 20014 Donostia-San
Sebastián, Spain
| | - Charles H. Lawrie
- Molecular
Oncology Group, Biodonostia Research Institute, 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Thomas Schäfer
- Polymat, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marek Grzelczak
- CIC biomaGUNE, Paseo de Miramón
182, 20009 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20009 Donostia-San
Sebastián, Spain
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón
182, 20009 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20009 Donostia-San
Sebastián, Spain
| |
Collapse
|
47
|
Miao X, Ning X, Li Z, Cheng Z. Sensitive detection of miRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles. Sci Rep 2016; 6:32358. [PMID: 27576601 PMCID: PMC5006024 DOI: 10.1038/srep32358] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
Positively charged gold nanoparticles (+)AuNPs can adsorb onto the negatively charged surface of single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA). Herein, long-range dsDNA polymers could form based on the hybridization chain reaction (HCR) of two hairpin probes (H1 and H2) by using miRNA-21 as an initiator. (+)AuNPs could adsorb onto the negatively charged surface of such long-range dsDNA polymers based on the electrostatic adsorption, which directly resulted in the precipitation of (+)AuNPs and the decrease of (+)AuNPs absorption spectra. Under optimal conditions, miRNA-21 detection could be realized in the range of 20 pM-10 nM with a detection limit of 6.8 pM. In addition, (+)AuNPs used here are much more stable than commonly used negatively charged gold nanoparticles ((−)AuNPs) in mixed solution that contained salt, protein or other metal ions. Importantly, the assay could realize the detection of miRNA in human serum samples.
Collapse
Affiliation(s)
- Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xue Ning
- KeWen College, JiangSu Normal University, Xuzhou 221116, PR China
| | - Zongbing Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Zhiyuan Cheng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| |
Collapse
|
48
|
Fan D, Zhai Q, Zhou W, Zhu X, Wang E, Dong S. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation. Biosens Bioelectron 2016; 85:771-776. [PMID: 27281107 DOI: 10.1016/j.bios.2016.05.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 01/04/2023]
Abstract
Herein, a gold nanoparticles (AuNPs) based label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) was constructed for the first time. Four bases (G-G mismatch) mismatched streptavidin aptamer (MSAA) was used to protect AuNPs from salt-induced aggregation and recognize Pt (II) specifically. Only in the presence of Pt (II), coordination occurs between G-G bases and Pt (II), leading to the activation of streptavidin aptamer. Streptavidin coated magnetic beads (MBs) were used as separation agent to separate Pt (II)-coordinated MSAA. The residual less amount of MSAA could not efficiently protect AuNPs anymore and aggregation of AuNPs will produce a colorimetric product. With the addition of Pt (II), a pale purple-to-blue color variation could be observed by the naked eye. A detection limit of 150nM and a linear range from 0.6μM to 12.5μM for Pt (II) could be achieved without any amplification.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Weijun Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Xiaoqing Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China.
| |
Collapse
|
49
|
Affiliation(s)
- Richard M. Graybill
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| |
Collapse
|
50
|
Xu F, Yang T, Chen Y. Quantification of microRNA by DNA-Peptide Probe and Liquid Chromatography-Tandem Mass Spectrometry-Based Quasi-Targeted Proteomics. Anal Chem 2015; 88:754-63. [PMID: 26641144 DOI: 10.1021/acs.analchem.5b03056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distorted and unique expression of microRNAs (miRNAs) in cancer makes them an attractive source of biomarkers. However, one of prerequisites for the application of miRNAs in clinical practice is to accurately profile their expression. Currently available assays normally require pre-enrichment, amplification, and labeling steps, and most of them are semiquantitative. In this study, we converted the signal of target miR-21 into reporter peptide by a DNA-peptide probe and the reporter peptide was ultimately quantified using LC-MS/MS-based targeted proteomics. Specifically, substrate peptide GDKAVLGVDPFR containing reporter peptide AVLGVDPFR and tryptic cleavage site (lysine at position 3) was first designed, followed by the conjugation with DNA sequence that was complementary to miR-21. The newly formed DNA-peptide probe was then hybridized with miR-21, which was biotinylated and attached to streptavidin agarose in advance. After trypsin digestion, the reporter peptide was released and monitored by a targeted proteomics assay. The obtained limit of quantification (LOQ) was 1 pM, and the detection dynamic range spanned ∼5 orders of magnitude. Using this assay, the developed quasi-targeted proteomics approach was applied to determine miR-21 level in breast cells and tissue samples. Finally, qRT-PCR was also performed for a comparison. This report grafted the strategy of targeted proteomics into miRNA quantification.
Collapse
Affiliation(s)
- Feifei Xu
- School of Pharmacy, Nanjing Medical University , Nanjing, 211166, China
| | - Ting Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, 210029, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University , Nanjing, 211166, China
| |
Collapse
|