1
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
2
|
Zhu L, Li H, Luo T, Deng Z, Li J, Zheng L, Zhang B. Human Milk Oligosaccharides: A Critical Review on Structure, Preparation, Their Potential as a Food Bioactive Component, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15908-15925. [PMID: 37851533 DOI: 10.1021/acs.jafc.3c04412] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Human milk is the gold standard for infant feeding. Human milk oligosaccharides (HMOs) are a unique group of oligosaccharides in human milk. Great interest in HMOs has grown in recent years due to their positive effects on various aspects of infant health. HMOs provide various physiologic functions, including establishing a balanced infant's gut microbiota, strengthening the gastrointestinal barrier, preventing infections, and potential support to the immune system. However, the clinical application of HMOs is challenging due to their specificity to human milk and the difficulties and high costs associated with their isolation and synthesis. Here, the differences in oligosaccharides in human and other mammalian milk are compared, and the synthetic strategies to access HMOs are summarized. Additionally, the potential use and molecular mechanisms of HMOs as a new food bioactive component in different diseases, such as infection, necrotizing enterocolitis, diabetes, and allergy, are critically reviewed. Finally, the current challenges and prospects of HMOs in basic research and application are discussed.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Konietzny PB, Peters H, Hofer ML, Gerling-Driessen UIM, de Vries RP, Peters T, Hartmann L. Enzymatic Sialylation of Synthetic Multivalent Scaffolds: From 3'-Sialyllactose Glycomacromolecules to Novel Neoglycosides. Macromol Biosci 2022; 22:e2200358. [PMID: 36112275 DOI: 10.1002/mabi.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/1912] [Indexed: 01/15/2023]
Abstract
Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy. A key feature for high affinity binding of such conjugates is the multivalent presentation of sialoglycans which often possess synthetic challenges. Here, the combination is described of solid phase polymer synthesis and enzymatic sialylation yielding 3'-sialyllactose-presenting precision glycomacromolecules. CMP-Neu5Ac synthetase from Neisseria meningitidis (NmCSS) and sialyltransferase from Pasteurella multocida (PmST1) are combined in a one-pot reaction giving access to sequence-defined sialylated macromolecules. Surprisingly, when employing Tris(hydroxymethyl)aminomethane (Tris) as a buffer, formation of significant amounts of α-linked Tris-sialoside is observed as a side reaction. Further exploring and exploiting this unusual sialylation reaction, different neoglycosidic structures are synthesized showing that PmST1 can be used to derive both, sialylation on natural carbohydrates as well as on synthetic hydroxylated scaffolds.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hannelore Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Marc L Hofer
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ulla I M Gerling-Driessen
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
4
|
Kellman BP, Richelle A, Yang JY, Chapla D, Chiang AWT, Najera JA, Liang C, Fürst A, Bao B, Koga N, Mohammad MA, Bruntse AB, Haymond MW, Moremen KW, Bode L, Lewis NE. Elucidating Human Milk Oligosaccharide biosynthetic genes through network-based multi-omics integration. Nat Commun 2022; 13:2455. [PMID: 35508452 PMCID: PMC9068700 DOI: 10.1038/s41467-022-29867-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Human Milk Oligosaccharides (HMOs) are abundant carbohydrates fundamental to infant health and development. Although these oligosaccharides were discovered more than half a century ago, their biosynthesis in the mammary gland remains largely uncharacterized. Here, we use a systems biology framework that integrates glycan and RNA expression data to construct an HMO biosynthetic network and predict glycosyltransferases involved. To accomplish this, we construct models describing the most likely pathways for the synthesis of the oligosaccharides accounting for >95% of the HMO content in human milk. Through our models, we propose candidate genes for elongation, branching, fucosylation, and sialylation of HMOs. Our model aggregation approach recovers 2 of 2 previously known gene-enzyme relations and 2 of 3 empirically confirmed gene-enzyme relations. The top genes we propose for the remaining 5 linkage reactions are consistent with previously published literature. These results provide the molecular basis of HMO biosynthesis necessary to guide progress in HMO research and application with the goal of understanding and improving infant health and development.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anne Richelle
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Julia A Najera
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Chenguang Liang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Annalee Fürst
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bokan Bao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Natalia Koga
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anders Bech Bruntse
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Morey W Haymond
