1
|
Abu UO, Akter S, Nepal B, Pitton KA, Guiton BS, Strachan DR, Sumanasekera G, Wang H, Jasinski JB. Ultra-Narrow Phosphorene Nanoribbons Produced by Facile Electrochemical Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203148. [PMID: 36068163 PMCID: PMC9631066 DOI: 10.1002/advs.202203148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Phosphorene nanoribbons (PNRs) have inspired strong research interests to explore their exciting properties that are associated with the unique two-dimensional (2D) structure of phosphorene as well as the additional quantum confinement of the nanoribbon morphology, providing new materials strategy for electronic and optoelectronic applications. Despite several important properties of PNRs, the production of these structures with narrow widths is still a great challenge. Here, a facile and straightforward approach to synthesize PNRs via an electrochemical process that utilize the anisotropic Na+ diffusion barrier in black phosphorus (BP) along the [001] zigzag direction against the [100] armchair direction, is reported. The produced PNRs display widths of good uniformity (10.3 ± 3.8 nm) observed by high-resolution transmission electron microscopy, and the suppressed B2g vibrational mode from Raman spectroscopy results. More interestingly, when used in field-effect transistors, synthesized bundles exhibit the n-type behavior, which is dramatically different from bulk BP flakes which are p-type. This work provides insights into a new synthesis approach of PNRs with confined widths, paving the way toward the development of phosphorene and other highly anisotropic nanoribbon materials for high-quality electronic applications.
Collapse
Affiliation(s)
- Usman O. Abu
- Conn Center for Renewable Energy ResearchUniversity of LouisvilleLouisvilleKY40292USA
| | - Sharmin Akter
- Department of Mechanical EngineeringUniversity of LouisvilleLouisvilleKY40292USA
| | - Bimal Nepal
- Department of Physics and AstronomyUniversity of LouisvilleLouisvilleKY40292USA
| | - Kathryn A. Pitton
- Department of ChemistryUniversity of Kentucky125 Chemistry–Physics BuildingLexingtonKY40506‐0055USA
| | - Beth S. Guiton
- Department of ChemistryUniversity of Kentucky125 Chemistry–Physics BuildingLexingtonKY40506‐0055USA
| | - Douglas R. Strachan
- Department of Physics and AstronomyUniversity of Kentucky177 Chemistry–Physics BuildingLexingtonKY40506‐0055USA
| | - Gamini Sumanasekera
- Department of Physics and AstronomyUniversity of LouisvilleLouisvilleKY40292USA
| | - Hui Wang
- Department of Mechanical EngineeringUniversity of LouisvilleLouisvilleKY40292USA
| | - Jacek B. Jasinski
- Conn Center for Renewable Energy ResearchUniversity of LouisvilleLouisvilleKY40292USA
| |
Collapse
|
5
|
Chen Z, Zhang W, Palma CA, Lodi Rizzini A, Liu B, Abbas A, Richter N, Martini L, Wang XY, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Kläui M, Candini A, Affronte M, Zhou C, De Renzi V, del Pennino U, Barth JV, Räder HJ, Narita A, Feng X, Müllen K. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. J Am Chem Soc 2016; 138:15488-15496. [DOI: 10.1021/jacs.6b10374] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zongping Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Wen Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Carlos-Andres Palma
- Physik-Department, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany
| | - Alberto Lodi Rizzini
- Dipartimento
di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
- CNR-NANO, Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy
| | - Bilu Liu
- Department
of Electrical Engineering and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ahmad Abbas
- Department
of Electrical Engineering and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Electrical Engineering, King Abdulaziz University, Abdullah
Sulayman Street, Jeddah 22254, Saudi Arabia
| | - Nils Richter
- Institut
für Physik, Johannes Gutenberg Universität-Mainz, Staudingerweg 7, D-55128 Mainz, Germany
- Graduate
School of Excellence Materials Science in Mainz, Johannes Gutenberg Universität-Mainz, Staudingerweg 9, D-55128 Mainz, Germany
| | - Leonardo Martini
- Dipartimento
di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
- CNR-NANO, Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy
| | - Xiao-Ye Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Nicola Cavani
- Dipartimento
di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
- CNR-NANO, Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy
| | - Hao Lu
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Neeraj Mishra
- Center
for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Camilla Coletti
- Center
for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Reinhard Berger
- Center
for Advancing Electronics Dresden and Department of Chemistry and
Food Chemistry, Technische Universität Dresden, Mommsenstraße
4, D-01062 Dresden, Germany
| | - Florian Klappenberger
- Physik-Department, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany
| | - Mathias Kläui
- Institut
für Physik, Johannes Gutenberg Universität-Mainz, Staudingerweg 7, D-55128 Mainz, Germany
- Graduate
School of Excellence Materials Science in Mainz, Johannes Gutenberg Universität-Mainz, Staudingerweg 9, D-55128 Mainz, Germany
| | - Andrea Candini
- CNR-NANO, Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy
| | - Marco Affronte
- Dipartimento
di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
- CNR-NANO, Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy
| | - Chongwu Zhou
- Department
of Electrical Engineering and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Valentina De Renzi
- Dipartimento
di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
- CNR-NANO, Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy
| | - Umberto del Pennino
- Dipartimento
di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
- CNR-NANO, Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy
| | - Johannes V. Barth
- Physik-Department, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany
| | - Hans Joachim Räder
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Xinliang Feng
- Center
for Advancing Electronics Dresden and Department of Chemistry and
Food Chemistry, Technische Universität Dresden, Mommsenstraße
4, D-01062 Dresden, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
6
|
Abstract
Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.
Collapse
Affiliation(s)
- Oksana Ostroverkhova
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
7
|
Soavi G, Dal Conte S, Manzoni C, Viola D, Narita A, Hu Y, Feng X, Hohenester U, Molinari E, Prezzi D, Müllen K, Cerullo G. Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nat Commun 2016; 7:11010. [PMID: 26984281 PMCID: PMC4800436 DOI: 10.1038/ncomms11010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/10/2016] [Indexed: 01/21/2023] Open
Abstract
Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron–hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton–exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics. Graphene nanoribbons confine electrons to just one dimension and this gives rise to strong electron–hole interactions. Here, the authors investigate the creation and recombination of biexcitons in these structures by ultrafast optical pulses using femtosecond transient absorption spectroscopy.
Collapse
Affiliation(s)
- Giancarlo Soavi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano 20133, Italy
| | - Stefano Dal Conte
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo Da Vinci 32, Milano 20133, Italy
| | - Cristian Manzoni
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo Da Vinci 32, Milano 20133, Italy
| | - Daniele Viola
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano 20133, Italy
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yunbin Hu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Xinliang Feng
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ulrich Hohenester
- Institute of Physics, University of Graz, Universitätsplatz 5, Graz 8010, Austria
| | - Elisa Molinari
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Modena 41125, Italy.,Istituto Nanoscienze, CNR, via G. Campi 213/a, Modena 41125, Italy
| | - Deborah Prezzi
- Istituto Nanoscienze, CNR, via G. Campi 213/a, Modena 41125, Italy
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano 20133, Italy.,Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo Da Vinci 32, Milano 20133, Italy
| |
Collapse
|