1
|
Rosso AP, de Oliveira FA, Guégan P, Jager E, Giacomelli FC. Evaluation of polymersome permeability as a fundamental aspect towards the development of artificial cells and nanofactories. J Colloid Interface Sci 2024; 671:88-99. [PMID: 38795537 DOI: 10.1016/j.jcis.2024.05.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Polymersomes are synthetic vesicles with potential use in healthcare, chemical transformations in confined environment (nanofactories), and in the construction of artificial cells and organelles. In this framework, one of the most important features of such supramolecular structures is the permeability behavior allowing for selective control of mass exchange between the inner and outer compartments. The use of biological and synthetic nanopores in this regard is the most common strategy to impart permeability nevertheless, this typically requires fairly complex strategies to enable porosity. Yet, investigations concerning the permeability of polymer vesicles to different analytes still requires further exploration and, taking these considerations into account, we have detailed investigated the permeability behavior of a variety of polymersomes with regard to different analytes (water, protons, and rhodamine B) which were selected as models for solvents, ions, and small molecules. Polymersomes based on hydrophilic blocks of poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) or PEO (poly(ethylene oxide)) linked to the non-responsive blocks poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA) or poly(methyl methacrylate) (PMMA), or to the stimuli pH-responsive block poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) have been investigated. Interestingly, the produced PEO-based vesicles are notably larger than the ones produced using PHPMA-containing block copolymers. The experimental results reveal that all the vesicles are inherently permeable to some extent with permeability behavior following exponential profiles. Nevertheless, polymersomes based on PMMA as the hydrophobic component were demonstrated to be the least permeable to the small molecule rhodamine B as well as to water. The synthetic vesicles based on the pH-responsive PDPA block exhibited restrictive and notably slow proton permeability as attributed to partial chain protonation upon acidification of the medium. The dye permeability was evidenced to be much slower than ion or solvent diffusion, and in the case of pH-responsive assemblies, it was demonstrated to also depend on the ionic strength of the environment. These findings are understood to be highly relevant towards polymer selection for the production of synthetic vesicles with selective and time-dependent permeability, and it may thus contribute in advancing biomimicry and nanomedicine.
Collapse
Affiliation(s)
- Anabella P Rosso
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Philippe Guégan
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire (UMR-CNRS 8232), Sorbonne Université, Paris, France
| | - Eliezer Jager
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
2
|
Zheng Y, Zhu L, Ke C, Li Y, Zhou Z, Jiang M, Wang F, He P, Zhou X, Jiang ZX, Chen S. Fluorinated macromolecular amphiphiles as prototypic molecular drones. Proc Natl Acad Sci U S A 2024; 121:e2405877121. [PMID: 39163338 PMCID: PMC11363298 DOI: 10.1073/pnas.2405877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
The advent of drones has revolutionized various aspects of our lives, and in the realm of biological systems, molecular drones hold immense promise as "magic bullets" for major diseases. Herein, we introduce a unique class of fluorinated macromolecular amphiphiles, designed in the shape of jellyfish, serving as exemplary molecular drones for fluorine-19 MRI (19F MRI) and fluorescence imaging (FLI)-guided drug delivery, status reporting, and targeted cancer therapy. Functioning akin to their mechanical counterparts, these biocompatible molecular drones autonomously assemble with hydrophobic drugs to form uniform nanoparticles, facilitating efficient drug delivery into cells. The status of drug delivery can be tracked through aggregation-induced emission (AIE) of FLI and 19F MRI. Furthermore, when loaded with a heptamethine cyanine fluorescent dye IR-780, these molecular drones enable near-infrared (NIR) FL detection of tumors and precise delivery of the photosensitizer. Similarly, when loaded with doxorubicin (DOX), they enable targeted chemotherapy with fluorescence resonance energy transfer (FRET) FL for real-time status updates, resulting in enhanced therapeutic efficacy. Compared to conventional drug delivery systems, molecular drones stand out for their simplicity, precise structure, versatility, and ability to provide instantaneous status updates. This study presents prototype molecular drones capable of executing fundamental drone functions, laying the groundwork for the development of more sophisticated molecular machines with significant biomedical implications.
Collapse
Affiliation(s)
- Yujie Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Lijun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Changsheng Ke
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Zhiwen Zhou
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Mou Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430071, China
| | - Fang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Pei He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
3
|
Jäger E, Černoch P, Vragovic M, Calumby Albuquerque LJ, Sincari V, Heizer T, Jäger A, Kučka J, Janoušková OŠ, Pavlova E, Šefc L, Giacomelli FC. Membrane Permeability and Responsiveness Drive Performance: Linking Structural Features with the Antitumor Effectiveness of Doxorubicin-Loaded Stimuli-Triggered Polymersomes. Biomacromolecules 2024; 25:4192-4202. [PMID: 38917475 PMCID: PMC11238342 DOI: 10.1021/acs.biomac.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Peter Černoch
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Martina Vragovic
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Lindomar Jose Calumby Albuquerque
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo Andre 09280-560, Brazil
| | - Vladimir Sincari
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Tomáš Heizer
- Center
for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague 120 00, Czech Republic
| | - Alessandro Jäger
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Jan Kučka
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | | | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Luděk Šefc
- Center
for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague 120 00, Czech Republic
| | | |
Collapse
|
4
|
Yu J, Liu Y, Zhang Y, Ran R, Kong Z, Zhao D, Liu M, Zhao W, Cui Y, Hua Y, Gao L, Zhang Z, Yang Y. Smart nanogels for cancer treatment from the perspective of functional groups. Front Bioeng Biotechnol 2024; 11:1329311. [PMID: 38268937 PMCID: PMC10806105 DOI: 10.3389/fbioe.2023.1329311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: Cancer remains a significant health challenge, with chemotherapy being a critical treatment modality. However, traditional chemotherapy faces limitations due to non-specificity and toxicity. Nanogels, as advanced drug carriers, offer potential for targeted and controlled drug release, improving therapeutic efficacy and reducing side effects. Methods: This review summarizes the latest developments in nanogel-based chemotherapy drug delivery systems, focusing on the role of functional groups in drug loading and the design of smart hydrogels with controlled release mechanisms. We discuss the preparation methods of various nanogels based on different functional groups and their application in cancer treatment. Results: Nanogels composed of natural and synthetic polymers, such as chitosan, alginate, and polyacrylic acid, have been developed for chemotherapy drug delivery. Functional groups like carboxyl, disulfide, and hydroxyl groups play crucial roles in drug encapsulation and release. Smart hydrogels have been engineered to respond to tumor microenvironmental cues, such as pH, redox potential, temperature, and external stimuli like light and ultrasound, enabling targeted drug release. Discussion: The use of functional groups in nanogel preparation allows for the creation of multifunctional nanogels with high drug loading capacity, controllable release, and good targeting. These nanogels have shown promising results in preclinical studies, with enhanced antitumor effects and reduced systemic toxicity compared to traditional chemotherapy. Conclusion: The development of smart nanogels with functional group-mediated drug delivery and controlled release strategies represents a promising direction in cancer therapy. These systems offer the potential for improved patient outcomes by enhancing drug targeting and minimizing adverse effects. Further research is needed to optimize nanogel design, evaluate their safety and efficacy in clinical trials, and explore their potential for personalized medicine.