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Affiliation(s)
- Xiaona Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
6
|
Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Anal Bioanal Chem 2022; 414:5139-5163. [PMID: 35199190 DOI: 10.1007/s00216-022-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Glycans, including oligosaccharides and glycoconjugates, play an integral role in modulating the biological functions of macromolecules. Many physiological and pathological processes are mediated by interactions between glycans, which has led to the use of glycans as biosensors for pathogen and biomarker detection. Elucidating the relationship between glycan structure and biological function is critical for advancing our understanding of the impact glycans have on human health and disease and for expanding the repertoire of glycans available for bioanalysis, especially for diagnostics. Such efforts have been limited by the difficulty in obtaining sufficient quantities of homogenous glycan samples needed to resolve the exact relationships between glycan structure and their structural or modulatory functions on a given glycoconjugate. Synthetic strategies offer a viable route for overcoming these technical hurdles. In recent years, microfluidics have emerged as powerful tools for realizing high-throughput and reproducible syntheses of homogenous glycans for the potential use in functional studies. This critical review provides readers with an overview of the microfluidic technologies that have been developed for chemical and enzymatic glycan synthesis. The advantages and limitations associated with using microreactor platforms to improve the scalability, productivity, and selectivity of glycosylation reactions will be discussed, as well as suggested future work that can address certain pitfalls.
Collapse
|
7
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 250] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Heo HR, Joo KI, Seo JH, Kim CS, Cha HJ. Glycan chip based on structure-switchable DNA linker for on-chip biosynthesis of cancer-associated complex glycans. Nat Commun 2021; 12:1395. [PMID: 33654088 PMCID: PMC7925590 DOI: 10.1038/s41467-021-21538-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 01/29/2021] [Indexed: 12/05/2022] Open
Abstract
On-chip glycan biosynthesis is an effective strategy for preparing useful complex glycan sources and for preparing glycan-involved applications simultaneously. However, current methods have some limitations when analyzing biosynthesized glycans and optimizing enzymatic reactions, which could result in undefined glycan structures on a surface, leading to unequal and unreliable results. In this work, a glycan chip is developed by introducing a pH-responsive i-motif DNA linker to control the immobilization and isolation of glycans on chip surfaces in a pH-dependent manner. On-chip enzymatic glycosylations are optimized for uniform biosynthesis of cancer-associated Globo H hexasaccharide and its related complex glycans through stepwise quantitative analyses of isolated products from the surface. Successful interaction analyses of the anti-Globo H antibody and MCF-7 breast cancer cells with on-chip biosynthesized Globo H-related glycans demonstrate the feasibility of the structure-switchable DNA linker-based glycan chip platform for on-chip complex glycan biosynthesis and glycan-involved applications.
Collapse
Affiliation(s)
- Hye Ryoung Heo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kye Il Joo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Chang Sup Kim
- School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
9
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
10
|
Pérez-Escalante E, Alatorre-Santamaría S, Castañeda-Ovando A, Salazar-Pereda V, Bautista-Ávila M, Cruz-Guerrero AE, Flores-Aguilar JF, González-Olivares LG. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods. Crit Rev Food Sci Nutr 2020; 62:181-214. [DOI: 10.1080/10408398.2020.1813683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emmanuel Pérez-Escalante
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Sergio Alatorre-Santamaría
- Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud. Departamento de Biotecnología, Colonia Vicentina AP 09340, Ciudad de México, México
| | - Araceli Castañeda-Ovando
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Verónica Salazar-Pereda
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Mirandeli Bautista-Ávila
- Universidad Autónoma del Estado de Hidalgo. Área Académica de Farmacia, Instituto de Ciencias de la Salud. Ex-Hacienda la Concepción. San Agustín Tlaxiaca, Hidalgo, México
| | - Alma Elizabeth Cruz-Guerrero
- Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud. Departamento de Biotecnología, Colonia Vicentina AP 09340, Ciudad de México, México
| | - Juan Francisco Flores-Aguilar
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Luis Guillermo González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
11
|
