1
|
Liu W, Li Q, Han Q. Needle-in-needle electrochemical sensor for in-vivo monitoring of anticancer drug etoposide. Biosens Bioelectron 2024; 258:116348. [PMID: 38710143 DOI: 10.1016/j.bios.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
Therapeutic drug monitoring (TDM) serves as a potent tool for adjusting drug concentration within a reasonable range. However, continuous monitoring of anticancer drugs in-vivo presents a significant challenge. Herein, we propose a needle-in-needle electrochemical sensor based on an acupuncture needle electrode, capable of monitoring the anticancer drug etoposide in the peritoneal cavity of living rats. The acupuncture needle was modified with Au nanoparticles and etoposide-templated molecularly imprinted polymer (MIP), resulting in high sensitivity and selectivity in the electrochemical detection of etoposide. The modified acupuncture needle (0.16 mm diameter) was anchored inside a syringe needle (1.40 mm diameter), allowing the outer syringe needle to protect the modified materials of the inner acupuncture needle during skin piercing. Due to the unique needle-in-needle design, high stability was obtained during in-vivo etoposide monitoring. Connecting to a smartphone-controlled portable electrochemical workstation, the needle-in-needle sensor offers great convenience in point-of-care TDM. Moreover, the electrode materials on the acupuncture needle were carefully characterized and optimized. Under the optimized conditions, low detection limits and wide linear range were achieved. This work provides new insights into acupuncture needle electrochemical sensors and further expands the feasibility for real-time and in-vivo detection.
Collapse
Affiliation(s)
- Weilu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Qiuyun Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Qiushuo Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| |
Collapse
|
2
|
Kuru Cİ, Sipahi D, Aydoğan C, Ulucan-Karnak F, Akgöl S. Development of nanobiosensor for therapeutic drug monitoring in personalized cancer treatment approach. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1819-1844. [PMID: 38859628 DOI: 10.1080/09205063.2024.2356965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Docetaxel is one of the most effective and safe chemotherapy drugs according to the World Health Organization, but its clinical use has been discontinued due to its various side effects. To reduce these side effects, the amount of docetaxel drug should be kept at the most effective level, it should be monitored in body fluids. Due to the limitations of traditional analytical methods used for this purpose, such as expensive and low sensitivity, labor-intensive and time-consuming complex preliminary preparation, efficient methods are required for the determination of the docetaxel level in the body. The increasing demand for the development of personalized therapy has recently spurred significant research into biosensors for the detection of drugs and other chemical compounds. In this study, an electrochemical-based portable nanobiosensor system was developed for the rapid, low-cost, and sensitive determination of docetaxel. In this context, mg-p(HEMA)-IMEO nanoparticles to be used as nanobiosensor bioactive layer was synthesized, characterized, and docetaxel determination conditions were optimized. According to the results obtained, the developed nanobiosensor system can detect docetaxel with a sensitivity of 2.22 mg/mL in a wide calibration range of 0.25-10 mg/mL, in only 15 min, in mixed media such as commercially available artificial blood serum and urine. determined. We concluded that the developed nanobiosensor system can be successfully used in routine drug monitoring as a low-cost biomedical device capable of direct, rapid, and specific drug determination within the scope of personalized treatment, providing point-of-care testing.
Collapse
Affiliation(s)
- Cansu İlke Kuru
- Buca Municipality Buca Science and Art Center, Izmir, Turkey
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey
| | - Deniz Sipahi
- Buca Municipality Buca Science and Art Center, Izmir, Turkey
| | - Ceren Aydoğan
- Buca Municipality Buca Science and Art Center, Izmir, Turkey
| | - Fulden Ulucan-Karnak
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey
- Health Science Institute, Department of Medical Biochemistry, Ege University, Izmir, Turkey
| | - Sinan Akgöl
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey
- Nanotechnology Research and Application Center, Sabancı University, Istanbul, Turkey
| |
Collapse
|
3
|
Lafi Z, Gharaibeh L, Nsairat H, Asha N, Alshaer W. Aptasensors: employing molecular probes for precise medical diagnostics and drug monitoring. Bioanalysis 2023; 15:1439-1460. [PMID: 37847048 DOI: 10.4155/bio-2023-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Accurate detection and monitoring of therapeutic drug levels are vital for effective patient care and treatment management. Aptamers, composed of single-stranded DNA or RNA molecules, are integral components of biosensors designed for both qualitative and quantitative detection of biological samples. Aptasensors play crucial roles in target identification, validation, detection of drug-target interactions and screening potential of drug candidates. This review focuses on the pivotal role of aptasensors in early disease detection, particularly in identifying biomarkers associated with various diseases such as cancer, infectious diseases and cardiovascular disorders. Aptasensors have demonstrated exceptional potential in enhancing disease diagnostics and monitoring therapeutic drug levels. Aptamer-based biosensors represent a transformative technology in the field of healthcare, enabling precise diagnostics, drug monitoring and disease detection.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nisreen Asha
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
4
|
Yan Z, Shi Z, Wu Y, Lv J, Deng P, Liu G, An Z, Che Z, Lu Y, Shan J, Liu Q. Wireless, noninvasive therapeutic drug monitoring system for saliva measurement toward medication management of schizophrenia. Biosens Bioelectron 2023; 234:115363. [PMID: 37146537 DOI: 10.1016/j.bios.2023.115363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
As an efficient patient management tool of precision medicine, decentralized therapeutic drug monitoring (TDM) provides new vision for therapy adherence and health management of schizophrenia in a convenient manner. To dispense with psychologically burdensome blood sampling and to achieve real-time, noninvasive, and continual circulating tracking of drugs with narrow therapeutic window, we study the temporal metabolism of clozapine, an antipsychotic with severe side effect, in rat saliva by a wireless, integrated and patient-friendly smart lollipop sensing system. Highly sensitive and efficient sensing performance with acceptable anti-biofouling property was realized based on the synergistic effect of electrodeposited reduced graphene oxide and ionic liquids in pretreatment-free saliva with low detection limit and good accuracy cross-validated with conventional method. On this basis, continual salivary drug levels with distinctive pharmacokinetics were found in different routes of drug administration. Pilot experiment reveals a strong correlation between blood and saliva clozapine and a positive relationship between drug dosage and salivary drug level, indicating potential applications presented by noninvasive saliva analysis towards patient-centered and personalized pharmacotherapy and adherence management via proposed smart lollipop system.
Collapse
Affiliation(s)
- Zupeng Yan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yue Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Peixue Deng
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ziyuan Che
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, PR China.
