1
|
Tavakoli-Koopaei R, Javadi-Zarnaghi F, Mirhendi H. Unified-amplifier based primer exchange reaction (UniAmPER) enabled detection of SARS-CoV-2 from clinical samples. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 357:131409. [PMID: 35035095 PMCID: PMC8750742 DOI: 10.1016/j.snb.2022.131409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Primer exchange reaction (PER) is an emergent method for non-templated synthesis of single stranded DNA molecules. PER has been shown to be effective in cell imaging systems and for detection of macromolecules. A particular application of PER is to detect a specific target nucleic acid. To this endeavor, two coupled DNA hairpins, a detector and an amplifier, play in accordance to extend a target nucleic acid with a concatemer DNA sequence. Here we introduced unified-amplifier based primer exchange reaction (UniAmPER) that beneficially extends the target by a unified-amplifier. The unified-amplifier operates as both detector and amplifier hairpins. The extension resulted in synthesis of concatemer G-rich sequences. The G-rich sequences were expected to form G-quadruplex (GQ) structures. Presence of the GQ structures were investigated by peroxidase activity of GQs in presence of hemin, H2°2 and 3,3',5,5'-Tetramethylbenzidine (TMB) as well as by fluorescence signal generation upon intercalation of thioflavin T (ThT). The presented unified-amplifier in this study facilitates application of PER systems for development of colorimetric or fluorogenic biosensors. As a proof of principle, the method has been applied for detection of reversely transcribed cDNAs from clinical SARS-CoV-2 samples.
Collapse
Affiliation(s)
- Reyhaneh Tavakoli-Koopaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Javadi-Zarnaghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hossein Mirhendi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Core Facilities Research Laboratory, Mycology Reference Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
3
|
Bialy RM, Li Y, Brennan JD. Target-Dependent Protection of DNA Aptamers against Nucleolytic Digestion Enables Signal-On Biosensing with Toehold-Mediated Rolling Circle Amplification. Chemistry 2021; 27:14543-14549. [PMID: 34437748 DOI: 10.1002/chem.202102975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Indexed: 02/06/2023]
Abstract
We report a generalizable strategy for biosensing that takes advantage of the resistance of DNA aptamers against nuclease digestion when bound with their targets, coupled with toehold mediated strand displacement (TMSD) and rolling circle amplification (RCA). A DNA aptamer containing a toehold extension at its 5'-end protects it from 3'-exonuclease digestion by phi29 DNA polymerase (phi29 DP) in a concentration-dependent manner. The protected aptamer can participate in RCA in the presence of a circular template that is designed to free the aptamer from its target via TMSD. The absence of the target leads to aptamer digestion, and thus no RCA product is produced, resulting in a turn-on sensor. Using two different DNA aptamers, we demonstrate rapid and quantitative real-time fluorescence detection of two human proteins: platelet-derived growth factor (PDGF) and thrombin. Sensitive detection of PDGF was also achieved in human serum and human plasma, demonstrating the selectivity of the assay.
Collapse
Affiliation(s)
- Roger M Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
4
|
Bialy RM, Li Y, Brennan JD. Target-Mediated 5'-Exonuclease Digestion of DNA Aptamers with RecJ to Modulate Rolling Circle Amplification for Biosensing. Chembiochem 2021; 23:e202100476. [PMID: 34643997 DOI: 10.1002/cbic.202100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Indexed: 11/11/2022]
Abstract
We report a new method for biosensing based on the target-mediated resistance of DNA aptamers against 5'-exonuclease digestion, allowing them to act as primers for rolling circle amplification (RCA). A target-bound DNA strand containing an aptamer region on the 5'-end and a primer region on the 3'-end is protected from 5'-exonuclease digestion by RecJ exonuclease in a target-dependent manner. As the protected aptamer is at the 5'-end, the exposed primer on the 3'-end can participate in RCA in the presence of a circular template to generate a turn-on sensor. Without target, RecJ digests the primer and prevents RCA from occurring, allowing quantitative fluorescence detection of both thrombin, a protein, and ochratoxin A (OTA), a small molecule, at picomolar concentrations.