From lab bench to formulated ingredient: Characterization, production, and commercialization of human milk oligosaccharides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Jaroentomeechai T, Taw MN, Li M, Aquino A, Agashe N, Chung S, Jewett MC, DeLisa MP. Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells. Front Chem 2020; 8:645. [PMID: 32850660 PMCID: PMC7403607 DOI: 10.3389/fchem.2020.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycans and glycosylated biomolecules are directly involved in almost every biological process as well as the etiology of most major diseases. Hence, glycoscience knowledge is essential to efforts aimed at addressing fundamental challenges in understanding and improving human health, protecting the environment and enhancing energy security, and developing renewable and sustainable resources that can serve as the source of next-generation materials. While much progress has been made, there remains an urgent need for new tools that can overexpress structurally uniform glycans and glycoconjugates in the quantities needed for characterization and that can be used to mechanistically dissect the enzymatic reactions and multi-enzyme assembly lines that promote their construction. To address this technology gap, cell-free synthetic glycobiology has emerged as a simplified and highly modular framework to investigate, prototype, and engineer pathways for glycan biosynthesis and biomolecule glycosylation outside the confines of living cells. From nucleotide sugars to complex glycoproteins, we summarize here recent efforts that harness the power of cell-free approaches to design, build, test, and utilize glyco-enzyme reaction networks that produce desired glycomolecules in a predictable and controllable manner. We also highlight novel cell-free methods for shedding light on poorly understood aspects of diverse glycosylation processes and engineering these processes toward desired outcomes. Taken together, cell-free synthetic glycobiology represents a promising set of tools and techniques for accelerating basic glycoscience research (e.g., deciphering the "glycan code") and its application (e.g., biomanufacturing high-value glycomolecules on demand).
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - May N. Taw
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mingji Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Alicia Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Ninad Agashe
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sean Chung
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Salminen S, Stahl B, Vinderola G, Szajewska H. Infant Formula Supplemented with Biotics: Current Knowledge and Future Perspectives. Nutrients 2020; 12:E1952. [PMID: 32629970 PMCID: PMC7400136 DOI: 10.3390/nu12071952] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Breastfeeding is natural and the optimal basis of infant nutrition and development, with many benefits for maternal health. Human milk is a dynamic fluid fulfilling an infant's specific nutritional requirements and guiding the growth, developmental, and physiological processes of the infant. Human milk is considered unique in composition, and it is influenced by several factors, such as maternal diet and health, body composition, and geographic region. Human milk stands as a model for infant formula providing nutritional solutions for infants not able to receive enough mother's milk. Infant formulas aim to mimic the composition and functionality of human milk by providing ingredients reflecting those of the latest human milk insights, such as oligosaccharides, bacteria, and bacterial metabolites. The objective of this narrative review is to discuss the most recent developments in infant formula with a special focus on human milk oligosaccharides and postbiotics.
Collapse
Affiliation(s)
- Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
| | - Bernd Stahl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands;
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe 3000, Argentina;
| | - Hania Szajewska
- Department of Paediatrics at the Medical University of Warsaw, 02091 Warsaw, Poland
| |
Collapse
|
14
|
Chao Q, Ding Y, Chen ZH, Xiang MH, Wang N, Gao XD. Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Front Chem 2020; 8:513. [PMID: 32612979 PMCID: PMC7309569 DOI: 10.3389/fchem.2020.00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Asparagine (N)-linked glycosylation is one of the most common co- and post-translational modifications of both intra- and extracellularly distributing proteins, which directly affects their biological functions, such as protein folding, stability and intercellular traffic. Production of the structural well-defined homogeneous N-glycans contributes to comprehensive investigation of their biological roles and molecular basis. Among the various methods, chemo-enzymatic approach serves as an alternative to chemical synthesis, providing high stereoselectivity and economic efficiency. This review summarizes some recent advances in the chemo-enzymatic methods for the production of N-glycans, including the preparation of substrates and sugar donors, and the progress in the glycosyltransferases characterization which leads to the diversity of N-glycan synthesis. We discuss the bottle-neck and new opportunities in exploiting the chemo-enzymatic synthesis of N-glycans based on our research experiences. In addition, downstream applications of the constructed N-glycans, such as automation devices and homogeneous glycoproteins synthesis are also described.