1
|
Qiu D, Jiang C, Gao P, Yuan Y. Lewis acid-promoted direct synthesis of isoxazole derivatives. Beilstein J Org Chem 2023; 19:1562-1567. [PMID: 37915558 PMCID: PMC10616705 DOI: 10.3762/bjoc.19.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Isoxazole derivatives were synthesized via a one-pot method utilizing 2-methylquinoline derivatives as template substrates, sodium nitrite as a nitrogen-oxygen source, and solely using aluminum trichloride as the additive. This approach circumvents the need for costly or highly toxic transition metals and presents a novel pathway for the synthesis of isoxazole derivatives.
Collapse
Affiliation(s)
- Dengxu Qiu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chenhui Jiang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Pan Gao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
2
|
Wang Z, Zhao Y, Chen J, Chen M, Li X, Jiang T, Liu F, Yang X, Sun Y, Zhu Y. One-Pot Synthesis of Isoxazole-Fused Tricyclic Quinazoline Alkaloid Derivatives via Intramolecular Cycloaddition of Propargyl-Substituted Methyl Azaarenes under Metal-Free Conditions. Molecules 2023; 28:molecules28062787. [PMID: 36985760 PMCID: PMC10057414 DOI: 10.3390/molecules28062787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A practical method was developed for the convenient synthesis of isoxazole-fused tricyclic quinazoline alkaloids. This procedure accesses diverse isoxazole-fused tricyclic quinazoline alkaloids and their derivatives via intramolecular cycloaddition of methyl azaarenes with tert-butyl nitrite (TBN). In this method, TBN acts as the radical initiator and the source of N-O. Moreover, this protocol forms new C-N, C-C, and C-O bonds via sequence nitration and annulation in a one-pot process with broad substrate scope and functionalization of natural products.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuhan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Mengyao Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xuehan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ting Jiang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Fang Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xi Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuanyuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yanping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
3
|
Li YN, Li XL, Wu JB, Jiang H, Liu Y, Guo Y, Zeng YF, Wang Z. Metal-free regioselective nitration of quinoxalin-2(1 H)-ones with tert-butyl nitrite. Org Biomol Chem 2021; 19:10554-10559. [PMID: 34854446 DOI: 10.1039/d1ob02015c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A metal-free coupling of quinoxalin-2(1H)-ones with tert-butyl nitrite has been developed. Distinctly from the previous functionalization of quinoxalin-2(1H)-ones, this nitration reaction took place selectively at the C7 or C5 position of the phenyl ring, affording a series of 7-nitro and 5-nitro quinoxalin-2(1H)-ones in moderate to good yields. Preliminary mechanistic studies revealed that the reaction may involve a radical process.
Collapse
Affiliation(s)
- Yi-Na Li
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xue-Lin Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin-Bo Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Hong Jiang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yunmei Liu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Li JZ, Zhang WK, Ge GP, Zheng H, Wei WT. Recent progress in the radical α-C(sp 3)-H functionalization of ketones. Org Biomol Chem 2021; 19:7333-7347. [PMID: 34612358 DOI: 10.1039/d1ob01408k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direct use structurally simple ketones as α-ketone radical sources for α-C(sp3)-H functionalization is a sustainable and powerful approach for constructing complex and multifunctional chemical scaffolds with diverse applications. The reactions of α-ketone radicals with alkenes, alkynes, enynes, imides, and imidazo[1,2-a]pyridines have broadened the structural diversity and complexity of ketones. Through chosen illustrative examples, we outline the recent progress in the development of methods that enable the radical α-C(sp3)-H functionalization of ketones, with an emphasis on radical initiation systems and possible mechanisms of the transformations. The application of these strategies is illustrated by the synthesis of several biologically active molecules and drug molecules. Further subdivision is based on substrate type and reaction type.