Collapse
Affiliation(s)
- Roger M Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4O3, Canada
| |
Collapse
|
5
|
Correction to: DNA Nanotechnology for Multimodal Synergistic Theranostics. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00190-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
|
7
|
Li J, Mohammed-Elsabagh M, Paczkowski F, Li Y. Circular Nucleic Acids: Discovery, Functions and Applications. Chembiochem 2020; 21:1547-1566. [PMID: 32176816 DOI: 10.1002/cbic.202000003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Circular nucleic acids (CNAs) are nucleic acid molecules with a closed-loop structure. This feature comes with a number of advantages including complete resistance to exonuclease degradation, much better thermodynamic stability, and the capability of being replicated by a DNA polymerase in a rolling circle manner. Circular functional nucleic acids, CNAs containing at least a ribozyme/DNAzyme or a DNA/RNA aptamer, not only inherit the advantages of CNAs but also offer some unique application opportunities, such as the design of topology-controlled or enabled molecular devices. This article will begin by summarizing the discovery, biogenesis, and applications of naturally occurring CNAs, followed by discussing the methods for constructing artificial CNAs. The exploitation of circular functional nucleic acids for applications in nanodevice engineering, biosensing, and drug delivery will be reviewed next. Finally, the efforts to couple functional nucleic acids with rolling circle amplification for ultra-sensitive biosensing and for synthesizing multivalent molecular scaffolds for unique applications in biosensing and drug delivery will be recapitulated.
Collapse
Affiliation(s)
- Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Mostafa Mohammed-Elsabagh
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Freeman Paczkowski
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
8
|
Yin C, Jiang D, Xiao D, Zhou C. An enzyme-free and label-free visual sensing strategy for the detection of thrombin using a plasmonic nanoplatform. Analyst 2020; 145:2219-2225. [PMID: 32067006 DOI: 10.1039/c9an02340b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzyme-free and label-free visual sensing strategy was developed for sensitively detecting thrombin using a plasmonic nanoplatform. Both the thrombin-triggered catalytic hairpin assembly (CHA) amplification reaction and G-quadruplex/hemin DNAzyme-controlled plasmonic signal readout were engineered on an electrospun nanofibrous membrane. Owing to its large specific surface area and porous structure, the nanofibrous membrane enhanced the loading capacity of B-H2 and the interface interaction efficiency. This plasmonic nanoplatform was used to perform the sensitive and naked-eye detection of thrombin as low as 1.0 pM in human serum samples. This visual strategy can discriminate thrombin from other co-existing proteins very well. Moreover, the visual sensing platform exhibited excellent reusability and long-term stability. The proposed enzyme-free and label-free plasmonic nanoplatform is low-cost, easy to operate and highly sensitive, and has potential applications in the point-of-care detection of protein biomarkers.
Collapse
Affiliation(s)
- Cuiyun Yin
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | | | | | | |
Collapse
|
9
|
Xiong E, Zhen D, Jiang L, Zhou X. Binding-Induced 3D-Bipedal DNA Walker for Cascade Signal Amplification Detection of Thrombin Combined with Catalytic Hairpin Assembly Strategy. Anal Chem 2019; 91:15317-15324. [PMID: 31710462 DOI: 10.1021/acs.analchem.9b04987] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As an important biomarker, thrombin (TB) is a major player in thrombosis and hemostasis and has attracted increasing attention involving its determination. Herein a universal and ultrasensitive fluorescence biosensor based on a binding-induced 3D-bipedal DNA walker and catalytic hairpin assembly (CHA) strategy has been proposed for cascade signal amplification detection of thrombin. In this study, we designed two proximity probes (foot 1 and foot 2) which include a specific affinity ligand for TB binding and a Pb2+-dependent DNAzyme tail sequence. In the presence of TB, the simultaneous binding of TB to foot 1 (F1) and foot 2 (F2) via TB aptamer (TBA) brings the tail sequences into close proximity and the melting temperature for tail sequences and track DNA is increased, allowing the Pb2+-dependent DNAzyme