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Cancer Center, Zhejiang University, Hangzhou, 310058, PR China.
| | - Qingjun Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
5
|
Rafalskiy VV, Zyubin AY, Moiseeva EM, Kupriyanova GS, Mershiev IG, Kryukova NO, Kon II, Samusev IG, Belousova YD, Doktorova SA. Application of vibrational spectroscopy and nuclear magnetic resonance methods for drugs pharmacokinetics research. Drug Metab Pers Ther 2023; 38:3-13. [PMID: 36169571 DOI: 10.1515/dmpt-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The development of new methods for determining the concentration of drugs is an actual topic today. The article contains a detailed review on vibrational spectroscopy and nuclear magnetic resonance methods using for pharmacokinetic research. This study is devoted to the possibility of using vibrational spectroscopy and 1H nuclear magnetic resonance spectroscopy to determine the concentration of drugs and the use of these groups of techniques for therapeutic drug monitoring. CONTENT The study was conducted by using scientific libraries (Scopus, Web of Science Core Collection, Medline, GoogleScholar, eLIBRARY, PubMed) and reference literature. A search was conducted for the period from 2011 to 2021 in Russian and English, by combinations of words: 1H nuclear magnetic resonance (1H NMR), vibrational spectroscopy, Surface-Enhanced Raman spectroscopy, drug concentration, therapeutic drug monitoring. These methods have a number of advantages and are devoid of some of the disadvantages of classical therapeutic drug monitoring (TDM) methods - high performance liquid chromatography and mass spectrometry. This review considers the possibility of using the methods of surface-enhanced Raman scattering (SERS) and 1H NMR-spectroscopy to assess the concentration of drugs in various biological media (blood, urine), as well as to study intracellular metabolism and the metabolism of ophthalmic drugs. 1Н NMR-spectroscopy can be chosen as a TDM method, since it allows analyzing the structure and identifying metabolites of various drugs. 1Н NMR-based metabolomics can provide information on the side effects of drugs, predict response to treatment, and provide key information on the mechanisms of action of known and new drug compounds. SUMMARY AND OUTLOOK SERS and 1Н NMR-spectroscopy have great potential for further study and the possibility of introducing them into clinical practice, including for evaluating the efficacy and safety of drugs.
Collapse
Affiliation(s)
- Vladimir V Rafalskiy
- Department of Therapy of the Medical Institute of the IKBFU, Kaliningrad, Russia
| | - Andrey Yu Zyubin
- REC "Fundamental and Applied Photonics, Nanophotonics", IKBFU, Kaliningrad, Russia
| | | | | | | | - Nadezhda O Kryukova
- Department of Fundamental Medicine of the Medical Institute of the IKBFU, Kaliningrad, Russia
| | - Igor I Kon
- REC "Fundamental and Applied Photonics, Nanophotonics", Kaliningrad, Russia
| | - Ilya G Samusev
- REC "Fundamental and Applied Photonics, Nanophotonics", Kaliningrad, Russia
| | | | - Svetlana A Doktorova
- Medical Institute of the IKBFU, Kaliningrad, Russia
- Immanuel Kant Baltic Federal University Institute of Medicine - Clinical Trial Center of IKBFUA, Kaliningrad, Russia
| |
Collapse
|
6
|
Razlansari M, Ulucan-Karnak F, Kahrizi M, Mirinejad S, Sargazi S, Mishra S, Rahdar A, Díez-Pascual AM. Nanobiosensors for detection of opioids: A review of latest advancements. Eur J Pharm Biopharm 2022; 179:79-94. [PMID: 36067954 DOI: 10.1016/j.ejpb.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Opioids are generally used as analgesics in pain treatment. Like many drugs, they have side effects when overdosing and causeaddiction problems.Illegal drug use and misuse are becoming a major concern for authorities worldwide; thus, it is critical to have precise procedures for detecting them in confiscated samples, biological fluids, and wastewaters. Routine blood and urine tests are insufficient for highly selective determinations and can cause cross-reactivities. For this purpose, nanomaterial-based biosensors are great tools to determine opioid intakes, continuously monitoring the drugs with high sensitivity and selectivity even at very low sample volumes.Nanobiosensors generally comprise a signal transducer nanostructure in which a biological recognition molecule is immobilized onto its surface. Lately, nanobiosensors have been extensively utilized for the molecular detection of opioids. The usage of novel nanomaterials in biosensing has impressed biosensing studies. Nanomaterials with a large surface area have been used to develop nanobiosensors with shorter reaction times and higher sensitivity than conventional biosensors. Colorimetric and fluorescence sensing methods are two kinds of optical sensor systems based on nanomaterials. Noble metal nanoparticles (NPs), such as silver and gold, are the most frequently applied nanomaterials in colorimetric techniques, owing to their unique optical feature of surface plasmon resonance. Despite the progress of an extensive spectrum of nanobiosensors over the last two decades, the future purpose of low-cost, high-throughput, multiplexed clinical diagnostic lab-on-a-chip instruments has yet to be fulfilled. In this review, a concise overview of opioids (such as tramadol and buprenorphine, oxycodone and fentanyl, methadone and morphine) is provided as well as information on their classification, mechanism of action, routine tests, and new opioid sensing technologies based on various NPs. In order to highlight the trend of nanostructure development in biosensor applications for opioids, recent literature examples with the nanomaterial type, target molecules, and limits of detection are discussed.
Collapse
Affiliation(s)
- Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | | | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Sachin Mishra
- NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea; RFIC Lab, Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Mechanistic Evaluation of Antimicrobial Lipid Interactions with Tethered Lipid Bilayers by Electrochemical Impedance Spectroscopy. SENSORS 2022; 22:s22103712. [PMID: 35632121 PMCID: PMC9148023 DOI: 10.3390/s22103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023]
Abstract
There is extensive interest in developing real-time biosensing strategies to characterize the membrane-disruptive properties of antimicrobial lipids and surfactants. Currently used biosensing strategies mainly focus on tracking membrane morphological changes such as budding and tubule formation, while there is an outstanding need to develop a label-free biosensing strategy to directly evaluate the molecular-level mechanistic details by which antimicrobial lipids and surfactants disrupt lipid membranes. Herein, using electrochemical impedance spectroscopy (EIS), we conducted label-free biosensing measurements to track the real-time interactions between three representative compounds—glycerol monolaurate (GML), lauric acid (LA), and sodium dodecyl sulfate (SDS)—and a tethered bilayer lipid membrane (tBLM) platform. The EIS measurements verified that all three compounds are mainly active above their respective critical micelle concentration (CMC) values, while also revealing that GML induces irreversible membrane damage whereas the membrane-disruptive effects of LA are largely reversible. In addition, SDS micelles caused membrane solubilization, while SDS monomers still caused membrane defect formation, shedding light on how antimicrobial lipids and surfactants can be active in, not only micellar form, but also as monomers in some cases. These findings expand our mechanistic knowledge of how antimicrobial lipids and surfactants disrupt lipid membranes and demonstrate the analytical merits of utilizing the EIS sensing approach to comparatively evaluate membrane-disruptive antimicrobial compounds.
Collapse
|
8
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
9
|
Bräuer B, Unger C, Werner M, Lieberzeit PA. Biomimetic Sensors to Detect Bioanalytes in Real-Life Samples Using Molecularly Imprinted Polymers: A Review. SENSORS 2021; 21:s21165550. [PMID: 34450992 PMCID: PMC8400518 DOI: 10.3390/s21165550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) come with the promise to be highly versatile, useful artificial receptors for sensing a wide variety of analytes. Despite a very large body of literature on imprinting, the number of papers addressing real-life biological samples and analytes is somewhat limited. Furthermore, the topic of MIP-based sensor design is still, rather, in the research stage and lacks wide-spread commercialization. This review summarizes recent advances of MIP-based sensors targeting biological species. It covers systems that are potentially interesting in medical applications/diagnostics, in detecting illicit substances, environmental analysis, and in the quality control of food. The main emphasis is placed on work that demonstrates application in real-life matrices, including those that are diluted in a reasonable manner. Hence, it does not restrict itself to the transducer type, but focusses on both materials and analytical tasks.