Collapse
Affiliation(s)
- Jiachen Yu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yuting Liu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Shenyang Traditional Chinese Medicine Hospital, China Medical University, Shenyang, China
| | - Yingchun Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rong Ran
- Department of Anesthesia, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zixiao Kong
- China Medical University, Shenyang, Liaoning, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Minda Liu
- Department of Oral-maxillofacial Head and Neck, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Yadav D, Sharma PK, Malviya R, Mishra PS, Surendra AV, Rao GSNK, Rani BR. Stimuli-responsive Biomaterials for Tissue Engineering Applications. Curr Pharm Biotechnol 2024; 25:981-999. [PMID: 37594093 DOI: 10.2174/1389201024666230818121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
The use of ''smart materials,'' or ''stimulus responsive'' materials, has proven useful in a variety of fields, including tissue engineering and medication delivery. Many factors, including temperature, pH, redox state, light, and magnetic fields, are being studied for their potential to affect a material's properties, interactions, structure, and/or dimensions. New tissue engineering and drug delivery methods are made possible by the ability of living systems to respond to both external stimuli and their own internal signals) for example, materials composed of stimuliresponsive polymers that self assemble or undergo phase transitions or morphology transformation. The researcher examines the potential of smart materials as controlled drug release vehicles in tissue engineering, aiming to enable the localized regeneration of injured tissue by delivering precisely dosed drugs at precisely timed intervals.
Collapse
Affiliation(s)
- Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Prem Shankar Mishra
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | | | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy, NMIMS Deemed University, Mumbai, India
| | - Budha Roja Rani
- Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati, A.P., India
| |
Collapse
|
6
|
Zhang F, Yao Q, Chen X, Zhou H, Zhou M, Li Y, Cheng H. In-depth study of anticancer drug diffusion through a cross-linked -pH-responsive polymeric vesicle membrane. Drug Deliv 2023; 30:2162626. [PMID: 36600638 PMCID: PMC9828689 DOI: 10.1080/10717544.2022.2162626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Post-encapsulation and release of the anticancer drug doxorubicin hydrochloride (DOX·HCl) through cell-like transmission functions of polymeric vesicles were studied using cross-linked pH-responsive polymeric vesicles. The vesicles were fabricated for the first time via the redox-initiated reversible addition-fragmentation chain transfer dispersion polymerization in ethanol-water mixture, using 2-(diisopropylamino)ethyl methacrylate and glycidyl methacrylate, and the vesicle membrane was modified post-cross-linking by using ethylenediamine. A phase diagram was constructed for reproducible fabrication of the polymeric vesicles, and well-shaped vesicles were formed when the target degree of polymerization of the hydrophobic polymer chains was equal to or higher than 50 with solid content in the range of 10-30 wt%. The cross-linked vesicle membrane served as a gate enabling "open" and "closed" states in response to pH stimulation. Up to 50% drug loading efficiency and 39% drug loading content could be achieved, and in vitro release of the DOX-loaded vesicles in aqueous buffer solutions showed a much faster DOX release rate at pH 5.0 than at pH 6.5. The polymeric vesicles were of very low cytotoxicity to A549 cells up to the concentration of 2 mg/mL, and the IC50 of DOX-loaded vesicles were higher than that of the free DOX. The intracellular DOX release study indicated higher cellular uptake capability for DOX-loaded vesicles than that of free DOX.
Collapse
Affiliation(s)
- Fen Zhang
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China,CONTACT Fen Zhang ; Yantao Li Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China; Hua Cheng Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China
| | - Qian Yao
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Xiaoqi Chen
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Haijun Zhou
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Mengmeng Zhou
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Yantao Li
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China,CONTACT Fen Zhang ; Yantao Li Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China; Hua Cheng Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China
| | - Hua Cheng
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China,CONTACT Fen Zhang ; Yantao Li Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China; Hua Cheng Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China
| |
Collapse
|
7
|
Yi SL, Li ZL, Gong YC, Xiong XY. Inhibiting Multidrug Resistance with Transferrin-Targeted Polymersomes through Optimization of Ligand Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15920-15931. [PMID: 37922445 DOI: 10.1021/acs.langmuir.3c01726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Transferrin-conjugated polymersomes, transferrin-biotin/avidin/biotin-Pluronic F127-poly(lactic acid) (Tf-F127-PLA), were successfully prepared through a biotin-avidin bridging technique to study their ability to inhibit multidrug resistance of cancer cells. Hydrophilic doxorubicin (DOX) was selected as the model drug to be loaded into Tf-F127-PLA polymersomes. DOX loaded in Tf-F127-PLA polymersomes was released fast initially, followed by a slow release. The effect of the transferrin ligand density of Tf-F127-PLA/DOX polymersomes on their targeting properties was studied by both cytotoxicity and cellular uptake assays against A549 lung cancer cells. It was shown that Tf-F127-PLA/DOX polymersomes had better targeting ability than nontargeted drug-loaded polymersomes. Furthermore, Tf-F127-PLA/DOX polymersomes with 2% Tf molar content have more effective antitumor activity and a higher cellular uptake than those with 4 and 5% Tf molar content. 2% Tf-F127-PLA/DOX polymersomes also exhibited better anticancer ability in multidrug resistant cancer cells A549/ADR than nontargeted PLA-F127-PLA/DOX polymersomes. It was further proved that the endocytosis of polymersomes by A549/ADR cells was an energy-dependent endocytosis process, which was related to clathrin, macrocytosis, and caveolin. Also, the endocytosis of Tf-F127-PLA/DOX polymersomes was proven to be mediated by the transferrin receptor.
Collapse
Affiliation(s)
- Shui Ling Yi
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zi Ling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yan Chun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xiang Yuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| |
Collapse
|
8
|
Wang T, Wu C, Hu Y, Zhang Y, Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv 2023; 13:16488-16511. [PMID: 37274408 PMCID: PMC10233443 DOI: 10.1039/d3ra00866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Tianshuai Wang
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Chen Wu
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
9
|
de Oliveira FA, C S Batista C, J C Albuquerque L, Černoch P, Steinhart M, Sincari V, Jager A, Jager E, Giacomelli FC. Tuning the morphology of block copolymer-based pH-triggered nanoplatforms as driven by changes in molecular weight and protocol of manufacturing. J Colloid Interface Sci 2023; 635:406-416. [PMID: 36599239 DOI: 10.1016/j.jcis.2022.12.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The ability to tune size and morphology of self-assemblies is particularly relevant in the development of delivery systems. By tailoring such structural parameters, one can provide larger cargo spaces or produce nanocarriers that can be loaded by hydrophilic and hydrophobic molecules starting ideally from the same polymer building unit. We herein demonstrate that the morphology of block copolymer-based pH-triggered nanoplatforms produced from poly(2-methyl-2-oxazoline)m-b-poly[2-(diisopropylamino)-ethyl methacrylate]n (PMeOxm-b-PDPAn) is remarkably influenced by the overall molecular weight of the block copolymer, and by the selected method used to produce the self-assemblies. Polymeric vesicles were produced by nanoprecipitation using a block copolymer of relatively low molecular weight (Mn ∼ 10 kg.mol-1). Very exciting though, despite the high hydrophobic weight ratio (wPDPA > 0.70), this method conducted to the formation of core-shell nanoparticles when block copolymers of higher molecular weight were used, thus suggesting that the fast (few seconds) self-assembly procedure is controlled by kinetics rather than thermodynamics. We further demonstrated the formation of vesicular structures using longer chains via the solvent-switch approach when the "switching" to the bad solvent is performed in a time scale of a few hours (approximately 3 hs). We accordingly demonstrate that using fairly simple methods one can easily tailor the morphology of such block copolymer self-assemblies, thereby producing a variety of structurally different pH-triggered nanoplatforms via a kinetic or thermodynamically-controlled process. This is certainly attractive towards the development of nanotechnology-based cargo delivery systems.
