1
|
Krainer G, Saar KL, Arter WE, Welsh TJ, Czekalska MA, Jacquat RPB, Peter Q, Traberg WC, Pujari A, Jayaram AK, Challa P, Taylor CG, van der Linden LM, Franzmann T, Owens RM, Alberti S, Klenerman D, Knowles TPJ. Direct digital sensing of protein biomarkers in solution. Nat Commun 2023; 14:653. [PMID: 36746944 PMCID: PMC9902533 DOI: 10.1038/s41467-023-35792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/03/2023] [Indexed: 02/08/2023] Open
Abstract
The detection of proteins is of central importance to biomolecular analysis and diagnostics. Typical immunosensing assays rely on surface-capture of target molecules, but this constraint can limit specificity, sensitivity, and the ability to obtain information beyond simple concentration measurements. Here we present a surface-free, single-molecule microfluidic sensing platform for direct digital protein biomarker detection in solution, termed digital immunosensor assay (DigitISA). DigitISA is based on microchip electrophoretic separation combined with single-molecule detection and enables absolute number/concentration quantification of proteins in a single, solution-phase step. Applying DigitISA to a range of targets including amyloid aggregates, exosomes, and biomolecular condensates, we demonstrate that the assay provides information beyond stoichiometric interactions, and enables characterization of immunochemistry, binding affinity, and protein biomarker abundance. Taken together, our results suggest a experimental paradigm for the sensing of protein biomarkers, which enables analyses of targets that are challenging to address using conventional immunosensing approaches.
Collapse
Affiliation(s)
- Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - William E Arter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Magdalena A Czekalska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Fluidic Analytics Limited, Unit A The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Raphaël P B Jacquat
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Quentin Peter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Walther C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Arvind Pujari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Akhila K Jayaram
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Pavankumar Challa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher G Taylor
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Lize-Mari van der Linden
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Titus Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Roisin M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. .,Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
2
|
Peng P, Liu C, Li Z, Xue Z, Mao P, Hu J, Xu F, Yao C, You M. Emerging ELISA Derived Technologies for in vitro Diagnostics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Tan HY, Yang J, Linnes JC, Welch CJ, Bruening ML. Quantitation of Trastuzumab and an Antibody to SARS-CoV-2 in Minutes Using Affinity Membranes in 96-Well Plates. Anal Chem 2022; 94:884-891. [PMID: 34982935 PMCID: PMC8751022 DOI: 10.1021/acs.analchem.1c03654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Quantitation of therapeutic monoclonal antibodies (mAbs) in human serum could ensure that patients have adequate levels of mAbs for effective treatment. This research describes the use of affinity, glass-fiber membranes in a 96-well-plate format for rapid (<5 min) quantitation of the therapeutic mAb trastuzumab and a mAb against the SARS-CoV-2 spike protein. Adsorption of a poly(acrylic acid)-containing film in membrane pores and activation of the -COOH groups in the film enable covalent-linking of affinity peptides or proteins to the membrane. Passage of mAb-containing serum through the affinity membrane results in mAb capture within 1 min. Subsequent rinsing, binding of a secondary antibody conjugated to a fluorophore, and a second rinse yield mAb-concentration-dependent fluorescence intensities in the wells. Calibration curves established from analyses on different days have low variability and allow determination of mAb levels in separately prepared samples with an average error <10%, although errors in single-replicate measurements may reach 40%. The assays can occur in diluted serum with physiologically relevant mAb concentrations, as well as in undiluted serum. Thus, the combination of 96-well plates containing affinity membranes, a microplate reader, and a simple vacuum manifold affords convenient mAb quantitation in <5 min.