Collapse
|
10
|
Naik A, Misra SK. Modern Sensing Approaches for Predicting Toxicological Responses of Food- and Drug-Based Bioactives on Microbiomes of Gut Origin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6396-6413. [PMID: 34081444 DOI: 10.1021/acs.jafc.1c02736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent scientific findings have correlated the gut microbes with homeostasis of human health by delineating their role in pathogen resistance, bioactive metabolization, and immune responses. Foreign materials, like xenobiotics, that induce an altering effect to the human body also influence the gut microbiome to some extent and often limit their use as a result of significant side effects. Investigating the xenobiotic effect of new therapeutic material or edible could be quite painstaking and economically non-viable. Thus, the use of predictive toxicology methods can be an innovative strategy in the food, pharma, and agriculture industries. There are reported in silico, ex vivo, in vitro, and in vivo methods to evaluate such effects but with added drawbacks, such as lower predictability, physiological dissimilarities, and high cost of associated invasive procedures. This review highlights the current and future possibilities with newer modern sensing approaches of economic and time-scale advantages for predicting toxicological responses on gut microbiomes.
Collapse
Affiliation(s)
- Aishwarya Naik
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Santosh K Misra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| |
Collapse
|
11
|
Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. Trends Analyt Chem 2020; 133:116067. [PMID: 33052154 PMCID: PMC7545218 DOI: 10.1016/j.trac.2020.116067] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of field-Effect-Transistor (FET) type biosensing arrangements has been highlighted by researchers in the field of early biomarker detection and drug screening. Their non-metalized gate dielectrics that are exposed to an electrolyte solution cover the semiconductor material and actively transduce the biological changes on the surface. The efficiency of these novel devices in detecting different biomolecular analytes in a real-time, highly precise, specific, and label-free manner has been validated by numerous research studies. Considerable progress has been attained in designing FET devices, especially for biomedical diagnosis and cell-based assays in the past few decades. The exceptional electronic properties, compactness, and scalability of these novel tools are very desirable for designing rapid, label-free, and mass detection of biomolecules. With the incorporation of nanotechnology, the performance of biosensors based on FET boosts significantly, particularly, employment of nanomaterials such as graphene, metal nanoparticles, single and multi-walled carbon nanotubes, nanorods, and nanowires. Besides, their commercial availability, and high-quality production on a large-scale, turn them to be one of the most preferred sensing and screening platforms. This review presents the basic structural setup and working principle of different types of FET devices. We also focused on the latest progression regarding the use of FET biosensors for the recognition of viruses such as, recently emerged COVID-19, Influenza, Hepatitis B Virus, protein biomarkers, nucleic acids, bacteria, cells, and various ions. Additionally, an outline of the development of FET sensors for investigations related to drug development and the cellular investigation is also presented. Some technical strategies for enhancing the sensitivity and selectivity of detection in these devices are addressed as well. However, there are still certain challenges which are remained unaddressed concerning the performance and clinical use of transistor-based point-of-care (POC) instruments; accordingly, expectations about their future improvement for biosensing and cellular studies are argued at the end of this review.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Dept. of Elecrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada
| |
Collapse
|
12
|
Garzón V, Bustos RH, G. Pinacho D. Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring. J Pers Med 2020; 10:E147. [PMID: 32993004 PMCID: PMC7712907 DOI: 10.3390/jpm10040147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.
Collapse
Affiliation(s)
- Vivian Garzón
- PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Daniel G. Pinacho
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
13
|
Jung S, Kim J. Biomarker discovery and beyond for diagnosis of bladder diseases. Bladder (San Franc) 2020; 7:e40. [PMID: 32775482 PMCID: PMC7401981 DOI: 10.14440/bladder.2020.813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/15/2023] Open
Abstract
Molecular biosignatures of altered cellular landscapes and functions have been casually linked with pathological conditions, which imply the promise of biomarkers specific to bladder diseases, such as bladder cancer and other dysfunctions. Urinary biomarkers are particularly attractive due to costs, time, and the minimal and noninvasive efforts acquiring urine. The evolution of omics platforms and bioinformatics for analyzing the genome, epigenome, transcriptome, proteome, lipidome, metabolome, etc., have enabled us to develop more sensitive and disease-specific biomarkers. These discoveries broaden our understanding of the complex biology and pathophysiology of bladder diseases, which can ultimately be translated into the clinical setting. In this short review, we will discuss current efforts on identification of promising urinary biomarkers of bladder diseases and their roles in diagnosis and monitoring. With these considerations, we also aim to provide a prospective view of how we can further utilize these bladder biomarkers in developing ideal and smart medical devices that would be applied in the clinic.
Collapse
Affiliation(s)
- Sungyong Jung
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Medicine, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Farhoudi N, Leu HY, Laurentius LB, Magda JJ, Solzbacher F, Reiche CF. Smart Hydrogel Micromechanical Resonators with Ultrasound Readout for Biomedical Sensing. ACS Sens 2020; 5:1882-1889. [PMID: 32545953 DOI: 10.1021/acssensors.9b02180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the main challenges for implantable biomedical sensing schemes is obtaining a reliable signal while maintaining biocompatibility. In this work, we demonstrate that a combination of medical ultrasound imaging and smart hydrogel micromechanical resonators can be employed for continuous monitoring of analyte concentrations. The sensing principle is based on the shift of the mechanical resonance frequencies of smart hydrogel structures induced by their volume-phase transition in response to changing analyte levels. This shift can then be measured as a contrast change in the ultrasound images due to resonance absorption of ultrasound waves. This concept eliminates the need for implanting complex electronics or employing transcutaneous connections for sensing biomedical analytes in vivo. Here, we present proof-of-principle experiments that monitor in vitro changes in ionic strength and glucose concentrations to demonstrate the capabilities and potential of this versatile sensing platform technology.
Collapse
Affiliation(s)
- Navid Farhoudi
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hsuan-Yu Leu
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lars B. Laurentius
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jules J. Magda
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Florian Solzbacher
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Materials Science & Engineering, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christopher F. Reiche
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Yan J, van Smeden L, Merkx M, Zijlstra P, Prins MWJ. Continuous Small-Molecule Monitoring with a Digital Single-Particle Switch. ACS Sens 2020; 5:1168-1176. [PMID: 32189498 PMCID: PMC8177406 DOI: 10.1021/acssensors.0c00220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The
ability to continuously measure concentrations of small molecules
is important for biomedical, environmental, and industrial monitoring.
However, because of their low molecular mass, it is difficult to quantify
concentrations of such molecules, particularly at low concentrations.