Collapse
Affiliation(s)
- Fernando A de Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Carin C S Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Lindomar J C Albuquerque
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil; Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Miloš Steinhart
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Vladimir Sincari
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Alessandro Jager
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Eliezer Jager
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil.
| |
Collapse
|
10
|
Novel Monomethoxy Poly(Ethylene Glycol) Modified Hydroxylated Tung Oil for Drug Delivery. Polymers (Basel) 2023; 15:polym15030564. [PMID: 36771864 PMCID: PMC9921749 DOI: 10.3390/polym15030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Novel monomethoxy poly(ethylene glycol) (mPEG) modified hydroxylated tung oil (HTO), denoted as mPEG-HTO-mPEG, was designed and synthesized for drug delivery. mPEG-HTO-mPEG consists of a hydroxylated tung oil center joined by two mPEG blocks via a urethane linkage. The properties of mPEG-HTO-mPEG were affected by the length of the mPEG chain. Three mPEG with different molecular weights were used to prepare mPEG-HTO-mPEG. The obtained three mPEG-HTO-mPEG polymers were characterized by nuclear magnetic resonance (NMR), Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC), respectively. Furthermore, the particle sizes of mPEG-HTO-mPEG micelles were evaluated by dynamic light scattering (DLS) and transmission electron microscope (TEM). A critical aggregation concentration (CAC) ranged from 7.28 to 11.73 mg/L depending on the chain length of mPEG. The drug loading and release behaviors of mPEG-HTO-mPEG were investigated using prednisone acetate as a model drug, and results indicated that hydrophobic prednisone acetate could be effectively loaded into mPEG-HTO-mPEG micelles and exhibited a long-term sustained release. Moreover, compared with HTO, mPEG-HTO-mPEG had no obvious cytotoxicity to HeLa and L929 cells. Therefore, monomethoxy poly(ethylene glycol) modified hydroxylated tung oil mPEG-HTO-mPEG may be a promising drug carrier.
Collapse
|
11
|
Abdella S, Abid F, Youssef SH, Kim S, Afinjuomo F, Malinga C, Song Y, Garg S. pH and its applications in targeted drug delivery. Drug Discov Today 2023; 28:103414. [PMID: 36273779 DOI: 10.1016/j.drudis.2022.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
Physiologic pH is vital for the normal functioning of tissues and varies in different parts of the body. The varying pH of the body has been exploited to design pH-sensitive smart oral, transdermal and vaginal drug delivery systems (DDS). The DDS demonstrated promising results in hard-to-treat diseases such as cancer and Helicobacter pylori infection. In some cases, a change in pH of tissues or body fluids has also been employed as a useful diagnostic biomarker. This paper aims to comprehensively review the development and applications of pH-sensitive DDS as well as recent advances in the field.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia; Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Zambia St, Addis Ababa, Ethiopia
| | - Fatima Abid
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Souha H Youssef
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Constance Malinga
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
12
|
The Recent Development of Multifunctional Gold Nanoclusters in Tumor Theranostic and Combination Therapy. Pharmaceutics 2022; 14:pharmaceutics14112451. [PMID: 36432642 PMCID: PMC9696200 DOI: 10.3390/pharmaceutics14112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The rising incidence and severity of malignant tumors threaten human life and health, and the current lagged diagnosis and single treatment in clinical practice are inadequate for tumor management. Gold nanoclusters (AuNCs) are nanomaterials with small dimensions (≤3 nm) and few atoms exhibiting unique optoelectronic and physicochemical characteristics, such as fluorescence, photothermal effects, radiosensitization, and biocompatibility. Here, the three primary functions that AuNCs play in practical applications, imaging agents, drug transporters, and therapeutic nanosystems, are characterized. Additionally, the promise and remaining limitations of AuNCs for tumor theranostic and combination therapy are discussed. Finally, it is anticipated that the information presented herein will serve as a supply for researchers in this area, leading to new discoveries and ultimately a more widespread use of AuNCs in pharmaceuticals.
Collapse
|
13
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
14
|
Murugesan M, Mathiyalagan R, Boopathi V, Kong BM, Choi SK, Lee CS, Yang DC, Kang SC, Thambi T. Production of Minor Ginsenoside CK from Major Ginsenosides by Biotransformation and Its Advances in Targeted Delivery to Tumor Tissues Using Nanoformulations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193427. [PMID: 36234555 PMCID: PMC9565578 DOI: 10.3390/nano12193427] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 05/13/2023]
Abstract
For over 2000 years, ginseng (roots of Panax ginseng C.A. Meyer) has been used as a traditional herbal medicine. Ginsenosides are bioactive compounds present in ginseng responsible for the pharmacological effects and curing various acute diseases as well as chronic diseases including cardiovascular disease, cancer and diabetes. Structurally, ginsenosides consist of a hydrophobic aglycone moiety fused with one to four hydrophilic glycoside moieties. Based on the position of sugar units and their abundance, ginsenosides are classified into major and minor ginsenosides. Despite the great potential of ginsenosides, major ginsenosides are poorly absorbed in the blood circulation, resulting in poor bioavailability. Interestingly, owing to their small molecular weight, minor ginsenosides exhibit good permeability across cell membranes and bioavailability. However, extremely small quantities of minor ginsenosides extracted from ginseng plants cannot fulfill the requirement of scientific and clinical studies. Therefore, the production of minor ginsenosides in mass production is a topic of interest. In addition, their poor solubility and lack of targetability to tumor tissues limits their application in cancer therapy. In this review, various methods used for the transformation of major ginsenosides to minor ginsenoside compound K (CK) are summarized. For the production of CK, various transformation methods apply to major ginsenosides. The challenges present in these transformations and future research directions for producing bulk quantities of minor ginsenosides are discussed. Furthermore, attention is also paid to the utilization of nanoformulation technology to improve the bioavailability of minor ginsenoside CK.
Collapse
Affiliation(s)
- Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Sung-Keun Choi
- Daedong Korea Ginseng Co., Ltd., 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun 32718, Chungcheongnam-do, Korea
| | - Chang-Soon Lee
- Daedong Korea Ginseng Co., Ltd., 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun 32718, Chungcheongnam-do, Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Correspondence: (S.C.K.); (T.T.)
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Correspondence: (S.C.K.); (T.T.)
| |
Collapse
|
15
|
Abed HF, Abuwatfa WH, Husseini GA. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3183. [PMID: 36144971 PMCID: PMC9503659 DOI: 10.3390/nano12183183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
With the widespread global impact of cancer on humans and the extensive side effects associated with current cancer treatments, a novel, effective, and safe treatment is needed. Redox-responsive drug delivery systems (DDSs) have emerged as a potential cancer treatment with minimal side effects and enhanced site-specific targeted delivery. This paper explores the physiological and biochemical nature of tumors that allow for redox-responsive drug delivery systems and reviews recent advances in the chemical composition and design of such systems. The five main redox-responsive chemical entities that are the focus of this paper are disulfide bonds, diselenide bonds, succinimide-thioether linkages, tetrasulfide bonds, and platin conjugates. Moreover, as disulfide bonds are the most commonly used entities, the review explored disulfide-containing liposomes, polymeric micelles, and nanogels. While various systems have been devised, further research is needed to advance redox-responsive drug delivery systems for cancer treatment clinical applications.