Collapse
Affiliation(s)
- Hui Yin Tan
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Junyan Yang
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jacqueline C. Linnes
- Weldon
School of Bioengineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher J. Welch
- Indiana
Consortium for Analytical Science & Engineering (ICASE), 410 W. 10th Street, # 1020H, Indianapolis, Indiana 46202, United States
| | - Merlin L. Bruening
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Taddeo A, Prim D, Bojescu ED, Segura JM, Pfeifer ME. Point-of-Care Therapeutic Drug Monitoring for Precision Dosing of Immunosuppressive Drugs. J Appl Lab Med 2021; 5:738-761. [PMID: 32533157 DOI: 10.1093/jalm/jfaa067] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/03/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunosuppressive drugs (ISD) are an essential tool in the treatment of transplant rejection and immune-mediated diseases. Therapeutic drug monitoring (TDM) for determination of ISD concentrations in biological samples is an important instrument for dose personalization for improving efficacy while reducing side effects. While currently ISD concentration measurements are performed at specialized, centralized facilities, making the process complex and laborious for the patient, various innovative technical solutions have recently been proposed for bringing TDM to the point-of-care (POC). CONTENT In this review, we evaluate current ISD-TDM and its value, limitations, and proposed implementations. Then, we discuss the potential of POC-TDM in the era of personalized medicine, and provide an updated review on the unmet needs and available technological solutions for the development of POC-TDM devices for ISD monitoring. Finally, we provide concrete suggestions for the generation of a meaningful and more patient-centric process for ISD monitoring. SUMMARY POC-based ISD monitoring may improve clinical care by reducing turnaround time, by enabling more frequent measurements in order to obtain meaningful pharmacokinetic data (i.e., area under the curve) faster reaction in case of problems and by increasing patient convenience and compliance. The analysis of the ISD-TDM field prompts the evolution of POC testing toward the development of fully integrated platforms able to support clinical decision-making. We identify 4 major areas requiring careful combined implementation: patient usability, data meaningfulness, clinicians' acceptance, and cost-effectiveness.
Collapse
Affiliation(s)
- Adriano Taddeo
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| | - Denis Prim
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| | - Elena-Diana Bojescu
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| | - Jean-Manuel Segura
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| | - Marc E Pfeifer
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| |
Collapse
|
5
|
Silva MLS. Microfluidic devices for glycobiomarker detection in cancer. Clin Chim Acta 2021; 521:229-243. [PMID: 34273337 DOI: 10.1016/j.cca.2021.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
During oncogenesis, several alterations occur within cells, one of them being the abnormal glycosylation of proteins, resulting in the formation of glycoproteins with aberrant glycan structures, which can be secreted into the blood stream. Their specific association to tumour cells makes them useful indicators (biomarkers) of the oncogenic process and their detection in blood can be employed in different stages of tumour development for early detection, prognosis and therapeutic drug monitoring. Due to the importance of detecting cancer-associated glycoproteins with aberrant glycosylation in blood or serum, analytical methodologies with improved performance are required to ameliorate the laboratorial tests currently used for the detection of these analytes. Microfluidics was created to facilitate the implementation of simple and point-of-care analysis, away from a centralized laboratory. The massive use of microfluidic systems in clinical settings can be seen in pregnancy tests and diabetes control, for example. But what about other clinical domains, such as the detection of glycoproteins with aberrant glycans secreted by tumour cells? Are microfluidic systems helpful in this case? This review analyses the requirements of a microfluidic assay for the detection of low-abundant blood/serum cancer-associated glycoproteins with abnormal glycans and the progresses that have been made in the last years to develop integrated microfluidic devices for this particular application. The diverse microfluidic systems found in literature present, in general, the same analytical performance as the conventional assays but have additional advantages, namely a reduction in assay times, a decrease of sample and reagent consumption and lower costs. The review will also focus on the improvements that are still needed for better biosensing of this type of cancer biomarkers using microfluidic devices.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo km 4.5, Pachuca, Hidalgo 42076, Mexico.
| |
Collapse
|
6
|
Han P, Yosinski S, Kobos ZA, Chaudhury R, Lee JS, Fahmy TM, Reed MA. Continuous Label-Free Electronic Discrimination of T Cells by Activation State. ACS NANO 2020; 14:8646-8657. [PMID: 32530598 DOI: 10.1021/acsnano.0c03018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sensitivity and speed with which the immune system reacts to host disruption is unrivaled by any detection method for pathogenic biomarkers or infectious signatures. Engagement of cellular immunity in response to infections or cancer is contingent upon activation and subsequent cytotoxic activity by T cells. Thus, monitoring T cell activation can reliably serve as a metric for disease diagnosis as well as therapeutic prognosis. Rapid and direct quantification of T cell activation states, however, has been hindered by challenges associated with antigen target identification, labeling requirements, and assay duration. Here we present an electronic, label-free method for simultaneous separation and evaluation of T cell activation states. Our device utilizes a microfluidic design integrated with nanolayered electrode structures for dielectrophoresis (DEP)-driven discrimination of activated vs naïve T cells at single-cell resolution and demonstrates rapid (<2 min) separation of T cells at high single-pass efficiency as quantified by an on-chip Coulter counter module. Our device represents a microfluidic tool for electronic assessment of immune activation states and, hence, a portable diagnostic for quantitative evaluation of immunity and disease state. Further, its ability to achieve label-free enrichment of activated immune cells promises clinical utility in cell-based immunotherapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Shari Yosinski
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Zachary A Kobos
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Rabib Chaudhury
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Jung Seok Lee
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Tarek M Fahmy
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Mark A Reed
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
Wu D, Voldman J. An integrated model for bead-based immunoassays. Biosens Bioelectron 2020; 154:112070. [PMID: 32056966 DOI: 10.1016/j.bios.2020.112070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/16/2022]
Abstract
Bead-based immunoassays have shown great promise for rapid and sensitive protein quantification. However, there still lacks holistic understanding of assay performance that can inform assay design and optimization. In this paper, we present an integrated mathematical model for surface coverage bead-based assays. This model examines the building blocks of surface coverage assays, including heterogeneous binding of analyte molecules on bead or sensor surfaces, attachment of bead labels to sensor surfaces, and generation of electrochemical current by bead labels. To demonstrate and validate this model, we analyze a semi-homogeneous bead-based electronic enzyme-linked immunosorbent assay and find that experimental results agree with various model predictions. We show that the model can provide design guidance for choice of various assay parameters including bead size, bead number, antibody affinity and assay time, and provide a perspective to reconcile the performance of various implementations of surface coverage assays.