Here, we describe a small-molecule sensor that is generalizable, sensitive,
specific, reversible, and suited for continuous monitoring over long
durations. The sensor consists of particles attached to a sensing
surface via a double-stranded DNA tether. The particles transiently
bind to the sensing surface via single-molecular affinity interactions,
and the transient binding is optically detected as digital binding
events via the Brownian motion of the particles. The rate of binding
events decreases with increasing analyte concentration because analyte
molecules inhibit binding of the tethered particle to the surface.
The sensor enables continuous measurements of analyte concentrations
because of the reversibility of the intermolecular bonds and digital
read-out of particle motion. We show results for the monitoring of
short single-stranded DNA sequences and creatinine, a small-molecule
biomarker (113 Da) for kidney function, demonstrating a temporal resolution
of a few minutes. The precision of the sensor is determined by the
statistics of the digital switching events, which means that the precision
is tunable by the number of particles and the measurement time.
Collapse
Affiliation(s)
- Junhong Yan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Laura van Smeden
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Maarten Merkx
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Peter Zijlstra
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Menno W. J. Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
16
|
Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol 2020; 38:1262-1277. [PMID: 33058758 DOI: 10.1016/j.tibtech.2020.03.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Recent technological advances have stimulated efforts to bring personalized medicine into practice. Yet, traditional application fields like therapeutic drug monitoring (TDM) have remained rather under-appreciated. Owing to clear dose-response relationships, TDM could improve patient outcomes and reduce healthcare costs. While chromatography-based routine practices are restricted due to high costs and turnaround times, biosensors overcome these limitations by offering on-site analysis. Nevertheless, sensor-based approaches have yet to break through for clinical TDM applications, due to the gap between scientific and clinical communities. We provide a critical overview of current TDM practices, followed by a TDM guideline to establish a common ground across disciplines. Finally, we discuss how the translation of sensor systems for TDM can be facilitated, by highlighting the challenges and opportunities.
Collapse
Affiliation(s)
- H Ceren Ates
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany
| | - Jason A Roberts
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, 4102, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Jeffrey Lipman
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Anthony E G Cass
- Department of Chemistry and Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Gerald A Urban
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Centre - FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Can Dincer
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany. @imtek.de
| |
Collapse
|
17
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
18
|
Vinks AA, Peck RW, Neely M, Mould DR. Development and Implementation of Electronic Health Record–Integrated Model‐Informed Clinical Decision Support Tools for the Precision Dosing of Drugs. Clin Pharmacol Ther 2019; 107:129-135. [DOI: 10.1002/cpt.1679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander A. Vinks
- Division of Clinical Pharmacology Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Richard W. Peck
- Pharma Research and Exploratory Development Roche Innovation Center Basel Basel Switzerland
| | - Michael Neely
- Children's Hospital Los Angeles University of Southern California Los Angeles California USA
| | | |
Collapse
|
19
|
Garzón V, Pinacho DG, Bustos RH, Garzón G, Bustamante S. Optical Biosensors for Therapeutic Drug Monitoring. BIOSENSORS 2019; 9:E132. [PMID: 31718050 PMCID: PMC6955905 DOI: 10.3390/bios9040132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.
Collapse
Affiliation(s)
- Vivian Garzón
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Daniel G. Pinacho
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Rosa-Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Gustavo Garzón
- Faculty of Medicine, Universidad de La Sabana, Chía 140013, Colombia
| | - Sandra Bustamante
- Physics Department, the Centre for NanoHealth, Swansea University, Swansea SA2 8PP, UK
- Vedas, Corporación de Investigación e Innovación, Medellín 050001, Colombia
| |
Collapse
|
20
|
McKeating KS, Hinman SS, Rais NA, Zhou Z, Cheng Q. Antifouling Lipid Membranes over Protein A for Orientation-Controlled Immunosensing in Undiluted Serum and Plasma. ACS Sens 2019; 4:1774-1782. [PMID: 31262175 DOI: 10.1021/acssensors.9b00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An important advance in biosensor research is the extension and application of laboratory-developed methodologies toward clinical diagnostics, though the propensity toward nonspecific binding of materials in clinically relevant matrices, such as human blood serum and plasma, frequently leads to compromised assays. Several surface chemistries have been developed to minimize nonspecific interactions of proteins and other biological components found within blood and serum samples, though these often exhibit substantially variable outcomes. Herein we report a surface chemistry consisting of a charged-matched supported lipid membrane that has been tailored to form over a gold surface functionalized with protein A. Fine tuning of the interfacial charge of this membrane, along with rational selection of a backfilling self-assembled monolayer, allows for high surface coverage with retention of orientation-controlled capture antibody attachment. We demonstrate using surface-plasmon resonance (SPR) that this highly charged lipid membrane is antifouling, allowing for complete removal of nonspecific human serum and plasma components using only a mild buffer rinse, which we attribute to unique steric interactions with the underlying surface. Furthermore, this surface chemistry is successfully applied for specific detection of IgG and cholera toxin in undiluted human biofluids with negligible sacrifice of SPR signal compared to buffered analysis. This novel lipid membrane interface over protein A may open new avenues for direct biosensing of disease markers within clinical samples.
Collapse
Affiliation(s)
| | | | | | - Zhiguo Zhou
- Luna Innovations Inc., Danville, Virginia 24541, United States
| | | |
Collapse
|
21
|
Shoaie N, Daneshpour M, Azimzadeh M, Mahshid S, Khoshfetrat SM, Jahanpeyma F, Gholaminejad A, Omidfar K, Foruzandeh M. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: a review on recent advances. Mikrochim Acta 2019; 186:465. [PMID: 31236681 DOI: 10.1007/s00604-019-3588-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Polyaniline and its composites with nanoparticles have been widely used in electrochemical sensor and biosensors due to their attractive properties and the option of tuning them by proper choice of materials. The review (with 191 references) describes the progress made in the recent years in polyaniline-based biosensors and their applications in clinical sensing, food quality control, and environmental monitoring. A first section summarizes the features of using polyaniline in biosensing systems. A subsequent section covers sensors for clinical applications (with subsections on the detection of cancer cells and bacteria, and sensing of glucose, uric acid, and cholesterol). Further sections discuss sensors for use in the food industry (such as for sulfite, phenolic compounds, acrylamide), and in environmental monitoring (mainly pesticides and heavy metal ions). A concluding section summarizes the current state, highlights some of the challenges currently compromising performance in biosensors and nanobiosensors, and discusses potential future directions. Graphical abstract Schematic presentation of electrochemical sensor and biosensors applications based on polyaniline/nanoparticles in various fields of human life including medicine, food industry, and environmental monitoring. The simultaneous use of suitable properties polyaniline and nanoparticles can provide the fabrication of sensing systems with high sensitivity, short response time, high signal/noise ratio, low detection limit, and wide linear range by improving conductivity and the large surface area for biomolecules immobilization.