Collapse
Affiliation(s)
- Heba F. Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
16
|
Sadat Hosseini Z, Abdollahi A, Dashti A, Matin MM, Afkhami-Poostchi A. Synthesis of tertiary amine functionalized Multi-Stimuli-Responsive latex nanoparticles by semicontinuous emulsion Polymerization: Investigation of responsivities and antimicrobial activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Jang JD, Seo HJ, Yoon YJ, Choi SH, Han YS, Kim TH. Conformational control of two-dimensional gold nanoparticle arrays in a confined geometry within a vesicular wall. Sci Rep 2022; 12:4548. [PMID: 35296763 PMCID: PMC8927576 DOI: 10.1038/s41598-022-08607-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/09/2022] [Indexed: 11/15/2022] Open
Abstract
The two-dimensional (2D) assembly of gold nanoparticles (AuNPs) in a confined geometry is a rare phenomenon that has not been experimentally verified for complex systems. In this study, this process was investigated in detail using two types of block copolymers with hydrophobic and hydrophilic blocks and a series of AuNPs of three different sizes protected by hydrophobic ligands. In aqueous solutions, the selected block copolymers self-assembled into vesicular nanostructures with a hydrophobic domain in the wall, which functions as a confined geometrical space for hydrophobic AuNPs (i.e., it exerts a confinement effect and restricts the movement of AuNPs). Small-angle X-ray scattering studies revealed that AuNPs of different sizes assembled differently in the same confined geometry of the vesicular wall. In addition, optimal conditions for the formation of a regular NP array in the hydrophobic domain were determined. The AuNPs successfully self-assembled into a regular 2D lattice structure, forming a shell around the vesicle, when their size matched the thickness of the hydrophobic domain of the vesicular nanostructure. This study provides guidelines for the fabrication of nanoparticle arrays with controlled structures, which could enhance the functionality of materials and their physical properties.
Collapse
Affiliation(s)
- Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea.,Research Center for Advanced Nuclear Interdisciplinary Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Hyuk-Jin Seo
- Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Young-Jin Yoon
- Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066, Republic of Korea
| | - Young Soo Han
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Tae-Hwan Kim
- Research Center for Advanced Nuclear Interdisciplinary Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea. .,Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea. .,Department of Quantum System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea. .,High-Enthalphy Plasma Research Center, Jeonbuk National University, 546 Bongdong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55317, Republic of Korea.
| |
Collapse
|
18
|
Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022; 51:1702-1728. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic-inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hairong Ma
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hongjun Liang
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
19
|
Priyanka Damera D, Nag A. Exploring the membrane fluidity of phenyl boronic acid functionalized polymersomes using the FRAP technique and their application in the pH-sensitive release of curcumin. NEW J CHEM 2022. [DOI: 10.1039/d2nj01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FRAP study to examine alterations in the membrane fluidity of functionalized polymersomes and pH responsive targeted delivery of curcumin.
Collapse
Affiliation(s)
| | - Amit Nag
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, 500078, India
| |
Collapse
|
20
|
Uddin MA, Yu H, Wang L, Amin BU, Mehmood S, Liang R, Haq F, Hu J, Xu J. Dynamics in Controllable Stimuli-Responsive Self-Assembly of Polymer Vesicles with Stable Radical Functionality. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61693-61706. [PMID: 34913332 DOI: 10.1021/acsami.1c21760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled polymer vesicles have emerged as exciting and promising materials for their potential application in drug delivery, but the dynamics of stimuli-responsive polymers in these areas with pendant functionality in order to understand the structure-property relationship under different physicochemical conditions is still open to discussion. In this work, nitroxide radical-containing copolymers were synthesized and utilized to investigate local dynamics in their vesicular assemblies. Herein, electron paramagnetic resonance (EPR) spectroscopy was applied to reveal the smart supramolecular vesicular structure and polymer chain dynamics in stimuli-responsive controlled assemblies by considering molecular-level interactions. These interactions and dynamics were dependent on the microenvironment of the assemblies, which might be affected by physicochemical parameters such as radical concentration, pH, redox agent, polarity, and viscosity. These observations help to accomplish quantitative insights into the stimuli-responsive colloidal vesicular assemblies. The vesicles were used as an anticancer drug carrier, which showed high drug loading efficiency (63.65%). The reduction-responsive prompt disassembly accelerated the release. Furthermore, the biocompatibility and anticancer activity were examined by cellular experiments against normal fibroblasts (L929) and human cervical cancer (HeLa) cell lines, respectively. The results demonstrate that this effort provides an easy strategy for designing controllable stimuli-responsive polymer nanosystems which promotes their promising application in cancer treatment.
Collapse
Affiliation(s)
- Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Sahid Mehmood
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Ruixue Liang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Jinming Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| |
Collapse
|
21
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
22
|
Mamnoon B, Feng L, Froberg J, Choi Y, Sathish V, Taratula O, Taratula O, Mallik S. Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes. ACS OMEGA 2021; 6:27654-27667. [PMID: 34722965 PMCID: PMC8552235 DOI: 10.1021/acsomega.1c02250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Endoxifen is the primary active metabolite of tamoxifen, a nonsteroidal-selective estrogen receptor modulator (SERM) and widely used medication to treat estrogen receptor-positive (ER+) breast cancer. In this study, endoxifen was conjugated to the surface of polymeric nanoparticles (polymersomes) for targeted delivery of doxorubicin (DOX) to estrogen receptor-positive breast cancer cells (MCF7). Rapid cell growth and insufficient blood supply result in low oxygen concentration (hypoxia) within the solid breast tumors. The polymersomes developed here are prepared from amphiphilic copolymers of polylactic acid (PLA) and poly(ethylene glycol) (PEG) containing diazobenzene as the hypoxia-responsive linker. We prepared two nanoparticle formulations: DOX-encapsulated hypoxia-responsive polymersomes (DOX-HRPs) and endoxifen-conjugated, DOX-encapsulated hypoxia-responsive polymersomes (END-DOX-HRPs). Cellular internalization studies demonstrated eight times higher cytosolic and nuclear localization after incubating breast cancer cells with END-DOX-HRPs (targeted polymersomes) in contrast to DOX-HRPs (nontargeted polymersomes). Cytotoxicity studies on monolayer cell cultures exhibited that END-DOX-HRPs were three times more toxic to ER+ MCF7 cells than DOX-HRPs and free DOX in hypoxia. The cell viability studies on three-dimensional hypoxic cultures also demonstrated twice as much toxicity when the spheroids were treated with targeted polymersomes instead of nontargeted counterparts. This is the first report of surface-decorated polymeric nanoparticles with endoxifen ligands for targeted drug delivery to ER+ breast cancer microtumors. The newly designed endoxifen-conjugated, hypoxia-responsive polymersomes might have translational potential for ER+ breast cancer treatment.