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Zhang Y, Zhu Y, Lasanajak Y, Smith DF, Song X. O-Benzylhydroxylamine (BHA) as a Cleavable Tag for Isolation and Purification of Reducing Glycans. SLAS Technol 2020; 25:388-396. [PMID: 31959063 DOI: 10.1177/2472630319898150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycoscience has been recognized as an important area in biomedical research. Currently, a major obstacle for glycoscience study is the lack of diverse, biomedically relevant, and complex glycans in quantities sufficient for exploring their structural and functional aspects. Complementary to chemoenzymatic synthesis, natural glycans could serve as a great source of biomedically relevant glycans if they are available in sufficient quantities. We have recently developed oxidative release of natural glycans (ORNG) for large-scale release of N-glycans as free reducing glycans. While free reducing glycans can be readily derivatized with ultraviolet or fluorescent tags for high-performance liquid chromatography (HPLC) and mass spectrometry (MS) analysis, it is difficult to remove tags for the regeneration of free reducing glycans without affecting the structural integrity of glycans. To address this inconvenience, we explored the use of a cleavable tag, O-benzylhydroxylamine (BHA). Free reducing glycans are easily and efficiently labeled with BHA under mild conditions, enabling UV detection during HPLC purification. Individual glycan-BHA conjugates can then be separated using multidimensional HPLC and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS. The BHA tag can then be easily removed by palladium-on-carbon (Pd/C)-catalyzed hydrogenation to efficiently regenerate free reducing glycans with little effect on glycan structures. This procedure provides a simple and straightforward way to tag free reducing glycans for purification at a preparative scale using multidimensional HPLC and subsequently recover purified free reducing glycans.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, USA.,Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuyang Zhu
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi Lasanajak
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - David F Smith
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Prebiotics: tools to manipulate the gut microbiome and metabolome. ACTA ACUST UNITED AC 2019; 46:1445-1459. [DOI: 10.1007/s10295-019-02203-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Abstract
The human gut is an ecosystem comprising trillions of microbes interacting with the host. The composition of the microbiota and their interactions play roles in different biological processes and in the development of human diseases. Close relationships between dietary modifications, microbiota composition and health status have been established. This review focuses on prebiotics, or compounds which selectively encourage the growth of beneficial bacteria, their mechanisms of action and benefits to human hosts. We also review advances in synthesis technology for human milk oligosaccharides, part of one of the most well-characterized prebiotic–probiotic relationships. Current and future research in this area points to greater use of prebiotics as tools to manipulate the microbial and metabolic diversity of the gut for the benefit of human health.
Collapse
|
17
|
Guberman M, Bräutigam M, Seeberger PH. Automated glycan assembly of Lewis type I and II oligosaccharide antigens. Chem Sci 2019; 10:5634-5640. [PMID: 31293748 PMCID: PMC6552968 DOI: 10.1039/c9sc00768g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Human blood group related glycan antigens are fucosylated (neo-)lactoseries oligosaccharides that play crucial roles in pathogenic processes. Lewis type-II-chain antigens mark the surface of cancer cells, but are also mediators of bacterial infections. To investigate the biological roles of Lewis type glycans a host of synthetic approaches has been developed. Here, we illustrate how automated glycan assembly (AGA) using a set of six monosaccharide building blocks provides quick access to a series of more than ten defined Lewis type-I and type-II antigens, including Lex, Ley, Lea, Leb and KH-1. Glycans with up to three α-fucose branches were assembled following a strictly linear approach and obtained in excellent stereoselectivity and purity.
Collapse
Affiliation(s)
- Mónica Guberman
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Arnimalle 22 , 14195 Berlin , Germany
| | - Maria Bräutigam
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Arnimalle 22 , 14195 Berlin , Germany
| |
Collapse
|
18
|
Abstract
The intrinsic complexity of carbohydrate structures has hampered access to pure glycans and hence impeded progress in the glycosciences. Automated Glycan Assembly (AGA) has facilitated the procurement of synthetic glycans, to be used in diagnostics, vaccine development, enzyme characterization and structure-function relationship studies. A general approach for obtaining complex glycans from mammalian, bacterial, fungal and plant classes provides molecular tools for glycobiology research. Recent advances in AGA technology pave the way for the production of novel carbohydrate materials. This perspective describes the state-of-the art of AGA and aspects of the technology where additional improvements are needed.