Collapse
Affiliation(s)
- Nahid Shoaie
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran
| | - Maryam Daneshpour
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, P.O. Box: 1985717443, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran.,Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, P.O. Box: 89195-999, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, P.O. Box: H3A 0E9, Canada
| | - Seyyed Mehdi Khoshfetrat
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Science, Tehran, P.O. Box:1411713137, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Science, Tehran, P.O. Box:1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Foruzandeh
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran.
| |
Collapse
|
22
|
Sergelen K, Liedberg B, Knoll W, Dostálek J. A surface plasmon field-enhanced fluorescence reversible split aptamer biosensor. Analyst 2018; 142:2995-3001. [PMID: 28744534 DOI: 10.1039/c7an00970d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Surface plasmon field-enhanced fluorescence is reported for the readout of a heterogeneous assay that utilizes low affinity split aptamer ligands. Weak affinity ligands that reversibly interact with target analytes hold potential for facile implementation in continuous monitoring biosensor systems. This functionality is not possible without the regeneration of more commonly used assays relying on high affinity ligands and end-point measurement. In fluorescence-based sensors, the use of low affinity ligands allows avoiding this step but it imposes a challenge associated with the weak optical response to the specific capture of the target analyte which is also often masked by a strong background. The coupling of fluorophore labels with a confined field of surface plasmons is reported for strong amplification of the fluorescence signal emitted from the sensor surface and its efficient discrimination from the background. This optical scheme is demonstrated for time-resolved analysis of chosen model analytes - adenoside and adenosine triphosphate - with a split aptamer that exhibits an equilibrium affinity binding constant between 0.73 and 1.35 mM. The developed biosensor enables rapid and specific discrimination of target analyte concentration changes from low μM to mM in buffer as well as in 10% serum.
Collapse
Affiliation(s)
- K Sergelen
- BioSensor Technologies, AIT-Austrian Institute of Technology, Muthgasse 11, 1190 Vienna, Austria.
| | | | | | | |
Collapse
|
23
|
A novel molecularly imprinted sensing platform based on MWCNTs/AuNPs decorated 3D starfish like hollow nickel skeleton as a highly conductive nanocomposite for selective and ultrasensitive analysis of a novel pan-genotypic inhibitor velpatasvir in body fluids. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Fornasaro S, Bonifacio A, Marangon E, Buzzo M, Toffoli G, Rindzevicius T, Schmidt MS, Sergo V. Label-Free Quantification of Anticancer Drug Imatinib in Human Plasma with Surface Enhanced Raman Spectroscopy. Anal Chem 2018; 90:12670-12677. [PMID: 30350602 DOI: 10.1021/acs.analchem.8b02901] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Therapeutic drug monitoring (TDM) for anticancer drug imatinib has been suggested as the best way to improve the treatment response and minimize the risk of adverse reactions in chronic myelogenous leukemia (CML) and gastrointestinal stromal tumor (GIST) patients. TDM of oncology treatments with standard analytical methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) is, however, complex and demanding. This paper proposes a new method for quantitation of imatinib in human plasma, based on surface enhanced raman spectroscopy (SERS) and multivariate calibration using partial least-squares regression (PLSR). The best PLSR model was obtained with three latent variables in the range from 123 to 5000 ng/mL of imatinib, providing a standard error of prediction (SEP) of 510 ng/mL. The method was validated in accordance with international guidelines, through the estimate of figures of merit, such as precision, accuracy, systematic error, analytical sensitivity, limits of detection, and quantitation. Moreover, the feasibility and clinical utility of this approach have also been verified using real plasma samples taken from deidentified patients. The results were in good agreement with a clinically validated LC-MS/MS method. The new SERS method presented in this preliminary work showed simplicity, short analysis time, good sensitivity, and could be considered a promising platform for TDM of imatinib treatment in a point-of-care setting.
Collapse
Affiliation(s)
- Stefano Fornasaro
- Department of Engineering and Architecture , University of Trieste , Via Valerio 6A , 34127 Trieste , Italy
| | - Alois Bonifacio
- Department of Engineering and Architecture , University of Trieste , Via Valerio 6A , 34127 Trieste , Italy
| | - Elena Marangon
- Experimental and Clinical Pharmacology Division , CRO Aviano-National Cancer Institute , Aviano , Italy
| | - Mauro Buzzo
- Experimental and Clinical Pharmacology Division , CRO Aviano-National Cancer Institute , Aviano , Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Division , CRO Aviano-National Cancer Institute , Aviano , Italy
| | - Tomas Rindzevicius
- Department of Micro- and Nanotechnology, DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics , IDUN , Ørsteds Plads , 2800 Kongens Lyngby , Denmark
| | - Michael Stenbæk Schmidt
- Department of Micro- and Nanotechnology, DNRF and Villum Fonden Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics , IDUN , Ørsteds Plads , 2800 Kongens Lyngby , Denmark
| | - Valter Sergo
- Department of Engineering and Architecture , University of Trieste , Via Valerio 6A , 34127 Trieste , Italy.,Faculty of Health Sciences , University of Macau , Macau SAR , China
| |
Collapse
|
25
|
McKeating KS, Couture M, Dinel MP, Garneau-Tsodikova S, Masson JF. High throughput LSPR and SERS analysis of aminoglycoside antibiotics. Analyst 2018; 141:5120-6. [PMID: 27412506 DOI: 10.1039/c6an00540c] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aminoglycoside antibiotics are used in the treatment of infections caused by Gram-negative bacteria, and are often dispensed only in severe cases due to their adverse side effects. Patients undergoing treatment with these antibiotics are therefore commonly subjected to therapeutic drug monitoring (TDM) to ensure a safe and effective personalised dosage. The ability to detect these antibiotics in a rapid and sensitive manner in human fluids is therefore of the utmost importance in order to provide effective monitoring of these drugs, which could potentially allow for a more widespread use of this class of antibiotics. Herein, we report on the detection of various aminoglycosides, by exploiting their ability to aggregate gold nanoparticles. The number and position of the amino groups of aminoglycoside antibiotics controlled the aggregation process. We investigated the complementary techniques of surface enhanced Raman spectroscopy (SERS) and localized surface plasmon resonance (LSPR) for dual detection of these aminoglycoside antibiotics and performed an in-depth study of the feasibility of carrying out TDM of tobramycin using a platform amenable to high throughput analysis. Herein, we also demonstrate dual detection of tobramycin using both LSPR and SERS in a single platform and within the clinically relevant concentration range needed for TDM of this particular aminoglycoside. Additionally we provide evidence that tobramycin can be detected in spiked human serum using only functionalised nanoparticles and SERS analysis.