Collapse
Affiliation(s)
- Babak Mamnoon
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Jamie Froberg
- Department
of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yongki Choi
- Department
of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Venkatachalem Sathish
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Oleh Taratula
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Olena Taratula
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Sanku Mallik
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
23
|
Moreno S, Boye S, Ajeilat HGA, Michen S, Tietze S, Voit B, Lederer A, Temme A, Appelhans D. Multivalent Protein-Loaded pH-Stable Polymersomes: First Step toward Protein Targeted Therapeutics. Macromol Biosci 2021; 21:e2100102. [PMID: 34355506 DOI: 10.1002/mabi.202100102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Synthetic platforms for mimicking artificial organelles or for designing multivalent protein therapeutics for targeting cell surface, extracellular matrix, and tissues are in the focus of this study. Furthermore, the availability of a multi-functionalized and stimuli-responsive carrier system is required that can be used for sequential in situ and/or post loading of different proteins combined with post-functionalization steps. Until now, polymersomes exhibit excellent key characteristics to fulfill those requirements, which allow specific transport of proteins and the integration of proteins in different locations of polymeric vesicles. Herein, different approaches to fabricate multivalent protein-loaded, pH-responsive, and pH-stable polymersomes are shown, where a combination of therapeutic action and targeting can be achieved, by first choosing two model proteins such as human serum albumin and avidin. Validation of the molecular parameters of the multivalent biohybrids is performed by dynamic light scattering, cryo-TEM, fluorescence spectroscopy, and asymmetrical flow-field flow fractionation combined with light scattering techniques. To demonstrate targeting functions of protein-loaded polymersomes, avidin post-functionalized polymersomes are used for the molecular recognition of biotinylated cell surface receptors. These versatile protein-loaded polymersomes present new opportunities for designing sophisticated biomolecular nanoobjects in the field of (extracellular matrix) protein therapeutics.
Collapse
Affiliation(s)
- Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | | | - Susanne Michen
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
| | - Stefanie Tietze
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany.,Faculty of Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany.,Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany, National Center for Tumor Diseases (NCT), Fetscherstraße 74, Dresden, 01307, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| |
Collapse
|
24
|
Jang JD, Bae M, Do C, Choi SH, Bang J, Han YS, Kim TH. Self-Assembly of 2D Gold Nanoparticle Superlattice in a Polymer Vesicle Layer Driven by Hydrophobic Interaction. J Phys Chem Lett 2021; 12:6736-6743. [PMID: 34264079 DOI: 10.1021/acs.jpclett.1c01684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembly of gold nanoparticles (AuNPs) into highly ordered superstructures provides a promising route toward fabricating materials with new functionalities or enhanced physical properties. Although self-assembly of AuNPs has garnered significant research attention recently, a highly ordered superlattice of AuNPs under a low concentration in a confined geometry formed by nonfunctionalized materials has not been reported. Herein, we investigate the self-assembly of a 2D AuNPs superlattice in a polymer vesicle layer using hydrophobic interactions, which exhibits centered rectangular lattice symmetry. To create the highly ordered AuNPs superlattice, the P(EGx-b-iPGEy) block copolymers that form the thickness of the hydrophobic vesicle layer comparable to the size of the AuNP are used as a template to control the AuNP degree of freedom. To the best of our knowledge, this study provides the first demonstration of a centered rectangular structure formation of AuNPs at the vesicle layer in 2D confined geometry.
Collapse
Affiliation(s)
- Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea
| | - Moongi Bae
- Department of Quantum System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Changwoo Do
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea
| | - Young Soo Han
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| |
Collapse
|
25
|
Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021; 174:425-446. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.
Collapse
|
26
|
Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021; 9:707319. [PMID: 34249894 PMCID: PMC8267819 DOI: 10.3389/fbioe.2021.707319] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles have been widely used as carriers of drugs and bioimaging agents due to their excellent biocompatibility, biodegradability, and structural versatility. The principal application of polymeric nanoparticles in medicine is for cancer therapy, with increased tumor accumulation, precision delivery of anticancer drugs to target sites, higher solubility of pharmaceutical properties and lower systemic toxicity. Recently, the stimuli-responsive polymeric nanoplatforms attracted more and more attention because they can change their physicochemical properties responding to the stimuli conditions, such as low pH, enzyme, redox agents, hypoxia, light, temperature, magnetic field, ultrasound, and so on. Moreover, the unique properties of stimuli-responsive polymeric nanocarriers in target tissues may significantly improve the bioactivity of delivered agents for cancer treatment. This review introduces stimuli-responsive polymeric nanoparticles and their applications in tumor theranostics with the loading of chemical drugs, nucleic drugs and imaging molecules. In addition, we discuss the strategy for designing multifunctional polymeric nanocarriers and provide the perspective for the clinical applications of these stimuli-responsive polymeric nanoplatforms.
Collapse
Affiliation(s)
- Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
27
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
28
|
Tsai MF, Lo YL, Soorni Y, Su CH, Sivasoorian SS, Yang JY, Wang LF. Near-Infrared Light-Triggered Drug Release from Ultraviolet- and Redox-Responsive Polymersome Encapsulated with Core–Shell Upconversion Nanoparticles for Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:3264-3275. [DOI: 10.1021/acsabm.0c01621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ming-Fong Tsai
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Lun Lo
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yugendhar Soorni
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Siva Sankari Sivasoorian
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jung-Yen Yang
- National Nano Device Laboratories, National Applied Research Laboratories, Hsinchu 30078, Taiwan
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
29
|
Geervliet E, Moreno S, Baiamonte L, Booijink R, Boye S, Wang P, Voit B, Lederer A, Appelhans D, Bansal R. Matrix metalloproteinase-1 decorated polymersomes, a surface-active extracellular matrix therapeutic, potentiates collagen degradation and attenuates early liver fibrosis. J Control Release 2021; 332:594-607. [PMID: 33737203 DOI: 10.1016/j.jconrel.2021.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Liver fibrosis affects millions of people worldwide and is rising vastly over the past decades. With no viable therapies available, liver transplantation is the only curative treatment for advanced diseased patients. Excessive accumulation of aberrant extracellular matrix (ECM) proteins, mostly collagens, produced by activated hepatic stellate cells (HSCs), is a hallmark of liver fibrosis. Several studies have suggested an inverse correlation between collagen-I degrading matrix metalloproteinase-1 (MMP-1) serum levels and liver fibrosis progression highlighting reduced MMP-1 levels are associated with poor disease prognosis in patients with liver fibrosis. We hypothesized that delivery of MMP-1 might potentiate collagen degradation and attenuate fibrosis development. In this study, we report a novel approach for the delivery of MMP-1 using MMP-1 decorated polymersomes (MMPsomes), as a surface-active vesicle-based ECM therapeutic, for the treatment of liver fibrosis. The storage-stable and enzymatically active MMPsomes were fabricated by a post-loading of Psomes with MMP-1. MMPsomes were extensively characterized for the physicochemical properties, MMP-1 surface localization, stability, enzymatic activity, and biological effects. Dose-dependent effects of MMP-1, and effects of MMPsomes versus MMP-1, empty polymersomes (Psomes) and MMP-1 + Psomes on gene and protein expression of collagen-I, MMP-1/TIMP-1 ratio, migration and cell viability were examined in TGFβ-activated human HSCs. Finally, the therapeutic effects of MMPsomes, compared to MMP-1, were evaluated in vivo in carbon-tetrachloride (CCl4)-induced early liver fibrosis mouse model. MMPsomes exhibited favorable physicochemical properties, MMP-1 surface localization and improved therapeutic efficacy in TGFβ-activated human HSCs in vitro. In CCl4-induced early liver fibrosis mouse model, MMPsomes inhibited intra-hepatic collagen-I (ECM marker, indicating early liver fibrosis) and F4/80 (marker for macrophages, indicating liver inflammation) expression. In conclusion, our results demonstrate an innovative approach of MMP-1 delivery, using surface-decorated MMPsomes, for alleviating liver fibrosis.