Collapse
Affiliation(s)
- Mónica Guberman
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Department of Chemistry and Biochemistry , Freie Universität Berlin , Arnimalle 22 , 14195 Berlin , Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| |
Collapse
|
19
|
Lu N, Ye J, Cheng J, Sasmal A, Liu CC, Yao W, Yan J, Khan N, Yi W, Varki A, Cao H. Redox-Controlled Site-Specific α2-6-Sialylation. J Am Chem Soc 2019; 141:4547-4552. [PMID: 30843692 DOI: 10.1021/jacs.9b00044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first bacterial α2-6-sialyltransferase cloned from Photobacterium damselae (Pd2,6ST) has been widely applied for the synthesis of various α2-6-linked sialosides. However, the extreme substrate flexibility of Pd2,6ST makes it unsuitable for site-specific α2-6-sialylation of complex substrates containing multiple galactose and/or N-acetylgalactosamine units. To tackle this problem, a general redox-controlled site-specific sialylation strategy using Pd2,6ST is described. This approach features site-specific enzymatic oxidation of galactose units to mask the unwanted sialylation sites and precisely controlling the site-specific α2-6-sialylation at intact galactose or N-acetylgalactosamine units.
Collapse
Affiliation(s)
- Na Lu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Jinfeng Ye
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Jiansong Cheng
- College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center, University of California , San Diego , California 92093 , United States
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China.,Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| | - Wenlong Yao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Jun Yan
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Naazneen Khan
- Glycobiology Research and Training Center, University of California , San Diego , California 92093 , United States
| | - Wen Yi
- Institute of Biochemistry, College of Life Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California , San Diego , California 92093 , United States
| | - Hongzhi Cao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China.,Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| |
Collapse
|
20
|
Pardo-Vargas A, Delbianco M, Seeberger PH. Automated glycan assembly as an enabling technology. Curr Opin Chem Biol 2018; 46:48-55. [DOI: 10.1016/j.cbpa.2018.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
|
21
|
Panza M, Pistorio SG, Stine KJ, Demchenko AV. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chem Rev 2018; 118:8105-8150. [PMID: 29953217 PMCID: PMC6522228 DOI: 10.1021/acs.chemrev.8b00051] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in carbohydrate chemistry have certainly made common oligosaccharides much more accessible. However, many current methods still rely heavily upon specialized knowledge of carbohydrate chemistry. The application of automated technologies to chemical and life science applications such as genomics and proteomics represents a vibrant field. These automated technologies also present opportunities for their application to organic synthesis, including that of the synthesis of oligosaccharides. However, application of automated methods to the synthesis of carbohydrates is an underdeveloped area as compared to other classes of biomolecules. The overarching goal of this review article is to present the advances that have been made at the interface of carbohydrate chemistry and automated technology.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Salvatore G. Pistorio
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
22
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
23
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
24
|
Wilsdorf M, Schmidt D, Bartetzko MP, Dallabernardina P, Schuhmacher F, Seeberger PH, Pfrengle F. A traceless photocleavable linker for the automated glycan assembly of carbohydrates with free reducing ends. Chem Commun (Camb) 2018; 52:10187-9. [PMID: 27463261 DOI: 10.1039/c6cc04954k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a traceless photocleavable linker for the automated glycan assembly of carbohydrates with free reducing ends. The reductive-labile functionality in the linker tolerates all commonly used reagents and protocols for automated glycan assembly, as demonstrated with the successful preparation of nine plant cell wall-related oligosaccharides, and is cleaved by hydrogenolysis.