Collapse
Affiliation(s)
- Kristy S McKeating
- Département de chimie and Centre for self-assembled chemical structures (CSACS), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| | - Maxime Couture
- Département de chimie and Centre for self-assembled chemical structures (CSACS), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| | - Marie-Pier Dinel
- Département de chimie and Centre for self-assembled chemical structures (CSACS), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Jean-Francois Masson
- Département de chimie and Centre for self-assembled chemical structures (CSACS), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| |
Collapse
|
26
|
Zhou H, Ran G, Masson JF, Wang C, Zhao Y, Song Q. Novel tungsten phosphide embedded nitrogen-doped carbon nanotubes: A portable and renewable monitoring platform for anticancer drug in whole blood. Biosens Bioelectron 2018; 105:226-235. [PMID: 29412947 DOI: 10.1016/j.bios.2018.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/31/2017] [Accepted: 01/21/2018] [Indexed: 11/24/2022]
Abstract
Biosensors based on converting the concentration of analytes in complex samples into single electrochemical signals are attractive candidates as low cost, high-throughput, portable and renewable sensor platforms. Here, we describe a simple but practical analytical device for sensing an anticancer drug in whole blood, using the detection of methotrexate (MTX) as a model system. In this biosensor, a novel carbon-based composite, tungsten phosphide embedded nitrogen-doped carbon nanotubes (WP/N-CNT), was fixed to the electrode surface that supported redox cycling. The electronic transmission channel in nitrogen doped carbon nanotubes (N-CNT) and the synergistic effect of uniform distribution tungsten phosphide (WP) ensured that the electrode materials have outstanding electrical conductivity and catalytic performance. Meanwhile, the surface electronic structure also endows its surprisingly reproducible performance. To demonstrate portable operation for MTX sensing, screen printing electrodes (SPE) was modified with WP/N-CNT. The sensor exhibited low detection limits (45 nM), wide detection range (0.01-540 μM), good selectivity and long-term stability for the determination of MTX. In addition, the technique was successfully applied for the determination of MTX in whole blood.
Collapse
Affiliation(s)
- Haifeng Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jean-Francois Masson
- Department of Chemistry, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
27
|
Yavas O, Aćimović SS, Garcia-Guirado J, Berthelot J, Dobosz P, Sanz V, Quidant R. Self-Calibrating On-Chip Localized Surface Plasmon Resonance Sensing for Quantitative and Multiplexed Detection of Cancer Markers in Human Serum. ACS Sens 2018; 3:1376-1384. [PMID: 29947221 DOI: 10.1021/acssensors.8b00305] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The need for point-of-care devices able to detect diseases early and monitor their status, out of a lab environment, has stimulated the development of compact biosensing configurations. Whereas localized surface plasmon resonance (LSPR) sensing integrated into a state-of-the-art microfluidic chip stands as a promising approach to meet this demand, its implementation into an operating sensing platform capable of quantitatively detecting a set of molecular biomarkers in an unknown biological sample is only in its infancy. Here, we present an on-chip LSPR sensor capable of performing automatic, quantitative, and multiplexed screening of biomarkers. We demonstrate its versatility by programming it to detect and quantify in human serum four relevant human serum protein markers associated with breast cancer.
Collapse
Affiliation(s)
- Ozlem Yavas
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Srdjan S. Aćimović
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Jose Garcia-Guirado
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Johann Berthelot
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Paulina Dobosz
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Vanesa Sanz
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Romain Quidant
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
28
|
Alvau MD, Tartaggia S, Meneghello A, Casetta B, Calia G, Serra PA, Polo F, Toffoli G. Enzyme-Based Electrochemical Biosensor for Therapeutic Drug Monitoring of Anticancer Drug Irinotecan. Anal Chem 2018; 90:6012-6019. [PMID: 29658266 DOI: 10.1021/acs.analchem.7b04357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Therapeutic drug monitoring (TDM) is the clinical practice of measuring pharmaceutical drug concentrations in patients' biofluids at designated intervals, thus allowing a close and timely control of their dosage. To date, TDM in oncology can only be performed by trained personnel in centralized laboratories and core facilities employing conventional analytical techniques (e.g., MS). CPT-11 is an antineoplastic drug that inhibits topoisomerase type I, causing cell death, and is widely used in the treatment of colorectal cancer. CPT-11 was also found to directly inhibit acetylcholine esterase (AChE), an enzyme involved in neuromuscular junction. In this work, we describe an enzymatic biosensor, based on AChE and choline oxidase (ChOx), which can quantify CPT-11. ACh (acetylcholine) substrate is converted to choline, which is subsequently metabolized by ChOx to give betaine aldehyde and hydrogen peroxide. The latter one is then oxidized at a suitably polarized platinum electrode, providing a current transient proportional to the amount of ACh. Such an enzymatic process is hampered by CPT-11. The biosensor showed a ∼60% maximal inhibition toward AChE activity in the clinically relevant concentration range 10-10 000 ng/mL of CPT-11 in both simple (phosphate buffer) and complex (fetal bovine serum) matrixes, while its metabolites showed negligible effects. These findings could open new routes toward a real-time TDM in oncology, thus improving the therapeutic treatments and lowering the related costs.
Collapse
Affiliation(s)
- Maria Domenica Alvau
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Stefano Tartaggia
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Anna Meneghello
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Bruno Casetta
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Giammario Calia
- Department of Clinical and Experimental Medicine Section of Pharmacology , University of Sassari , Viale San Pietro 43/b , Sassari , Italy
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine Section of Pharmacology , University of Sassari , Viale San Pietro 43/b , Sassari , Italy
| | - Federico Polo
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| |
Collapse
|
29
|
Gasparyan F, Zadorozhnyi I, Khondkaryan H, Arakelyan A, Vitusevich S. Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors. NANOSCALE RESEARCH LETTERS 2018; 13:87. [PMID: 29589128 PMCID: PMC5871613 DOI: 10.1186/s11671-018-2494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Silicon nanowire (NW) field-effect transistor (FET) sensors of various lengths were fabricated. Transport properties of Si NW FET sensors were investigated involving noise spectroscopy and current-voltage (I-V) characterization. The static I-V dependencies demonstrate the high quality of fabricated silicon FETs without leakage current. Transport and noise properties of NW FET structures were investigated under different light illumination conditions, as well as in sensor configuration in an aqueous solution with different pH values. Furthermore, we studied channel length effects on the photoconductivity, noise, and pH sensitivity. The magnitude of the channel current is approximately inversely proportional to the length of the current channel, and the pH sensitivity increases with the increase of channel length approaching the Nernst limit value of 59.5 mV/pH. We demonstrate that dominant 1/f-noise can be screened by the generation-recombination plateau at certain pH of the solution or external optical excitation. The characteristic frequency of the generation-recombination noise component decreases with increasing of illumination power. Moreover, it is shown that the measured value of the slope of 1/f-noise spectral density dependence on the current channel length is 2.7 which is close to the theoretically predicted value of 3.
Collapse
Affiliation(s)
- Ferdinand Gasparyan
- Bioelectronics (ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
- Yerevan State University, 1 Alex Manoogian St., 0025 Yerevan, Armenia
| | - Ihor Zadorozhnyi
- Bioelectronics (ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Hrant Khondkaryan
- Yerevan State University, 1 Alex Manoogian St., 0025 Yerevan, Armenia
| | - Armen Arakelyan
- Yerevan State University, 1 Alex Manoogian St., 0025 Yerevan, Armenia
| | | |
Collapse
|
30
|
Zhu Q, Yu X, Wu Z, Lu F, Yuan Y. Antipsychotic drug poisoning monitoring of clozapine in urine by using coffee ring effect based surface-enhanced Raman spectroscopy. Anal Chim Acta 2018. [PMID: 29523253 DOI: 10.1016/j.aca.2018.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antipsychotics are the drugs most often involved in drug poisoning cases, and therefore, therapeutic drug monitoring (TDM) is necessary for safe and effective medication administration of these drugs. In this study, a coffee ring effect-based surface-enhanced Raman spectroscopy (CRE-SERS) method was developed and successfully used to monitor antipsychotic poisoning by using urine samples for the first time. The established method exhibited excellent SERS performance since more hot spots were obtained in the "coffee ring". Using the optimized CRE-SERS method, the sensitivity was improved one order more than that of the conventional method with reasonable reproducibility. The antipsychotic drug clozapine (CLO) spiked into urine samples at 0.5-50 μg mL-1 was quantitatively detected, at concentrations above the thresholds for toxicity. The CRE-SERS method allowed CLO and its metabolites to be ultimately distinguished from real poisoning urine samples. The coffee-ring effect would provide more opportunities for practical applications of the SERS-based method. The frequent occurrence of drug poisoning may have created a new area for the application of the CRE-SERS method. It is anticipated that the developed method will also have great potential for other drug poisoning monitoring.