to cleave the track DNA into two short fragments which have lower affinities for the DNAzyme and, finally, leading to the release of trigger DNA (T-DNA) for subsequent CHA reaction. In the meantime, the dissociated DNA walkers (F1 and F2) explore adjacent unwound track DNA, and the walking procedure is conducted. Unlike the conventional unipedal DNA walkers that anchor foot DNA and track DNA on the same sensing surface, the proposed 3D-bipedal DNA walking machine can not only increase the local concentration of track DNA but can also improve the walking efficiency and expand the range of the walkers to some extent due to the two free feet. Moreover, with the advantages of superior sensitivity and excellent specificity, this biosensing platform exhibits a huge potential in practical application in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Erhu Xiong
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Deshuai Zhen
- College of Chemistry and Chemical Engineering , Qiannan Normal University for Nationalities , Duyun 558000 , China.,State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082 , China
| | - Ling Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082 , China
| | - Xiaoming Zhou
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
10
|
Li J, Wang S, Jiang B, Xiang Y, Yuan R. Target-induced structure switching of aptamers facilitates strand displacement for DNAzyme recycling amplification detection of thrombin in human serum. Analyst 2019; 144:2430-2435. [PMID: 30816386 DOI: 10.1039/c9an00030e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To monitor the thrombin concentration under the condition of abnormal blood coagulation is of clinical significance for the diagnosis of various diseases. Here, on the basis of the aptamer structure switching induced by the target molecules and the signal amplification strategy via recycling of metal-ion dependent DNAzymes, we have established a sensitive and simple fluorescent aptasensor for detecting thrombin in human serum. The thrombin target specifically binds to the aptamer sequence and causes a corresponding conformational structure switching, which leads to the formation of a toehold sequence to facilitate the strand migration displacement reaction for the generation of functional metal-ion dependent DNAzymes. These DNAzymes further cleave the fluorescently quenched hairpin substrates cyclically to yield substantially amplified fluorescence recovery for sensitively detecting thrombin in the dynamic range from 0.01 nM to 50 nM. Such an aptasensor shows a detection limit of 6.9 pM and can achieve the monitoring of thrombin in diluted human serum with high selectivity, offering a universal sensing strategy for the construction of various sensitive and simple aptasensors to detect different biomarker molecules.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | | | | | | | | |
Collapse
|
11
|
Zhan Z, Liu J, Yan L, Aguilar ZP, Xu H. Sensitive fluorescent detection of Listeria monocytogenes by combining a universal asymmetric polymerase chain reaction with rolling circle amplification. J Pharm Biomed Anal 2019; 169:181-187. [PMID: 30877929 DOI: 10.1016/j.jpba.2019.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
A new, facile, low-cost, and highly sensitive method for detection of Listeria monocytogenes involving a combination of asymmetric polymerase chain reaction (aPCR) and rolling circle amplification (RCA) had been developed. The aPCR-RCA processes were not new but components of the processes made the assay useful. Twenty-one thymine (21-T) tagged forward primer generated universal twenty-one adenine (21-A) aPCR amplicons after aPCR amplification. A poly-T sequence dumbbell-like RCA template was produced through the blunt-end ligation activity of T4 DNA ligase. After the mixture of aPCR amplicons and dumbbell-like RCA template, the RCA reaction would initiate when the addition of phi29 DNA polymerase, then a large number of G-quadruplex sequences were produced which allowed the intercalation of Thioflavin T (3,6-dimethyl-2-(4-dimethylaminophenyl) benzo-thiazolium cation, THT) for easy fluorescence detection. Under the optimal conditions, the assay showed a limit of detection (LOD) of 4.8 × 101 CFU/mL in pure culture and 4.0 × 102 CFU/g in spiked lettuce homogenates. By changing the aPCR primer, the aPCR-RCA method developed in this study had a potential to detect other bacteria without the design an RCA template for each bacterium.