Collapse
Affiliation(s)
- M Wilsdorf
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - D Schmidt
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany. and Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - M P Bartetzko
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany. and Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - P Dallabernardina
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany. and Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - F Schuhmacher
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany. and Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - P H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany. and Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - F Pfrengle
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany. and Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
25
|
Xu FF, Pereira CL, Seeberger PH. 1,3-Dibromo-5,5-dimethylhydantoin as promoter for glycosylations using thioglycosides. Beilstein J Org Chem 2017; 13:1994-1998. [PMID: 29062419 PMCID: PMC5629399 DOI: 10.3762/bjoc.13.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/07/2017] [Indexed: 01/02/2023] Open
Abstract
1,3-Dibromo-5,5-dimethylhydantoin (DBDMH), an inexpensive, non-toxic and stable reagent, is a competent activator of thioglycosides for glycosidic bond formation. Excellent yields were obtained when triflic acid (TfOH) or trimethylsilyl trifluoromethanesulfonate (TMSOTf) were employed as co-promoters in solution or automated glycan assembly on solid phase.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Vaxxilon Deutschland GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
26
|
Bode L, Contractor N, Barile D, Pohl N, Prudden AR, Boons GJ, Jin YS, Jennewein S. Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutr Rev 2017; 74:635-44. [PMID: 27634978 DOI: 10.1093/nutrit/nuw025] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are complex sugars highly abundant in human milk but currently not present in infant formula. Rapidly accumulating evidence from in vitro and in vivo studies, combined with epidemiological associations and correlations, suggests that HMOs benefit infants through multiple mechanisms and in a variety of clinical contexts. Until recently, however, research on HMOs has been limited by an insufficient availability of HMOs. Most HMOs are found uniquely in human milk, and thus far it has been prohibitively tedious and expensive to isolate and synthesize them. This article reviews new strategies to overcome this lack of availability by generating HMOs through chemoenzymatic synthesis, microbial metabolic engineering, and isolation from human donor milk or dairy streams. Each approach has its advantages and comes with its own challenges, but combining the different methods and acknowledging their limitations creates new opportunities for research and application with the goal of improving maternal and infant health.
Collapse
Affiliation(s)
- Lars Bode
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany.
| | - Nikhat Contractor
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Daniela Barile
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Nicola Pohl
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Anthony R Prudden
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Geert-Jan Boons
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Yong-Su Jin
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Stefan Jennewein
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| |
Collapse
|
27
|
Sprenger GA, Baumgärtner F, Albermann C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol 2017; 258:79-91. [PMID: 28764968 DOI: 10.1016/j.jbiotec.2017.07.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Human milk oligosaccharides (HMO) are almost unique constituents of breast milk and are not found in appreciable amounts in cow milk. Due to several positive aspects of HMO for the development, health, and wellbeing of infants, production of HMO would be desirable. As a result, scientists from different disciplines have developed methods for the preparation of single HMO compounds. Here, we review approaches to HMO preparation by (chemo-)enzymatic syntheses or by whole-cell biotransformation with recombinant bacterial cells. With lactose as acceptor (in vitro or in vivo), fucosyltransferases can be used for the production of 2'-fucosyllactose, 3-fucosyllactose, or more complex fucosylated core structures. Sialylated HMO can be produced by sialyltransferases and trans-sialidases. Core structures as lacto-N-tetraose can be obtained by glycosyltransferases from chemical donor compounds or by multi-enzyme cascades; recent publications also show production of lacto-N-tetraose by recombinant Escherichia coli bacteria and approaches to obtain fucosylated core structures. In view of an industrial production of HMOs, the whole cell biotransformation is at this stage the most promising option to provide human milk oligosaccharides as food additive.
Collapse
Affiliation(s)
- Georg A Sprenger
- Institute of Microbiology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany.
| | - Florian Baumgärtner
- Institute of Microbiology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Christoph Albermann
- Institute of Microbiology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| |
Collapse
|
28
|
Nagy G, Peng T, Pohl NLB. Recent Liquid Chromatographic Approaches and Developments for the Separation and Purification of Carbohydrates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:3579-3593. [PMID: 28824713 PMCID: PMC5558844 DOI: 10.1039/c7ay01094j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbohydate purification remains a bottleneck in securing analytical standards from natural sources or by chemical or enzymatic synthesis. This review highlights the scope and remaining limitations of recent approaches and methods development in liquid chromatography for robust and higher-throughput carbohydrate separation and isolation.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
29
|
Isoda Y, Sasaki N, Kitamura K, Takahashi S, Manmode S, Takeda-Okuda N, Tamura JI, Nokami T, Itoh T. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block. Beilstein J Org Chem 2017; 13:919-924. [PMID: 28684973 PMCID: PMC5480352 DOI: 10.3762/bjoc.13.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022] Open
Abstract
The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.