Collapse
Affiliation(s)
- Jiao-Zhe Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | |
Collapse
|
5
|
Ma L, Jin F, Cheng X, Tao S, Jiang G, Li X, Yang J, Bao X, Wan X. [2 + 2 + 1] Cycloaddition of N-tosylhydrazones, tert-butyl nitrite and alkenes: a general and practical access to isoxazolines. Chem Sci 2021; 12:9823-9830. [PMID: 34349956 PMCID: PMC8293996 DOI: 10.1039/d1sc02352g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
N-Tosylhydrazones have proven to be versatile synthons over the past several decades. However, to our knowledge, the construction of isoxazolines based on N-tosylhydrazones has not been examined. Herein, we report the first demonstrations of [2 + 2 + 1] cycloaddition reactions that allow the facile synthesis of isoxazolines, employing N-tosylhydrazones, tert-butyl nitrite (TBN) and alkenes as reactants. This process represents a new type of cycloaddition reaction with a distinct mechanism that does not involve the participation of nitrile oxides. This approach is both general and practical and exhibits a wide substrate scope, nearly universal functional group compatibility, tolerance of moisture and air, the potential for functionalization of complex bioactive molecules and is readily scaled up. Both control experiments and theoretical calculations indicate that this transformation proceeds via the in situ generation of a nitronate from the coupling of N-tosylhydrazone and TBN, followed by cycloaddition with an alkene and subsequent elimination of a tert-butyloxy group to give the desired isoxazoline.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Feng Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xionglve Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Suyan Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Gangzhong Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xingxing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jinwei Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
6
|
Wang L, Tao Y, Zhang N, Li S. Convenient synthesis of 4,5-unsubstituted 3-aroylisoxazoles from methyl aryl ketones and (vinylsulfonyl)benzene in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Wang CY, Teng F, Li Y, Li JH. [2 + 2 + 1] Heteroannulation of Alkenes with Enynyl Benziodoxolones and Silver Nitrite Involving C≡C bond Oxidative Cleavage: Entry to 3-Aryl-Δ 2-isoxazolines. Org Lett 2020; 22:4250-4254. [PMID: 32432890 DOI: 10.1021/acs.orglett.0c01285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A copper-catalyzed [2 + 2 + 1] heteroannulation of alkenes with enynyl benziodoxolones and AgNO2 involving oxidative cleavage of the C≡C bond promoted by cooperative Zn(OTf)2, KOAc, and 4 Å MS for producing 3-aryl Δ2-isoxazolines is reported. Mechanistic studies indicate that AgNO2 serves as the N/O two-atom unit source, enabling the formation of three bonds through NO2 addition across the C≡C bond, NO-transfer, C≡C bond cleavage, and annulation cascades.
Collapse
Affiliation(s)
- Cheng-Yong Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, China
| |
Collapse
|
8
|
Pan Z, Mao K, Zhu G, Wang C, Zhang J, Rong L. Copper-Catalyzed Annulation Reaction of Alkenes and N-Alkyl(aryl)-1-(methylthio)-2-nitroethenamine: an Approach for the Synthesis of Isoxazole Derivatives. J Org Chem 2020; 85:3364-3373. [PMID: 32037815 DOI: 10.1021/acs.joc.9b03157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A copper-catalyzed annulation reaction to access a variety of isoxazoles from alkenes and oxazete in situ generated from N-alkyl(aryl)-1-(methylthio)-2-nitroethenamine was reported. A plausible mechanism underlying the formation of the product was proposed, which represented a new approach for the construction of isoxazolines. This reaction was capable of tolerating alkenes bearing various substituents, which showed a relatively broad substrate scope with good functional group compatibility.
Collapse
Affiliation(s)
- Zhengbing Pan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| | - Kaimin Mao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| | - Guangzhou Zhu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| | - Chang Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| | - Jinpeng Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, 221006 Jiangsu, PR China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| |
Collapse
|
9
|
Huang J, Ding F, Rojsitthisak P, He FS, Wu J. Recent advances in nitro-involved radical reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00563k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significant progress in the chemistry of nitro radicals has been witnessed in the past decades, providing efficient and rapid access to nitro-containing compounds. This review describes recent advances in nitro-involved radical reactions, and summarizes various transformations.