Collapse
Affiliation(s)
- Zhongxu Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Ju Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Leina Yan
- Jiangxi Institute for Drug Control, 330029, PR China
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
12
|
Yan Y, Li J, Li W, Wang Y, Song W, Bi S. DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification. NANOSCALE 2018; 10:22456-22465. [PMID: 30478460 DOI: 10.1039/c8nr07294a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanotechnology has been developed to construct a variety of functional two- and three-dimensional structures for versatile applications. Rolling circle amplification (RCA) has become prominent in the assembly of DNA-inorganic composites with hierarchical structures and attractive properties. Here, we demonstrate a one-pot method to directly encapsulate horseradish peroxidase (HRP) in DNA flowers (DFs) during RCA. The growing DNA strands and Mg2PPi crystals lead to the construction of porous DFs, which provide sufficient interaction sites for spontaneously incorporating HRP molecules into DFs with high loading capacity and good stability. Furthermore, in comparison with free HRP, the DNA flower-encapsulated HRP (termed HRP-DFs) demonstrate enhanced enzymatic activity, which can efficiently biocatalyze the H2O2-mediated etching of gold nanorods (AuNRs) to generate distinct color changes since the longitudinal localized surface plasmon resonance (LSPR) frequency of AuNRs is highly sensitive to the changes in the AuNR aspect ratio. Through rationally incorporating the complementary thrombin aptamer sequence into the circular template, the synthesized HRP-DF composites are readily used as amplified labels for visual and colorimetric detection of thrombin with ultrahigh sensitivity and excellent selectivity. Therefore, our proposed strategy for direct encapsulation of enzyme molecules into DNA structures shows considerable potential applications in biosensing, biocatalysis, and point-of-care diagnostics.
Collapse
Affiliation(s)
- Yongcun Yan
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, P. R. China.
| | | | | | | | | | | |
Collapse
|
13
|
Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens Bioelectron 2018; 114:52-65. [DOI: 10.1016/j.bios.2018.05.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 01/13/2023]
|
14
|
An ultrasensitive and switch-on platform for aflatoxin B1 detection in peanut based on the fluorescence quenching of graphene oxide-gold nanocomposites. Talanta 2018; 181:346-351. [DOI: 10.1016/j.talanta.2018.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/29/2017] [Accepted: 01/15/2018] [Indexed: 01/24/2023]
|
15
|
Wang YH, Huang KJ, Wu X, Ma YY, Song DL, Du CY, Chang SH. Ultrasensitive supersandwich-type biosensor for enzyme-free amplified microRNA detection based on N-doped graphene/Au nanoparticles and hemin/G-quadruplexes. J Mater Chem B 2018; 6:2134-2142. [PMID: 32254436 DOI: 10.1039/c8tb00061a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A simple, enzyme-free supersandwich-type biosensor is fabricated for the ultrasensitive detection of microRNAs (miRNAs) using N-doped graphene/Au nanoparticles (NG-AuNPs) and hemin/G-quadruplexes. In the proposed strategy, AuNPs are deposited on the surface of a MoSe2 modified electrode to immobilize the thiol-modified hairpin probe through the strong Au-S bond. When the target miRNA is added, capture DNA hybridizes with it and unfolds its stem-and-loop structure. The NG-AuNP hybrids are the main amplification element and are modified by hybridization with assistance DNA and the terminus of capture DNA, resulting in the formation of the supersandwich structure. The assistance DNA is embedded into the hemin/G-quadruplex complexes in the presence of hemin and K+ to provide an exceptional current signal for the detection of miRNAs. Under the optimized experimental conditions, a detection limit of 0.17 fM is obtained with a linear range of 10 fM-1 nM. In addition, the present biosensor shows outstanding selectivity towards mismatched miRNAs. This biosensor platform successfully realized the combination of the signal amplification technique with the supersandwich structure, providing a promising approach for the detection of miRNA-21 in practical applications.
Collapse
Affiliation(s)
- Yi-Han Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhou H, Liu J, Xu JJ, Zhang SS, Chen HY. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 2018; 47:1996-2019. [PMID: 29446429 DOI: 10.1039/c7cs00573c] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shu-Sheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
17
|
Abstract
Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.
Collapse
Affiliation(s)
- Longhua Tang
- State
Key Laboratory of Modern Optical Instrumentation, College of Optical
Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jinghong Li
- Department
of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Cao Y, Wang Z, Cao J, Mao X, Chen G, Zhao J. A general protein aptasensing strategy based on untemplated nucleic acid elongation and the use of fluorescent copper nanoparticles: Application to the detection of thrombin and the vascular endothelial growth factor. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2393-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Shuai HL, Wu X, Huang KJ. Molybdenum disulfide sphere-based electrochemical aptasensors for protein detection. J Mater Chem B 2017; 5:5362-5372. [DOI: 10.1039/c7tb01276d] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we report the development of an ultrasensitive sandwich-type electrochemical aptasensor for protein detection.