Collapse
Affiliation(s)
- Dan Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Heggestad JT, Fontes CM, Joh DY, Hucknall AM, Chilkoti A. In Pursuit of Zero 2.0: Recent Developments in Nonfouling Polymer Brushes for Immunoassays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903285. [PMID: 31782843 PMCID: PMC6986790 DOI: 10.1002/adma.201903285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/17/2019] [Indexed: 05/11/2023]
Abstract
"Nonfouling" polymer brush surfaces can greatly improve the performance of in vitro diagnostic (IVD) assays due to the reduction of nonspecific protein adsorption and consequent improvement of signal-to-noise ratios. The development of synthetic polymer brush architectures that suppress adventitious protein adsorption is reviewed, and their integration into surface plasmon resonance and fluorescent sandwich immunoassay formats is discussed. Also, highlighted is a novel, self-contained immunoassay platform (the D4 assay) that transforms time-consuming laboratory-based assays into a user-friendly and point-of-care format with a sensitivity and specificity comparable or better than standard enzyme-linked immunosorbent assay (ELISA) directly from unprocessed samples. These advancements clearly demonstrate the utility of nonfouling polymer brushes as a substrate for ultrasensitive and robust diagnostic assays that may be suitable for clinical testing, in field and laboratory settings.
Collapse
Affiliation(s)
- Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cassio M Fontes
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniel Y Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Angus M Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
9
|
Kurmashev A, Kwon S, Park JK, Kang JH. Vertically sheathing laminar flow-based immunoassay using simultaneous diffusion-driven immune reactions. RSC Adv 2019; 9:23791-23796. [PMID: 35530621 PMCID: PMC9069447 DOI: 10.1039/c9ra03855h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/24/2019] [Indexed: 11/21/2022] Open
Abstract
Simultaneous infusion of primary and secondary antibodies of different diffusivity into vertical laminar flows enables the improved immune reactions.
Collapse
Affiliation(s)
- Amanzhol Kurmashev
- Department of Biomedical Engineering
- School of Life Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Republic of Korea
| | - Seyong Kwon
- Department of Biomedical Engineering
- School of Life Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Joo H. Kang
- Department of Biomedical Engineering
- School of Life Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Republic of Korea
| |
Collapse
|
10
|
Ben Ismail M, de la Serna E, Ruiz-Vega G, García-Berrocoso T, Montaner J, Zourob M, Othmane A, Baldrich E. Using magnetic beads and signal amplifiers to produce short and simple immunoassays: Application to MMP-9 detection in plasma samples. Anal Chim Acta 2018; 999:144-154. [DOI: 10.1016/j.aca.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
|
11
|
Hoy CFO, Kushiro K, Takai M. Fabrication and assessment of an electrospun polymeric microfiber-based platform under bulk flow conditions with rapid and efficient antigen capture. Analyst 2018; 143:865-873. [DOI: 10.1039/c7an01366c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A sensitive and rapid membrane capable of antigen capture in 5 seconds compared to a conventional method in 60 minutes.
Collapse
Affiliation(s)
- Carlton F. O. Hoy
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Keiichiro Kushiro
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Madoka Takai
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
12
|
Advantages, Disadvantages and Modifications of Conventional ELISA. SPRINGERBRIEFS IN APPLIED SCIENCES AND TECHNOLOGY 2018. [DOI: 10.1007/978-981-10-6766-2_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|