Collapse
Affiliation(s)
- Qingxia Zhu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Xiaoyan Yu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Zebing Wu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Feng Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
31
|
Wei B, Zhang J, Ou X, Lou X, Xia F, Vallée-Bélisle A. Engineering Biosensors with Dual Programmable Dynamic Ranges. Anal Chem 2018; 90:1506-1510. [PMID: 29300471 DOI: 10.1021/acs.analchem.7b04852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although extensively used in all fields of chemistry, molecular recognition still suffers from a significant limitation: host-guest binding displays a fixed, hyperbolic dose-response curve, which limits its usefulness in many applications. Here we take advantage of the high programmability of DNA chemistry and propose a universal strategy to engineer biorecognition-based sensors with dual programmable dynamic ranges. Using DNA aptamers as our model recognition element and electrochemistry as our readout signal, we first designed a dual signaling "signal-on" and "signal-off" adenosine triphosphate (ATP) sensor composed of a ferrocene-labeled ATP aptamer in complex to a complementary, electrode-bound, methylene-blue labeled DNA. Using this simple "dimeric" sensor, we show that we can easily (1) tune the dynamic range of this dual-signaling sensor through base mutations on the electrode-bound DNA, (2) extend the dynamic range of this sensor by 2 orders of magnitude by using a combination of electrode-bound strands with varying affinity for the aptamers, (3) create an ultrasensitive dual signaling sensor by employing a sequestration strategy in which a nonsignaling, high affinity "depletant" DNA aptamer is added to the sensor surface, and (4) engineer a sensor that simultaneously provides extended and ultrasensitive readouts. These strategies, applicable to a wide range of biosensors and chemical systems, should broaden the application of molecular recognition in various fields of chemistry.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Juntao Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Xiaowen Ou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Xiaoding Lou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Fan Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Alexis Vallée-Bélisle
- Laboratory Biosensors & Nanomachines, Département de Chimie, Université de Montréal , Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
32
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|
33
|
Tannert A, Ramoji A, Neugebauer U, Popp J. Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications. Anal Bioanal Chem 2017; 410:773-790. [PMID: 29214536 DOI: 10.1007/s00216-017-0713-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
Despite the strong decline in the infection-associated mortality since the development of the first antibiotics, infectious diseases are still a major cause of death in the world. With the rising number of antibiotic-resistant pathogens, the incidence of deaths caused by infections may increase strongly in the future. Survival rates in sepsis, which occurs when body response to infections becomes uncontrolled, are still very poor if an adequate therapy is not initiated immediately. Therefore, approaches to monitor the treatment efficacy are crucially needed to adapt therapeutic strategies according to the patient's response. An increasing number of photonic technologies are being considered for diagnostic purpose and monitoring of therapeutic response; however many of these strategies have not been introduced into clinical routine, yet. Here, we review photonic strategies to monitor response to treatment in patients with infectious disease, sepsis, and septic shock. We also include some selected approaches for the development of new drugs in animal models as well as new monitoring strategies which might be applicable to evaluate treatment response in humans in the future. Figure Label-free probing of blood properties using photonics.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany.
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany
| |
Collapse
|
34
|
Booth MA, Gowers SAN, Leong CL, Rogers ML, Samper IC, Wickham AP, Boutelle MG. Chemical Monitoring in Clinical Settings: Recent Developments toward Real-Time Chemical Monitoring of Patients. Anal Chem 2017; 90:2-18. [PMID: 29083872 DOI: 10.1021/acs.analchem.7b04224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marsilea A Booth
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Sally A N Gowers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Chi Leng Leong
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Michelle L Rogers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Isabelle C Samper
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Aidan P Wickham
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Martyn G Boutelle
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| |
Collapse
|
35
|
Mazur F, Bally M, Städler B, Chandrawati R. Liposomes and lipid bilayers in biosensors. Adv Colloid Interface Sci 2017; 249:88-99. [PMID: 28602208 DOI: 10.1016/j.cis.2017.05.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Biosensors for the rapid, specific, and sensitive detection of analytes play a vital role in healthcare, drug discovery, food safety, and environmental monitoring. Although a number of sensing concepts and devices have been developed, many longstanding challenges to obtain inexpensive, easy-to-use, and reliable sensor platforms remain largely unmet. Nanomaterials offer exciting possibilities for enhancing the assay sensitivity and for lowering the detection limits down to single-molecule resolution. In this review, we present an overview of liposomes and lipid bilayers in biosensing applications. Lipid assemblies in the form of spherical liposomes or two-dimensional planar membranes have been widely used in the design of biosensing assays; in particular, we highlight a number of recent promising developments of biosensors based on liposomes in suspension, liposome arrays, and lipid bilayers arrays. Assay sensitivity and specificity are discussed, advantages and drawbacks are reviewed, and possible further developments are outlined.
Collapse
|
36
|
Wang M, Hu B, Yang C, Zhang Z, He L, Fang S, Qu X, Zhang Q. Electrochemical biosensing based on protein-directed carbon nanospheres embedded with SnO x and TiO 2 nanocrystals for sensitive detection of tobramycin. Biosens Bioelectron 2017; 99:176-185. [PMID: 28756323 DOI: 10.1016/j.bios.2017.07.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023]
Abstract
A series of nanocomposites comprised of homogeneous mesoporous carbon nanospheres embedded with SnOx (x = 0, 1, or 2) and TiO2 nanocrystals using bovine serum albumin (BSA) as template followed by calcinated at different temperatures (300, 500, 700, and 900°C) were prepared, and were denoted as SnOx@TiO2@mC. Then a novel electrochemical biosensing strategy for detecting tobramycin (TOB) based on the nanocomposites was constructed. The as-prepared SnOx@TiO2@mC nanocomposites not only possess high specific surface area and good electrochemical activity but also exhibit strong bioaffinity with the aptamer strands, therefore, they were applied as the scaffold for anchoring TOB-targeted aptamer and further used to sensitively detect trace TOB in aqueous solutions. By comparing the electrochemical biosensing responses toward TOB detection based on the four SnOx@TiO2@mC nanocomposites, the biosensing system constructed with SnOx@TiO2@mC900 (derived at 900°C) demonstrated the highest determination efficiency, high selectivity, and good stability. In particular, the new proposed aptasensing method based on SnOx@TiO2@mC nanocomposite exhibits considerable potential for the quantitative detection of TOB in the biomedical field.