Collapse
Affiliation(s)
- Eline Geervliet
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Luca Baiamonte
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Richell Booijink
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Peng Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; Technische Universität Dresden, Organic Chemistry of Polymers, 01062 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; Technische Universität Dresden, Organic Chemistry of Polymers, 01062 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa.
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
| |
Collapse
|
30
|
Qin W, Wu Y, Hu Y, Dong Y, Hao T, Zhang C. TPE-Based Peptide Micelles for Targeted Tumor Therapy and Apoptosis Monitoring. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wenjun Qin
- Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yu Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yunhong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P. R. China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P. R. China
| | - Tonghui Hao
- Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
31
|
Deshpande NU, Virmani M, Jayakannan M. An AIE-driven fluorescent polysaccharide polymersome as an enzyme-responsive FRET nanoprobe to study the real-time delivery aspects in live cells. Polym Chem 2021. [DOI: 10.1039/d0py01085e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An enzyme-responsive FRET nanoprobe was designed and developed based on AIE-driven fluorescent polysaccharide polymersomes to study the real-time delivery aspects in the intracellular compartments in live cancer cells.
Collapse
Affiliation(s)
- Nilesh Umakant Deshpande
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER Pune)
- Pune 411008
- India
| | - Mishika Virmani
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER Pune)
- Pune 411008
- India
| | - Manickam Jayakannan
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER Pune)
- Pune 411008
- India
| |
Collapse
|
32
|
Torres J, Dhas N, Longhi M, García MC. Overcoming Biological Barriers With Block Copolymers-Based Self-Assembled Nanocarriers. Recent Advances in Delivery of Anticancer Therapeutics. Front Pharmacol 2020; 11:593197. [PMID: 33329001 PMCID: PMC7734332 DOI: 10.3389/fphar.2020.593197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Cancer is one of the most common life-threatening illness and it is the world's second largest cause of death. Chemotherapeutic anticancer drugs have many disadvantages, which led to the need to develop novel strategies to overcome these shortcomings. Moreover, tumors are heterogenous in nature and there are various biological barriers that assist in treatment reisistance. In this sense, nanotechnology has provided new strategies for delivery of anticancer therapeutics. Recently, delivery platforms for overcoming biological barriers raised by tumor cells and tumor-bearing hosts have been reported. Among them, amphiphilic block copolymers (ABC)-based self-assembled nanocarriers have attracted researchers worldwide owing to their unique properties. In this work, we addressed different biological barriers for effective cancer treatment along with several strategies to overcome them by using ABC-based self-assembled nanostructures, with special emphasis in those that have the ability to act as responsive nanocarriers to internal or external environmental clues to trigger release of the payload. These nanocarriers have shown promising properties to revolutionize cancer treatment and diagnosis, but there are still challenges for their successful translation to clinical applications.
Collapse
Affiliation(s)
- Jazmin Torres
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Marcela Longhi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mónica C. García
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
33
|
Mamnoon B, Feng L, Froberg J, Choi Y, Venkatachalem S, Mallik S. Hypoxia-Responsive, Polymeric Nanocarriers for Targeted Drug Delivery to Estrogen Receptor-Positive Breast Cancer Cell Spheroids. Mol Pharm 2020; 17:4312-4322. [PMID: 32926627 PMCID: PMC8095663 DOI: 10.1021/acs.molpharmaceut.0c00754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Uncontrolled cell growth, division, and lack of enough blood supply causes low oxygen content or hypoxia in cancerous tumor microenvironments. 17β-Estradiol (E2), an estrogen receptor (ER) ligand, can be incorporated on the surface of nanocarriers for targeted drug delivery to breast cancer cells overexpressing ER. In the present study, we synthesized estradiol-conjugated hypoxia-responsive polymeric nanoparticles (polymersomes) encapsulating the anticancer drug doxorubicin (E2-Dox-HRPs) for targeted delivery into the hypoxic niches of estrogen-receptor-positive breast cancer microtumors. Estradiol-conjugated polymersomes released over 90% of their encapsulated Dox in a sustained manner within hypoxia (2% oxygen) after 12 h. However, they released about 30% of Dox in normal oxygen partial pressure (21% oxygen, normoxia) during this time. Fluorescence microscopic studies demonstrated higher cytosolic and nuclear internalization of E2-Dox-HRPs (targeted polymersomes) compared to those of Dox-HRPs (nontargeted polymersomes). Monolayer cell viability studies on ER-positive MCF7 cells showed higher cytotoxicity of targeted polymersomes in hypoxia compared to in normoxia. Cytotoxicity studies with hypoxic three-dimensional spheroid cultures of MCF7 cells treated with targeted polymersomes indicated significant differences compared to those of normoxic spheroids. The novel estradiol-conjugated hypoxia-responsive polymersomes described here have the potential for targeted drug delivery in estrogen-receptor-positive breast cancer therapy.
Collapse
Affiliation(s)
- Babak Mamnoon
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Jamie Froberg
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Sathish Venkatachalem
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
34
|
Georgilis E, Abdelghani M, Pille J, Aydinlioglu E, van Hest JC, Lecommandoux S, Garanger E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 2020; 586:119537. [DOI: 10.1016/j.ijpharm.2020.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
|
35
|
Benito E, Romero-Azogil L, Galbis E, de-Paz MV, García-Martín MG. Structurally simple redox polymersomes for doxorubicin delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Municoy S, Álvarez Echazú MI, Antezana PE, Galdopórpora JM, Olivetti C, Mebert AM, Foglia ML, Tuttolomondo MV, Alvarez GS, Hardy JG, Desimone MF. Stimuli-Responsive Materials for Tissue Engineering and Drug Delivery. Int J Mol Sci 2020; 21:E4724. [PMID: 32630690 PMCID: PMC7369929 DOI: 10.3390/ijms21134724] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Smart or stimuli-responsive materials are an emerging class of materials used for tissue engineering and drug delivery. A variety of stimuli (including temperature, pH, redox-state, light, and magnet fields) are being investigated for their potential to change a material's properties, interactions, structure, and/or dimensions. The specificity of stimuli response, and ability to respond to endogenous cues inherently present in living systems provide possibilities to develop novel tissue engineering and drug delivery strategies (for example materials composed of stimuli responsive polymers that self-assemble or undergo phase transitions or morphology transformations). Herein, smart materials as controlled drug release vehicles for tissue engineering are described, highlighting their potential for the delivery of precise quantities of drugs at specific locations and times promoting the controlled repair or remodeling of tissues.