Collapse
Affiliation(s)
- Jiapian Huang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Feng Ding
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
10
|
Xiong M, Liang X, Gao Z, Lei A, Pan Y. Synthesis of Isoxazolines and Oxazines by Electrochemical Intermolecular [2 + 1 + n] Annulation: Diazo Compounds Act as Radical Acceptors. Org Lett 2019; 21:9300-9305. [PMID: 31713430 DOI: 10.1021/acs.orglett.9b03306] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein is an unprecedented synthesis of isoxazolines and oxazines through electrochemical intermolecular annulation of alkenes with tert-butyl nitrite, in which diazo compounds serve as radical acceptors. Notably, [2 + 1 + 2] and [2 + 1 + 3] annulations occur when styrenes and allylbenzenes are used as substrates, respectively. The latter reaction undergoes group migration to form more stable radical, manifesting radical route instead of conventional 1,3-dipolar cycloaddition occurs. Moreover, scale-up experiments suggest the potential application value of these transformations in industry.
Collapse
Affiliation(s)
- Mingteng Xiong
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Xiao Liang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Zhan Gao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Yuanjiang Pan
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| |
Collapse
|
11
|
Wang D, Zhang F, Xiao F, Deng GJ. A three-component approach to isoxazolines and isoxazoles under metal-free conditions. Org Biomol Chem 2019; 17:9163-9168. [PMID: 31595941 DOI: 10.1039/c9ob01909j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A 1,3-dipolar cycloaddition of 2-methylquinoline, tert-butyl nitrite (TBN) and alkynes or alkenes for the synthesis of biheteroaryls containing both isoxazoline/isoxazole and quinoline motifs has been developed. In this protocol, TBN serves as a convenient N-O source to convert 2-methylquinoline into intermediate nitrile oxides in situ.
Collapse
Affiliation(s)
- Dahan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan. Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | | | | | | |
Collapse
|
12
|
Dai P, Tan X, Luo Q, Yu X, Zhang S, Liu F, Zhang WH. Synthesis of 3-Acyl-isoxazoles and Δ 2-Isoxazolines from Methyl Ketones, Alkynes or Alkenes, and tert-Butyl Nitrite via a Csp 3-H Radical Functionalization/Cycloaddition Cascade. Org Lett 2019; 21:5096-5100. [PMID: 31194561 DOI: 10.1021/acs.orglett.9b01683] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel metal-free tandem Csp3-H bond functionalization of ketones and 1,3-dipolar cycloaddition has been developed. An efficient approach to a variety of oxazole and isoxazoline derivatives is demonstrated using the 1,3-dipolar cycloaddition of alkynes and alkenes to nitrile oxides generated by reactions of methyl ketones with tert-butyl nitrite. This new protocol provides access to a variety of isoxazolines with diverse functionalities. An isoxazole generated in this way was found to have significant antifungal activity.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science , College of Sciences, Nanjing Agricultural University , Nanjing 210095 , China
| | - Xin Tan
- Jiangsu Key Laboratory of Pesticide Science , College of Sciences, Nanjing Agricultural University , Nanjing 210095 , China
| | - Qian Luo
- Jiangsu Key Laboratory of Pesticide Science , College of Sciences, Nanjing Agricultural University , Nanjing 210095 , China
| | - Xiang Yu
- Jiangsu Key Laboratory of Pesticide Science , College of Sciences, Nanjing Agricultural University , Nanjing 210095 , China
| | - Shuguang Zhang
- Jiangsu Key Laboratory of Pesticide Science , College of Sciences, Nanjing Agricultural University , Nanjing 210095 , China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science , College of Sciences, Nanjing Agricultural University , Nanjing 210095 , China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science , College of Sciences, Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
13
|
Meng L, Zhang S, Jia X, Lv L, Yuan Y. Transition-metal-free sp3 C–H activation of 2-methylquinoline with terminal alkynes for synthesis of 3-(quinolin-2-yl)isoxazoles. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Ye C, Kou X, Yang G, Shen J, Zhang W. PhI(OAc)2-mediated alkoxyoxygenation of β,γ-unsaturated ketoximes: Preparation of isoxazolines bearing two contiguous tetrasubstituted carbons. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Brandhofer T, Özdemir A, Gini A, Mancheño OG. Double Cu‐Catalyzed Direct Csp3−H Azidation/CuAAC Reaction: A Direct Approach towards Demanding Triazole Conjugates. Chemistry 2019; 25:4077-4086. [DOI: 10.1002/chem.201806288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Tobias Brandhofer
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Aysegül Özdemir
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Andrea Gini
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Olga García Mancheño
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
16
|
Chen R, Ogunlana AA, Fang S, Long W, Sun H, Bao X, Wan X. In situ generation of nitrile oxides from copper carbene and tert-butyl nitrite: synthesis of fully substituted isoxazoles. Org Biomol Chem 2018; 16:4683-4687. [PMID: 29892743 DOI: 10.1039/c8ob01067f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we present a novel [3 + 2] cycloaddition reaction of β-keto esters with nitrile oxides, which were generated in situ from copper carbene and tert-butyl nitrite. This three-component reaction provides new methodology for the direct synthesis of fully substituted isoxazole derivatives, featuring mild reaction conditions, readily accessible starting materials and simple operation. The experimental studies and DFT calculations suggest that the reaction starts with the generation of the key intermediate nitrile oxides, followed by a [3 + 2] cycloaddition reaction of β-keto esters to give the final isoxazole products.