Collapse
Affiliation(s)
- Minghua Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Bin Hu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Chuang Yang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhihong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Linghao He
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Shaoming Fang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xiongwei Qu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qingxin Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
37
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
38
|
Zaleski S, Clark KA, Smith MM, Eilert JY, Doty M, Van Duyne RP. Identification and Quantification of Intravenous Therapy Drugs Using Normal Raman Spectroscopy and Electrochemical Surface-Enhanced Raman Spectroscopy. Anal Chem 2017; 89:2497-2504. [PMID: 28192951 DOI: 10.1021/acs.analchem.6b04636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Errors in intravenous (IV) drug therapies can cause human harm and even death. There are limited label-free methods that can sensitively monitor the identity and quantity of the drug being administered. Normal Raman spectroscopy (NRS) provides a modestly sensitive, label-free, and completely noninvasive means of IV drug sensing. In the case that the analyte cannot be detected within its clinical range with Raman, a label-free surface-enhanced Raman spectroscopy (SERS) approach can be implemented to detect the analyte of interest. In this work, we demonstrate two individual cases where we use NRS and electrochemical SERS (EC-SERS) to detect IV therapy analytes within their clinically relevant ranges. We implement NRS to detect gentamicin, a commonly IV-administered antibiotic and EC-SERS to detect dobutamine, a drug commonly administered after heart surgery. In particular, dobutamine detection with EC-SERS was found to have a limit of detection 4 orders of magnitude below its clinical range, highlighting the excellent sensitivity of SERS. We also demonstrate the use of hand-held Raman instrumentation for NRS and EC-SERS, showing that Raman is a highly sensitive technique that is readily applicable in a clinical setting.
Collapse
Affiliation(s)
- Stephanie Zaleski
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kathleen A Clark
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Madison M Smith
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jan Y Eilert
- Baxter Healthcare Corporation , 25212 W. Illinois Rt. 120, Round Lake, Illinois 60073, United States
| | - Mark Doty
- Baxter Healthcare Corporation , 25212 W. Illinois Rt. 120, Round Lake, Illinois 60073, United States
| | - Richard P Van Duyne
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Program in Applied Physics, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Abstract
The design and application of sensors for monitoring biomolecules in clinical samples is a common goal of the sensing research community. Surface plasmon resonance (SPR) and other plasmonic techniques such as localized surface plasmon resonance (LSPR) and imaging SPR are reaching a maturity level sufficient for their application in monitoring biomolecules in clinical samples. In recent years, the first examples for monitoring antibodies, proteins, enzymes, drugs, small molecules, peptides, and nucleic acids in biofluids collected from patients afflicted with a series of medical conditions (Alzheimer's, hepatitis, diabetes, leukemia, and cancers such as prostate and breast cancers, among others) demonstrate the progress of SPR sensing in clinical chemistry. This Perspective reviews the current status of the field, showcasing a series of early successes in the application of SPR for clinical analysis and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, and comparing SPR with ELISA, while providing an outlook of the challenges currently associated with plasmonic materials, instrumentation, microfluidics, bioreceptor selection, selection of a clinical market, and validation of a clinical assay for applying SPR sensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical applications.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for self-assembled chemical structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
40
|
Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 2017; 8:63-77. [PMID: 28451149 PMCID: PMC5304706 DOI: 10.1039/c6sc02403c] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in nanomedicine have shown that dramatic improvements in nanoparticle therapeutics and diagnostics can be achieved through the use of disease specific targeting ligands. Although immunoglobulins have successfully been employed for the generation of actively targeted nanoparticles, their use is often hampered by the suboptimal characteristics of the resulting complexes. Emerging data suggest that a switch in focus from full antibodies to antibody derived fragments could help to alleviate these problems and expand the potential of antibody-nanoparticle conjugates as biomedical tools. This review aims to highlight how antibody derived fragments have been utilised to overcome both fundamental and practical issues encountered during the design and application of antibody-targeted nanoparticles.
Collapse
Affiliation(s)
- Daniel A Richards
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| |
Collapse
|
41
|
Berger AG, Restaino SM, White IM. Vertical-flow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal Chim Acta 2017; 949:59-66. [DOI: 10.1016/j.aca.2016.10.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023]
|
42
|
Gal F, Challier L, Cousin F, Perez H, Noel V, Carrot G. Electrocatalytic (Bio)Nanostructures Based on Polymer-Grafted Platinum Nanoparticles for Analytical Purpose. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14747-14755. [PMID: 27192083 DOI: 10.1021/acsami.6b02956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Functionalized platinum nanoparticles (PtNPs) possess electrocatalytic properties toward H2O2 oxidation, which are of great interest for the construction of electrochemical oxidoreductase-based sensors. In this context, we have shown that polymer-grafted PtNPs could efficiently be used as building bricks for electroactive structures. In the present work, we prepared different 2D-nanostructures based on these elementary bricks, followed by the subsequent grafting of enzymes. The aim was to provide well-defined architectures to establish a correlation between their electrocatalytic properties and the arrangement of building bricks. Two different nanostructures have been elaborated via the smart combination of surface initiated-atom transfer radical polymerization (SI-ATRP), functionalized PtNPs (Br-PtNPs) and Langmuir-Blodgett (LB) technique. The first nanostructure (A) has been elaborated from LB films of poly(methacrylic acid)-grafted PtNPs (PMAA-PtNPs). The second nanostructure (B) consisted in the elaboration of polymer brushes (PMAA brushes) from Br-PtNPs LB films. In both systems, grafting of the glucose oxidase (GOx) has been performed directly to nanostructures, via peptide bonding. Structural features of nanostructures have been carefully characterized (compression isotherms, neutron reflectivity, and profilometry) and correlated to their electrocatalytic properties toward H2O2 oxidation or glucose sensing.
Collapse
Affiliation(s)
- François Gal
- NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
- LLB, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Lylian Challier
- ITODYS, CNRS, Université Paris Diderot , 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Fabrice Cousin
- LLB, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Henri Perez
- NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Vincent Noel
- ITODYS, CNRS, Université Paris Diderot , 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Geraldine Carrot
- NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
43
|
Dunér G, Anderson H, Pei Z, Ingemarsson B, Aastrup T, Ramström O. Signal enhancement in ligand–receptor interactions using dynamic polymers at quartz crystal microbalance sensors. Analyst 2016; 141:3993-6. [DOI: 10.1039/c6an00735j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The signal enhancement properties of QCM sensors based on dynamic, biotinylated poly(acrylic acid) brushes has been studied in interaction studies with an anti-biotin Fab fragment.
Collapse
Affiliation(s)
- Gunnar Dunér
- KTH – Royal Institute of Technology
- Department of Chemistry
- S-10044 Stockholm
- Sweden
- Attana AB
| | - Henrik Anderson
- Attana AB
- S-11419 Stockholm
- Sweden
- Uppsala University
- Ångström Laboratory
| | | | | | | | - Olof Ramström
- KTH – Royal Institute of Technology
- Department of Chemistry
- S-10044 Stockholm
- Sweden
| |
Collapse
|