Collapse
Affiliation(s)
- Yuta Isoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Kei Kitamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Shuji Takahashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Sujit Manmode
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Naoko Takeda-Okuda
- Department of Regional Environment, Faculty of Regional Sciences, Tottori University, 4-101 Koyama-minami, Tottori 680-8551, Japan
| | - Jun-Ichi Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.,Department of Regional Environment, Faculty of Regional Sciences, Tottori University, 4-101 Koyama-minami, Tottori 680-8551, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
30
|
Hahm HS, Broecker F, Kawasaki F, Mietzsch M, Heilbronn R, Fukuda M, Seeberger PH. Automated Glycan Assembly of Oligo-N-Acetyllactosamine and Keratan Sulfate Probes to Study Virus-Glycan Interactions. Chem 2017. [DOI: 10.1016/j.chempr.2016.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Abstract
Structurally diverse glycans are expressed by all animate beings and exert diverse biological functions through specific interactions with glycan binding proteins (GBPs). In humans, glycan-GBP interactions are implicated in many disease-relevant processes in development, infection and immune response to bacterial and viral pathogens. Recent progress in chemical synthesis, including automated glycan assembly, has facilitated access to complex glycans that cannot be isolated from biological material. Glycan immobilization on microarrays allows rapid, multiplexed glycan-GBP interaction studies to reveal biological functions. Synthetic glycan microarrays have enabled, for instance, the identification of glycan ligands for lectins, the definition of vaccine antigens, revealed viral glycan receptors and can serve as diagnostic tools for human disease. Here, we describe the methods to fabricate custom glycan microarrays that are used to examine glycan-GBP binding specificities. Conjugation-ready synthetic glycans are covalently attached to microarray surfaces through nucleophilic linker moieties. Microarrays are incubated with GBPs, and binding events are quantitatively detected by fluorescent signals. These methods are readily adaptable to a multitude of purposes from basic research to biomedical applications.
Collapse
|
32
|
Nagy G, Peng T, Kabotso DEK, Novotny MV, Pohl NLB. Protocol for the purification of protected carbohydrates: toward coupling automated synthesis to alternate-pump recycling high-performance liquid chromatography. Chem Commun (Camb) 2016; 52:13253-13256. [PMID: 27775116 PMCID: PMC5123635 DOI: 10.1039/c6cc07584c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 10/17/2016] [Indexed: 11/21/2022]
Abstract
Given recent advances in automated oligosaccharide synthesis, analytical techniques that can be coupled to a synthetic framework are needed to not just identify but also purify to homogeneity protected carbohydrate compounds at levels of ≥99.5% purity. Herein, an alternate-pump recycling high-performance liquid chromatography (R-HPLC) method has been developed to allow purification of protected carbohydrates at levels of ≥99.5% purity.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Daniel E K Kabotso
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
33
|
Hahm HS, Liang CF, Lai CH, Fair RJ, Schuhmacher F, Seeberger PH. Automated Glycan Assembly of Complex Oligosaccharides Related to Blood Group Determinants. J Org Chem 2016; 81:5866-77. [DOI: 10.1021/acs.joc.6b00554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heung Sik Hahm
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Chien-Fu Liang
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Chian-Hui Lai
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Richard J. Fair
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Frank Schuhmacher
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| |
Collapse
|
34
|
Mereiter S, Balmaña M, Gomes J, Magalhães A, Reis CA. Glycomic Approaches for the Discovery of Targets in Gastrointestinal Cancer. Front Oncol 2016; 6:55. [PMID: 27014630 PMCID: PMC4783390 DOI: 10.3389/fonc.2016.00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) cancer is the most common group of malignancies and many of its types are among the most deadly. Various glycoconjugates have been used in clinical practice as serum biomarker for several GI tumors, however, with limited diagnose application. Despite the good accessibility by endoscopy of many GI organs, the lack of reliable serum biomarkers often leads to late diagnosis of malignancy and consequently low 5-year survival rates. Recent advances in analytical techniques have provided novel glycoproteomic and glycomic data and generated functional information and putative biomarker targets in oncology. Glycosylation alterations have been demonstrated in a series of glycoconjugates (glycoproteins, proteoglycans, and glycosphingolipids) that are involved in cancer cell adhesion, signaling, invasion, and metastasis formation. In this review, we present an overview on the major glycosylation alterations in GI cancer and the current serological biomarkers used in the clinical oncology setting. We further describe recent glycomic studies in GI cancer, namely gastric, colorectal, and pancreatic cancer. Moreover, we discuss the role of glycosylation as a modulator of the function of several key players in cancer cell biology. Finally, we address several state-of-the-art techniques currently applied in this field, such as glycomic and glycoproteomic analyses, the application of glycoengineered cell line models, microarray and proximity ligation assay, and imaging mass spectrometry, and provide an outlook to future perspectives and clinical applications.