Collapse
Affiliation(s)
- Rongxiang Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Abosede Adejoke Ogunlana
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shangwen Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Wenhao Long
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hongmei Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
17
|
Mandal S, Bera T, Dubey G, Saha J, Laha JK. Uses of K2S2O8 in Metal-Catalyzed and Metal-Free Oxidative Transformations. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00743] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sudip Mandal
- Centre of Biomedical Research, Division of Molecular Synthesis and Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Tishyasoumya Bera
- Centre of Biomedical Research, Division of Molecular Synthesis and Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Gurudutt Dubey
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Jaideep Saha
- Centre of Biomedical Research, Division of Molecular Synthesis and Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| |
Collapse
|
18
|
Morita T, Yugandar S, Fuse S, Nakamura H. Recent progresses in the synthesis of functionalized isoxazoles. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Xing S, Cui H, Qin J, Gu N, Zhang B, Wang K, Wang Y, Xia L, Wang Y. Diastereoselective synthesis ofcis-1,3-disubstituted isoindolinesviaa highly site-selective tandem cyclization reaction. Org Chem Front 2018. [DOI: 10.1039/c8qo00316e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A highly site-selective tandem reaction involving regioselective ring opening of aziridines and Michael addition of electron-deficient alkenes has been described.
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Hong Cui
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Jiajing Qin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Nan Gu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Bowei Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Ying Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Li Xia
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Yumeng Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education; College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| |
Collapse
|
20
|
Fukumoto Y, Hirano M, Matsubara N, Chatani N. Ir4(CO)12-Catalyzed Benzylic C(sp3)–H Silylation of 2-Alkylpyridines with Hydrosilanes Leading to 2-(1-Silylalkyl)pyridines. J Org Chem 2017; 82:13649-13655. [DOI: 10.1021/acs.joc.7b02375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshiya Fukumoto
- Department of Applied Chemistry, Faculty
of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaya Hirano
- Department of Applied Chemistry, Faculty
of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nao Matsubara
- Department of Applied Chemistry, Faculty
of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty
of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Sathyamoorthi S, Banerjee S. Peroxydisulfate as an Oxidant in the Site-Selective Functionalization of sp3
C-H Bonds. ChemistrySelect 2017. [DOI: 10.1002/slct.201702090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shyam Sathyamoorthi
- Stanford University; Department of Chemistry; 333 Campus Drive Stanford CA 94305-4401 USA
| | - Shibdas Banerjee
- Indian Institute of Science Education and Research, Tirupati; Department of Chemistry; Karakambadi Road Tirupati- 517507 India
| |
Collapse
|
22
|
Chen R, Zhao Y, Fang S, Long W, Sun H, Wan X. Coupling Reaction of Cu-Based Carbene and Nitroso Radical: A Tandem Reaction To Construct Isoxazolines. Org Lett 2017; 19:5896-5899. [DOI: 10.1021/acs.orglett.7b02885] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rongxiang Chen
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yanwei Zhao
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shangwen Fang
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wenhao Long
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hongmei Sun
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
23
|
Feng TY, Li HX, Young DJ, Lang JP. Ligand-Free RuCl3-Catalyzed Alkylation of Methylazaarenes with Alcohols. J Org Chem 2017; 82:4113-4120. [DOI: 10.1021/acs.joc.6b03095] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tong-Yu Feng
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Hong-Xi Li
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - David James Young
- Faculty
of Science and Engineering, University of the Sunshine Coast, Maroochydore
DC, Queensland 4558, Australia
| | - Jian-Ping Lang
- State
and Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
24
|
Li Y, Gao M, Liu B, Xu B. Copper nitrate-mediated chemo- and regioselective annulation from two different alkynes: a direct route to isoxazoles. Org Chem Front 2017. [DOI: 10.1039/c6qo00704j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient copper nitrate-mediated chemo- and regioselective annulation reaction of two different alkynes was developed to achieve polysubstituted isoxazoles.
