1
|
Zhou B, Yue JM. Terpenoids of plants from Chloranthaceae family: chemistry, bioactivity, and synthesis. Nat Prod Rep 2024; 41:1368-1402. [PMID: 38809164 DOI: 10.1039/d4np00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Covering: 1976 to December 2023Chloranthaceae is comprised of four extant genera (Chloranthus, Sarcandra, Hedyosmum, and Ascarina), totaling about 80 species, many of which have been widely used as herbal medicines for diverse medical purposes. Chloranthaceae plants represent a rich source of structurally interesting and diverse secondary metabolites, with sesquiterpenoids and diterpenoids being the predominant structural types. Lindenane sesquiterpenoids and their oligomers, chemotaxonomical markers of the family Chloranthaceae, have shown a wide spectrum of bioactivities, attracting significant attention from organic chemists and pharmacologists. Recent achievements also demonstrated the research value of two unique structural types in this plant family, sesquiterpenoid-monoterpenoid heterodimers and meroterpenoids. This review systematically summarizes 682 structurally characterized terpenoids from 22 Chloranthaceae plants and their key biological activities as well as the chemical synthesis of selected terpenoids.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Li L, Sivaguru P, Zanoni G, Bi X. Highly electrophilic silver carbenes. Chem Commun (Camb) 2022; 58:13699-13715. [PMID: 36453127 DOI: 10.1039/d2cc04845k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Catalytic carbene transfer reactions are fundamental transformations in modern organic synthesis, which enable direct access to diverse structurally complex molecules. Despite diazo precursors playing a crucial role in catalytic carbene transfer reactions, most reported methodologies take into account only diazoacetates or related compounds. This is primarily because diazoalkanes, unless they contain a resonance stabilizing group, are more susceptible to violent exothermic decomposition. In this feature article, we present an alternative approach to carbene-transfer reactions based on the formation of highly electrophilic silver carbenes from N-sulfonylhydrazones, where the high electrophilicity of silver carbenes stems from the weak interaction between silver and the carbenic carbon. These precursors are readily accessible, stable, and environmentally sustainable. Using the strategy that employs highly electrophilic silver carbenes, it is possible to develop novel intermolecular transformations involving non-stabilized carbenes, including C(sp3)-H insertion, C(sp3)-C(O) insertion, cycloaddition, and defluorinative functionalization. The silver-catalyzed carbene transfer reactions described here have high efficiency, unusual reactivity, exceptional selectivity, and a reaction pathway that differs from typical transition metal-catalyzed reactions. Our research provided fundamental insight into silver carbene chemistry, and we hope to apply this mode of catalysis to other more general transformations, including asymmetric transformations.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Linxuan Li
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Paramasivam Sivaguru
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| |
Collapse
|
3
|
Wu Y, Ning Y, Han X, Liao P, Xia Y, Sivaguru P, Bi X. Silver-Catalyzed Vinylcarbene Insertion into C–C Bonds of 1,3-Diketones with Vinyl- N-triftosylhydrazones. Org Lett 2022; 24:8136-8141. [DOI: 10.1021/acs.orglett.2c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinyue Han
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Peiqiu Liao
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ying Xia
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Fang Z, Ma Y, Liu S, Bai H, Li S, Ning Y, Zanoni G, Liu Z. Silver-catalyzed [4 + 3] cycloaddition of 1,3-dienes with alkenyl- N-triftosylhydrazones: a practical approach to 1,4-cycloheptadienes. Org Chem Front 2022. [DOI: 10.1039/d2qo00806h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A formal [4 + 3] cycloaddition of 1,3-dienes with alkenyl-N-triftosylhydrazones was developed using silver catalysis, producing a broad spectrum of complex 1,4-cycloheptadienes with high yields and predictable stereochemistry.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yiming Ma
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Huricha Bai
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
5
|
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| |
Collapse
|
6
|
Radolko J, Ehlers P, Langer P. Recent Advances in Transition‐Metal‐Catalyzed Reactions of N‐Tosylhydrazones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jan Radolko
- Universität Rostock Institut für Chemie A.-Einstein-Str. 3a 18059 Rostock Germany
| | - Peter Ehlers
- Universität Rostock Institut für Chemie A.-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Peter Langer
- Universität Rostock Institut für Chemie A.-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
7
|
Zhu D, Chen L, Fan H, Yao Q, Zhu S. Recent progress on donor and donor-donor carbenes. Chem Soc Rev 2020; 49:908-950. [PMID: 31958107 DOI: 10.1039/c9cs00542k] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Donor and donor-donor carbenes are two important kinds of carbenes, which have experienced tremendous growth in the past two decades. This review provides a comprehensive overview of the recent development of donor and donor-donor carbene chemistry. The development of this chemistry offers efficient protocols to construct a wide variety of C-C and C-X bonds in organic synthesis. This review is organized based on the different types of carbene precursors, including diazo compounds, hydrazones, enynones, cycloheptatrienes and cyclopropenes. The typical transformations, the reaction mechanisms, as well as their subsequent applications in the synthesis of complex natural products and bioactive molecules are discussed. Due to the rapidly increasing interest in this area, we believe that this review will provide a timely and comprehensive discussion of recent progress in donor and donor-donor carbene chemistry.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | | | |
Collapse
|
8
|
Liu B, Fu S, Zhou C. Naturally occurring [4 + 2] type terpenoid dimers: sources, bioactivities and total syntheses. Nat Prod Rep 2020; 37:1627-1660. [DOI: 10.1039/c9np00037b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article highlights recent progress on their sources, bioactivities, biosynthetic hypotheses and total chemical syntheses of naturally occurring [4 + 2] type terpenoid dimers.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Chengying Zhou
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|
9
|
Muriel B, Gagnebin A, Waser J. Synthesis of bicyclo[3.1.0]hexanes by (3 + 2) annulation of cyclopropenes with aminocyclopropanes. Chem Sci 2019; 10:10716-10722. [PMID: 32110351 PMCID: PMC7006509 DOI: 10.1039/c9sc03790j] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
We report the convergent synthesis of bicyclo[3.1.0]hexanes possessing an all-carbon quaternary center via a (3 + 2) annulation of cyclopropenes with cyclopropylanilines. Using an organic or an iridium photoredox catalyst and blue LED irradiation, good yields were obtained for a broad range of cyclopropene and cyclopropylaniline derivatives. The reaction was highly diastereoselective when using difluorocyclopropenes together with a removable substituent on the cyclopropylaniline, giving access to important building blocks for medicinal chemistry. With efficient methods existing for the synthesis of both reaction partners, our method grants a fast access to highly valuable bicyclic scaffolds with three contiguous stereocenters.