Collapse
Affiliation(s)
- Stefan Mereiter
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona , Girona , Spain
| | - Joana Gomes
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Niu Y, He J, Li Y, Zhao Y, Xia C, Yuan G, Zhang L, Zhang Y, Yu C. Multi-purpose electrochemical biosensor based on a “green” homobifunctional cross-linker coupled with PAMAM dendrimer grafted p-MWCNTs as a platform: application to detect α2,3-sialylated glycans and α2,6-sialylated glycans in human serum. RSC Adv 2016. [DOI: 10.1039/c6ra03570a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sialylated glycans are crucial molecular targets for cancer diagnosis and clinical research.
Collapse
Affiliation(s)
- Yazhen Niu
- Institute of Life Science and School of Public Health
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Junlin He
- Institute of Life Science and School of Public Health
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yuliang Li
- Institute of Life Science and School of Public Health
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yilin Zhao
- Institute of Life Science and School of Public Health
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Chunyong Xia
- Institute of Life Science and School of Public Health
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Guolin Yuan
- Institute of Life Science and School of Public Health
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Lei Zhang
- Institute of Life Science and School of Public Health
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yuchan Zhang
- Institute of Life Science and School of Public Health
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Chao Yu
- Institute of Life Science and School of Public Health
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| |
Collapse
|
36
|
Abstract
Carbohydrates are the most abundant biopolymers on earth and part of every living creature. Glycans are essential as materials for nutrition and for information transfer in biological processes. To date, in few cases a detailed correlation between glycan structure and glycan function has been established. A molecular understanding of glycan function will require pure glycans for biological, immunological, and structural studies. Given the immense structural complexity of glycans found in living organisms and the lack of amplification methods or expression systems, chemical synthesis is the only means to access usable quantities of pure glycan molecules. While the solid-phase synthesis of DNA and peptides has become routine for decades, access to glycans has been technically difficult, time-consuming and confined to a few expert laboratories. In this Account, the development of a comprehensive approach to the automated synthesis of all classes of mammalian glycans, including glycosaminoglycans and glycosylphosphatidyl inositol (GPI) anchors, as well as bacterial and plant carbohydrates is described. A conceptual advance concerning the logic of glycan assembly was required in order to enable automated execution of the synthetic process. Based on the central glycosidic bond forming reaction, a general concept for the protecting groups and leaving groups has been developed. Building blocks that can be procured on large scale, are stable for prolonged periods of time, but upon activation result in high yields and selectivities were identified. A coupling-capping and deprotection cycle was invented that can be executed by an automated synthesis instrument. Straightforward postsynthetic protocols for cleavage from the solid support as well as purification of conjugation-ready oligosaccharides have been established. Introduction of methods to install selectively a wide variety of glycosidic linkages has enabled the rapid assembly of linear and branched oligo- and polysaccharides as large as 30-mers. Fast, reliable access to defined glycans that are ready for conjugation has given rise to glycan arrays, glycan probes, and synthetic glycoconjugate vaccines. While an ever increasing variety of glycans are accessible by automated synthesis, further methodological advances in carbohydrate chemistry are needed to make all possible glycans found in nature. These tools begin to fundamentally impact the medical but also materials aspects of the glycosciences.
Collapse
Affiliation(s)
- Peter H. Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
37
|
Lai CH, Hahm HS, Liang CF, Seeberger PH. Automated solid-phase synthesis of oligosaccharides containing sialic acids. Beilstein J Org Chem 2015; 11:617-21. [PMID: 26124863 PMCID: PMC4464161 DOI: 10.3762/bjoc.11.69] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/20/2015] [Indexed: 01/18/2023] Open
Abstract
A sialic acid glycosyl phosphate building block was designed and synthesized. This building block was used to prepare α-sialylated oligosaccharides by automated solid-phase synthesis selectively.
Collapse
Affiliation(s)
- Chian-Hui Lai
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Heung Sik Hahm
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany ; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Chien-Fu Liang
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany ; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|