Collapse
Affiliation(s)
- Yingying Li
- Department of Chemistry
- School of Materials Science and Engineering
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
| | - Mingchun Gao
- Department of Chemistry
- School of Materials Science and Engineering
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
| | - Bingxin Liu
- Department of Chemistry
- School of Materials Science and Engineering
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
| | - Bin Xu
- Department of Chemistry
- School of Materials Science and Engineering
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
| |
Collapse
|
25
|
Kumar GS, Boyle JW, Tejo C, Chan PWH. Copper-Mediated Cross-Dehydrogenative Coupling of 2-Methylpyridine and 8-Methylquinoline with Methyl Ketones and Benzamides. Chem Asian J 2015; 11:385-9. [PMID: 26586026 DOI: 10.1002/asia.201501096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/09/2022]
Abstract
A synthetic method to prepare (E)-(pyridin-2-yl)enones and (E)-(quinolin-8-yl)enones that relies on the respective copper(I)-catalyzed formal cross-dehydrogenative coupling (CDC) reaction of 2-methylpyridine and 8-methylquinoline with methyl ketones has been discovered. The mechanism was delineated to follow a pathway involving oxidation of the N-heterocycle to its corresponding aldehyde adduct prior to reaction with the methyl ketone. The versatility and substrate dependent divergence in the reactivity of the copper-mediated CDC strategy was exemplified by its application to the synthesis of N-(quinolin-8-ylmethyl)amide and N-(quinolin-8-ylmethyl)aniline adducts on switching the cross-coupling partner to benzamides or an aniline derivative.
Collapse
Affiliation(s)
- Gadde Sathish Kumar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | | | - Ciputra Tejo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Philip Wai Hong Chan
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia. , .,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. ,
| |
Collapse
|
26
|
Li C, Deng H, Li C, Jia X, Li J. Palladium-Catalyzed Synthesis of Δ(2)-Isoxazoline from Toluene Derivatives Enabled by the Triple Role of Silver Nitrate. Org Lett 2015; 17:5718-21. [PMID: 26555344 DOI: 10.1021/acs.orglett.5b03059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed direct synthesis of Δ(2)-isoxazoline from toluene derivatives has been established. The present reaction proceeds through nondirected Csp(3)-H activation, benzylic nitration, dehydration, and cycloaddition. This protocol also features the unusual triple role of silver nitrate in a one-pot reaction.
Collapse
Affiliation(s)
- Chengliang Li
- Department of Chemistry, Innovative Drug Research Center, Shanghai University , 99 Shangda Road, Shanghai 200444, P. R. China.,College of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, P. R. China
| | - Hongmei Deng
- Laboratory for Microstructures, Shanghai University , Shanghai, 200444, P. R. China
| | - Chunju Li
- Department of Chemistry, Innovative Drug Research Center, Shanghai University , 99 Shangda Road, Shanghai 200444, P. R. China
| | - Xueshun Jia
- Department of Chemistry, Innovative Drug Research Center, Shanghai University , 99 Shangda Road, Shanghai 200444, P. R. China
| | - Jian Li
- Department of Chemistry, Innovative Drug Research Center, Shanghai University , 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
27
|
Wang GW, Li SX, Wu QX, Yang SD. Cu-catalyzed sp3 C–H bond oxidative functionalization of alkylazaarenes and substituted ethanones: an efficient approach to isoxazoline derivatives. Org Chem Front 2015. [DOI: 10.1039/c5qo00053j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cu-catalyzed sp3 C–H bond oxidative functionalization of alkylazaarenes and substituted ethanones to different kinds of isoxazoline derivatives by 1,3-dipolar cycloaddition is reported.
Collapse
Affiliation(s)
- Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shi-Xia Li
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|