Collapse
Affiliation(s)
- Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María I. Álvarez Echazú
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Pablo E. Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Juan M. Galdopórpora
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Christian Olivetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Andrea M. Mebert
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María L. Foglia
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María V. Tuttolomondo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Gisela S. Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
- Materials Science Institute, Faraday Building, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
| | - Martin F. Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| |
Collapse
|
37
|
Kim J, Kim KT. Polymersome-Based Modular Nanoreactors with Size-Selective Transmembrane Permeability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23502-23513. [PMID: 32320196 DOI: 10.1021/acsami.0c05637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polymersome nanoreactors encapsulating the enzymes or particulate catalysts attract interest because of their potential use as modular reactors to synthesize complex compounds via a cascade of chemical reactions in a single batch. To achieve these goals, a key requirement is the tunable permeability of the polymersome membrane, which allows the size-selective transportation of reagents and products while protecting the encapsulated catalysts during the chemical reaction. We report here a stimuli-responsive route for controlling the permeability of the polymersomes of the binary blend of poly(ethylene glycol)-b-polystyrene (PEG-b-PS) and poly(ethylene glycol)-b-poly(acrylbenzylborate) (PEG-b-PABB). The presence of H2O2 (1 mM) in the medium (0.1 M PBS, pH 7.4) triggers the oxidation of benzyl borate pendants of PABB to form poly(acrylic acid) (PAA). This transformation results in the perforation of the compartmentalizing membrane of polymersomes by the dissolution of PEG-b-PAA domains embedded in the inert PEG-b-PS matrix. By controlling the composition of the stimuli-responsive block copolymer, the polymersomes of the binary blend exhibit size-selective permeability without losing the structural integrity. Release of fluorescent guests with different sizes (fluorescein, PEG2k-Cm, PEG5k-Rho) can be controlled by tuning the composition (PEG-b-PS/PEG-b-PABB = 100/0-80/20) of blended polymersomes. Selective permeability of the membrane provides protection of the encapsulated enzymes from external proteases present in the medium, resulting in the one-pot synthesis of small molecules via cascades of chemical reactions. The nanoparticular catalysts are also encapsulated within the permeable polymersomes, serving as modular reactors for the conversion of organic compounds via a cascade of reactions.
Collapse
Affiliation(s)
- Junyoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Saleem S, Iqubal MK, Garg S, Ali J, Baboota S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: an enticing approach to offset psoriasis. Expert Opin Drug Deliv 2020; 17:817-838. [PMID: 32315216 DOI: 10.1080/17425247.2020.1758665] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Psoriasis is identified as an inflammatory, chronic, auto-immune disease requiring long-term treatment, imposing an unnecessary burden on the patient. A significant impediment for the treatment of dermatological disorders via transdermal route is the inability of drug molecules to cross the stratum corneum (SC), as the larger size of drug molecules inhibits them to pervade into the skin, thus hampering their absorption. Some drugs exhibit systemic side-effects, which curbs patient compliance, resulting in treatment discontinuation. AREAS COVERED This review aims to describe the detailed study such as demographic status, molecular factors of psoriasis, treatment with emerging combination therapy and role of nanotechnology tools in the treatment of psoriasis. EXPERT OPINION To overcome problems related to the conventional drug delivery system, several nanotechnology-based formulations have been devised to enhance bioavailability, drug permeation and accumulation in the skin. Nano-formulations provide better permeation, targeted delivery and enhanced efficacy, thus gaining enormous popularity for cutaneous disorders. This pervasive review provides an overview of the pathophysiology of the disease, its molecular targets and the available herbal, synthetic and combination treatment modalities. The review also systematizes recent works utilizing nano-carriers to improve the treatment denouement of psoriasis.
Collapse
Affiliation(s)
- Sadaf Saleem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia (UniSA) , Adelaide, SA, Australia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| |
Collapse
|
39
|
Yu C, Wang L, Xu Z, Teng W, Wu Z, Xiong D. Smart micelles self-assembled from four-arm star polymers as potential drug carriers for pH-triggered DOX release. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02108-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Iqbal S, Blenner M, Alexander-Bryant A, Larsen J. Polymersomes for Therapeutic Delivery of Protein and Nucleic Acid Macromolecules: From Design to Therapeutic Applications. Biomacromolecules 2020; 21:1327-1350. [DOI: 10.1021/acs.biomac.9b01754] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shoaib Iqbal
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Angela Alexander-Bryant
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
41
|
Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol Res 2020; 152:104629. [PMID: 31918019 DOI: 10.1016/j.phrs.2020.104629] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus type 2 (T2DM) is a metabolic disorder develops due to the overproduction of free radicals where oxidative stress could contribute it. Possible factors are defective insulin signals, glucose oxidation, and degradation of glycated proteins as well as alteration in glutathione metabolism which induced hyperglycemia. Previous studies revealed a link between T2DM with oxidative stress, inflammation and insulin resistance which are assumed to be regulated by numerous cellular networks such as NF-κB, PI3K/Akt, MAPK, GSK3 and PPARγ. Flavonoids are ubiquitously present in the nature and classified according to their chemical structures for example, flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones. Flavonoids indicate poor bioavailability which could be improved by employing various nano-delivery systems against the occurrences of T2DM. These bioactive compounds exert versatile anti-diabetic activities via modulating targeted cellular signaling networks, thereby, improving glucose metabolism, α -glycosidase, and glucose transport or aldose reductase by carbohydrate metabolic pathway in pancreatic β-cells, hepatocytes, adipocytes and skeletal myofibres. Moreover, anti-diabetic properties of flavonoids also encounter diabetic related complications. This review article has designed to shed light on the anti-diabetic potential of flavonoids, contribution of oxidative stress, evidence of efficacy in clinical, cellular and animal studies and nano-delivery approaches to enhance their therapeutic efficacy. This article might give some new insights for therapeutic intervention against T2DM in near future.
Collapse
|
42
|
Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101149] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1581. [PMID: 31429208 DOI: 10.1002/wnan.1581] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Pei Li
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| |
Collapse
|
44
|
Wang L, You X, Lou Q, He S, Zhang J, Dai C, Zhao M, Zhao M, Hu H, Wu J. Cysteine-based redox-responsive nanoparticles for small-molecule agent delivery. Biomater Sci 2019; 7:4218-4229. [PMID: 31389415 DOI: 10.1039/c9bm00907h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a significant part of molecular-targeted therapies, small-molecule agents (SMAs) have been increasingly used for cancer treatment. Nevertheless, most SMAs are currently administered orally due to their poor solubility, resulting in a low bioavailability and unavoidable side effects. Herein, we proposed a promising SMA delivery strategy using a biocompatible and redox-responsive nanoparticle (NP) delivery system to improve their bioavailability, alleviate side effects and enhance therapeutic performance. To demonstrate the feasibility of this strategy, a type of cysteine-based hydrophobic polymer was employed to construct a redox-sensitive nanoplatform for the delivery of various hydrophobic oral SMAs. These SMA-loaded nanoparticles (SMA-NPs) all have a small particle size and good drug-loading capacity. Particularly, lapatinib-loaded nanoparticles (LAP-NPs) with a minimal particle size (79.71 nm) and an optimal drug-loading capacity (12.5%) were utilized as a model to systemically explore the in vitro and in vivo anticancer potential of SMA-NPs. As expected, the LAP-NPs exhibited rapid redox-responsive drug release, enhanced in vitro cytotoxicity and cell apoptosis, and demonstrated notable anti-metastasis ability and desirable intracellular localization. Additionally, the in vivo results demonstrated the preferential accumulation of LAP-NPs in tumor tissues and the significant suppression of tumor growth. Therefore, the generated SMA-NP delivery system shows great SMA delivery potential for advanced molecular-targeted therapies.
Collapse
Affiliation(s)
- Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China. and Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, PR China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | - Qi Lou
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University; Shenzhen second people's hospital, Shenzhen, Guangdong, China
| | - Siyu He
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | - Junfu Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | - Chunlei Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | - Meng Zhao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University; Shenzhen second people's hospital, Shenzhen, Guangdong, China and Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen, Guangdong, China
| | - Minyi Zhao
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | - Hai Hu
- SunYat-Sen Memorial Hospital, SunYat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China. and Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, PR China and SunYat-Sen Memorial Hospital, SunYat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China.
| |
Collapse
|
45
|
Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 2019; 21:e3101. [PMID: 31170324 DOI: 10.1002/jgm.3101] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Micelles have demonstrated an excellent ability to deliver several different types of therapeutic agents, including chemotherapy drugs, proteins, small-interfering RNA and DNA, into tumor cells. Cationic micelles, comprising self-assemblies of amphiphilic cationic polymers, have exhibited tremendous promise with respect to the delivery of therapy genes and gene transfection. To date, research in the field has focused on achieving an enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the gene. This review focuses on the micelles as a nanosized carrier system for gene delivery, the system-related modifications for cytoplasm release, stability and biocompatibility, and clinic trials. In accordance with the development of synthetic chemistry and self-assembly technology, the structures and functionalities of micelles can be precisely controlled, and hence the synthetic micelles not only efficiently condense DNA, but also facilitate DNA endocytosis, endosomal escape, DNA uptake and nuclear transport, resulting in a comparable gene transfection of virus.