Collapse
Affiliation(s)
- Bastian Muriel
- Laboratory of Catalysis and Organic Synthesis , Institut des Sciences et Ingénierie Chimique , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Ch-1015 , Switzerland .
| | - Alec Gagnebin
- Laboratory of Catalysis and Organic Synthesis , Institut des Sciences et Ingénierie Chimique , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Ch-1015 , Switzerland .
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis , Institut des Sciences et Ingénierie Chimique , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Ch-1015 , Switzerland .
| |
Collapse
|
10
|
Abstract
A synthetic study toward the BCDEF core skeleton of andilesin C is presented. Key elements involved iron-promoted intramolecular perezone-type [5 + 2] cycloaddition to install the BCD ring system simultaneously in a one-step, copper-catalyzed intramolecular cyclopropanation followed by BiCl3-promoted retro-aldol reaction to construct ring E and a one-pot manipulation involving reduction, lactonization, and isomerization to introduce the lactone ring F. We finally synthesized the congested BCDEF ring system of andilesin C, featuring four quaternary centers and two tertiary centers, by following a strategy with a 15-pot reaction and 11 purification operations.
Collapse
Affiliation(s)
- Guili Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Chengying Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Song Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
11
|
Du B, Huang Z, Wang X, Chen T, Shen G, Fu S, Liu B. A unified strategy toward total syntheses of lindenane sesquiterpenoid [4 + 2] dimers. Nat Commun 2019; 10:1892. [PMID: 31015442 PMCID: PMC6478710 DOI: 10.1038/s41467-019-09858-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 01/20/2023] Open
Abstract
The dimeric lindenane sesquiterpenoids are mainly isolated from the plants of Chloranthaceae family. Structurally, they have a crowded molecular scaffold decorated with more than 11 stereogenic centers. Here we report divergent syntheses of eight dimeric lindenane sesquiterpenoids, shizukaols A, C, D, I, chlorajaponilide C, multistalide B, sarcandrolide J and sarglabolide I. In particular, we present a unified dimerization strategy utilizing a base-mediated thermal [4 + 2] cycloaddition between a common furyl diene, generated in situ, and various types of dienophiles. Accordingly, all the three types of lindenane [4 + 2] dimers with versatile biological activities are accessible, which would stimulate future probing of their pharmaceutical potential.
Collapse
Affiliation(s)
- Biao Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Zhengsong Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Xiao Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Ting Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Guo Shen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
12
|
Abstract
Total syntheses of biologically and structurally fascinating sesterterpenoids published between Jan. 2012 and Jan. 2018 are summarized and discussed here.
Collapse
Affiliation(s)
- Yuye Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
- Department of Chemistry and Shenzhen Grubbs Institute
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
13
|
Albéniz AC. Reactive Palladium Carbenes: Migratory Insertion and Other Carbene–Hydrocarbyl Coupling Reactions on Well‐Defined Systems. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ana C. Albéniz
- IU CINQUIMA/Química Inorgánica Universidad de Valladolid 47071 Valladolid Spain
| |
Collapse
|
14
|
Palladium-catalyzed oxidative cyclopropanation of enamides and norbornenes initiated by C–H activation. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9150-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
|
16
|
Xia Y, Wang J. N-Tosylhydrazones: versatile synthons in the construction of cyclic compounds. Chem Soc Rev 2017; 46:2306-2362. [DOI: 10.1039/c6cs00737f] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-Tosylhydrazones have been extensively explored as versatile building blocks in the construction of various cyclic compounds.
Collapse
Affiliation(s)
- Ying Xia
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
17
|
Yuan C, Du B, Deng H, Man Y, Liu B. Total Syntheses of Sarcandrolide J and Shizukaol D: Lindenane Sesquiterpenoid [4+2] Dimers. Angew Chem Int Ed Engl 2016; 56:637-640. [DOI: 10.1002/anie.201610484] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Changchun Yuan
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Biao Du
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Heping Deng
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Yi Man
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
| |
Collapse
|
18
|
Yuan C, Du B, Deng H, Man Y, Liu B. Total Syntheses of Sarcandrolide J and Shizukaol D: Lindenane Sesquiterpenoid [4+2] Dimers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Changchun Yuan
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Biao Du
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Heping Deng
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Yi Man
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
| |
Collapse
|
19
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
|
21
|
Le Jeune K, Chevallier-Michaud S, Gatineau D, Giordano L, Tenaglia A, Clavier H. Preparation of Vinylcyclopropanes by Sodium Mediated Reductive Isomerization of Methylenecyclopropanes. J Org Chem 2015; 80:8821-9. [DOI: 10.1021/acs.joc.5b01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karel Le Jeune
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | | | - David Gatineau
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Laurent Giordano
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Alphonse Tenaglia
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Hervé Clavier
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| |
Collapse
|