Collapse
Affiliation(s)
- Haili Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Longhai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
46
|
Wu Z, Gan Z, Chen B, Chen F, Cao J, Luo X. pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers. Biomater Sci 2019; 7:3190-3203. [PMID: 31145392 DOI: 10.1039/c9bm00407f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Responding to the tumor microenvironment, functional polymers can serve as preeminent drug carriers for targeted cancer therapy. Stimuli-responsive polymeric drug carriers are reported with diverse anti-tumor effects for various polymer structures. Thus, three pH/redox dual-responsive amphiphilic zwitterionic polymer 'isomers' with different locations of pH/redox responsive units were prepared to understand the relationship between polymer structure and anti-tumor effect. Containing poly(ε-caprolactone) (PCL), poly(N,N-diethylaminoethyl methacrylate) (PDEA) and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), polymers PCL-ss-P(DEA-r-MPC) (SDRM), PCL-ss-PDEA-b-PMPC (SDBM) and PCL-PDEA-ss-PMPC (DSM) with a precisely controlled structure were constructed and confirmed through NMR, FITR and EA. The formed micellar drug carriers were characterized by their morphology, loading capacity, acid/redox sensitivity, drug release, in vitro cytotoxicity and in vivo antitumor effects. Micelles with uniform spherical morphologies can effectively encapsulate anti-tumor drugs such as DOX. Among these micelles, DSM@DOX displays the most excellent drug encapsulation capacity (13.4%) with neutral surface charge (-1.02 mV) and good stability, and is different from SDRM@DOX with positive charge (+11.1 mV) and SDBM@DOX with poor stability. All micelles respond to acid and reducing environments and present fast drug release at mildly acidic pH and high concentrations of GSH, exhibiting low burst release under the physiological conditions of plasma. There is no significant difference between these micelles in tumor cell cytotoxicity against MCF-7 and 4T1 cells. Internalization of SDRM@DOX and DSM@DOX by the tumor cells is stronger than that of SDBM@DOX. Notably, DSM@DOX has longer blood circulation and more effective accumulation at the tumor site than the other two micelles. As a result, DSM@DOX shows enhanced antitumor efficacy in 4T1 tumor-bearing mice with reduced side toxicities. Overall, structures of the above polymers significantly influence the in vivo antitumor effects of the drug carriers through blood circulation and cellular uptake.
Collapse
Affiliation(s)
- Zhengzhong Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Ziying Gan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Bin Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Fan Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Jun Cao
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China. and State Key Lab of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
47
|
Ma X, Liu J, Lei L, Yang H, Lei Z. Synthesis of light and dual‐redox triple‐stimuli‐responsive core‐crosslinked micelles as nanocarriers for controlled release. J Appl Polym Sci 2019. [DOI: 10.1002/app.47946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Ma
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Jiangtao Liu
- College of PharmacyShaanxi University of Chinese Medicine Xianyang 712046 China
| | - Lei Lei
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Hong Yang
- Basic Experimental Teaching CenterShaanxi Normal University Xi'an 710062 China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
48
|
Nayak R, Meerovich I, Dash AK. Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems for Cancer Treatment. AAPS PharmSciTech 2019; 20:160. [PMID: 30968269 DOI: 10.1208/s12249-019-1367-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
Over the last several decades, nanoparticulate delivery systems have emerged as advanced drug and gene delivery tools for cancer therapy. However, their translation into clinical use still poses major challenges. Even though many innovative nanoparticulate approaches have shown very positive results both in vitro and in vivo, few of them have found a place in clinical practice. Possible factors responsible for the existing gap in the translation of nanomedicine to clinical practice may include oversimplification of enhanced permeability and retention effect, lack of correlation between the in vivo animal data vs their translation in human, and challenging multiple biological steps experienced during systemic delivery of nanomedicine. Understanding these challenges and coming up with solutions to overcome them is an important step in effective translation of nanomedicine into clinical practice. This review focuses on advancements in the field of nanomedicine used for anti-cancer therapy, including passive targeting, active targeting, and stimuli-controlled delivery. The review further reveals some of the challenges that are currently faced by pharmaceutical scientists in translation of nanomedicine; these include lack of adequate models for preclinical testing that can predict efficacy in humans, absence of appropriate regulatory guidelines for their approval processes, and difficulty in scale-up of the manufacturing of nanodrug delivery systems. A better understanding of these challenges will help us in filling the gap between the bench and bedside in cancer therapy.
Collapse
|
49
|
Gumz H, Boye S, Iyisan B, Krönert V, Formanek P, Voit B, Lederer A, Appelhans D. Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801299. [PMID: 30989019 PMCID: PMC6446602 DOI: 10.1002/advs.201801299] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/04/2018] [Indexed: 05/19/2023]
Abstract
Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin-gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase-with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.
Collapse
Affiliation(s)
- Hannes Gumz
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Cluster of Excellence “Center for Advancing Electronics Dresden”Technische Universität Dresden01062DresdenGermany
| | - Susanne Boye
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Banu Iyisan
- Max‐Planck‐Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Vera Krönert
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Petr Formanek
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Cluster of Excellence “Center for Advancing Electronics Dresden”Technische Universität Dresden01062DresdenGermany
| | - Albena Lederer
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Dietmar Appelhans
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| |
Collapse
|
50
|
Feng J, Wen W, Jia YG, Liu S, Guo J. pH-Responsive Micelles Assembled by Three-Armed Degradable Block Copolymers with a Cholic Acid Core for Drug Controlled-Release. Polymers (Basel) 2019; 11:E511. [PMID: 30960495 PMCID: PMC6473676 DOI: 10.3390/polym11030511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
One of the most famous anticancer drugs, paclitaxel (PTX), has often been used in drug controlled-release studies. The polymers derived from bio-compound bile acids and degradable poly(ε-caprolactone) (PCL) form a reservoir and have been used as a drug delivery system with great advantages. Herein, we grafted poly(N,N-diethylaminoethyl methacrylate) and poly(poly(ethylene glycol) methyl ether methacrylate) into the bile acid-derived three-armed macroinitiator CA-(PCL)₃, resulting in the amphiphilic block copolymers CA-(PCL-b-PDEAEMA-b-PPEGMA)₃. These pH-responsive three-armed block copolymers self-assembled into micelles in aqueous solution and PTX was encapsulated into the micellar core to form PTX-loaded micelles with a drug loading of 29.92 wt %. The micelles were stable in PBS at pH 7.4 and showed a pH-triggered release behavior of PTX under acidic environments, in which 55% of PTX was released at pH 5.0 in 80 h. These cholic acid-based functionalized three-armed block polymers present good biocompatibility, showing great potential for drug controlled-release.
Collapse
Affiliation(s)
- Jingjie Feng
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Weiqiu Wen
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jianwei Guo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|