Collapse
Affiliation(s)
- Hong-Lei Shuai
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
| | - Xu Wu
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
- School of Physics and Electronic Engineering
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
| |
Collapse
|
20
|
Affiliation(s)
- Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| |
Collapse
|
21
|
DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA. Biosens Bioelectron 2016; 86:990-995. [PMID: 27498326 DOI: 10.1016/j.bios.2016.07.049] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
This study reported on a novel sandwich enzyme linked immunosorbent assay (ELISA) for the sensitive determination of Escherichia coli O157:H7 (E. coli O157:H7) by using DNA-based hybridization chain reaction (HCR) and biotin-streptavidin signal amplification. The anti-E. coli O157:H7 polyclonal antibody (pAb) was immobilized in the ELISA wells. The anti-E. coli O157:H7 monoclonal antibody (mAb) and initiator strand (DNA1) were labeled on gold nanoparticle (AuNP) to form a mAb-AuNP-DNA1 complex. In the presence of the target E. coli O157:H7, the sandwiched immunocomplex, which is pAb-E. coli O157:H7-mAb-AuNP-DNA1, could be formed. Two types of biotinylated hairpin were subsequently added in the ELISA well. A nicked double-stranded DNA (dsDNA) that contained abundant biotins was formed after HCR. Detection was performed after adding horseradish peroxidase-streptavidin and substrate/chromogen solution. Under optimal conditions, E. coli O157:H7 could be detected in the range of 5×10(2) CFU/mL to 1×10(7) CFU/mL; the limit of detection was 1.08×10(2) CFU/mL in pure culture. The LOD of the novel ELISA was 185 times lower than that of traditional ELISA. The proposed method is considerably specific and can be applied in the detection of whole milk samples inoculated with E. coli O157:H7. The coefficient of variation of in pure culture and in whole milk was 0.99-5.88% and 0.76-5.38%, respectively. This method offers a promising application in the detection of low concentrations of food-borne pathogens.
Collapse
|
22
|
Diao W, Tang M, Ding X, Zhang Y, Yang J, Cheng W, Mo F, Wen B, Xu L, Yan Y. Electrochemical DNA biosensor based on MNAzyme-mediated signal amplification. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1910-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Gao F, Du L, Zhang Y, Zhou F, Tang D. A sensitive sandwich-type electrochemical aptasensor for thrombin detection based on platinum nanoparticles decorated carbon nanocages as signal labels. Biosens Bioelectron 2016; 86:185-193. [PMID: 27376191 DOI: 10.1016/j.bios.2016.06.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
Abstract
In this work, a novel and sensitive sandwich-type electrochemical aptasensor has been developed for thrombin detection based on platinum nanoparticles (Pt NPs) decorated carbon nanocages (CNCs) as signal tags. The morphological and compositional of the Pt NPs/CNCs were examined using transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The results showed that the Pt NPs with about 3-5nm in diameter were well dispersed on the surface of CNCs. The thiolated aptamer was firstly immobilized on the gold electrode to capture the thrombin molecules, and then aptamer functionalized Pt NPs/CNCs nanocomposites were used to fabricate a sandwich sensing platform. Then, the high-content Pt NPs on carbon nanocages acting as hydrogen peroxide-mimicking enzyme catalyzed the reduction of H2O2, resulting in significant electrochemical signal amplification. Differential pulse voltammetry is employed to detect thrombin with different concentrations. Under optimized conditions, the approach provided a good linear response range from 0.05 pM to 20nM with a low detection limit of 10fM. This Pt NPs/CNCs-based aptasensor shows good precision, acceptable stability and reproducibility, which provided a promising strategy for electrochemical aptamer-based detection of other biomolecules.
Collapse
Affiliation(s)
- Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| | - Lili Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yu Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Fuyi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
24
|
Miao X, Li Z, Ling L. Fluorescence recognition of double-stranded DNA based on the quenching of gold nanoparticles to a fluorophore labeled DNA probe. Analyst 2016; 141:5829-5834. [DOI: 10.1039/c6an01145d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work described an ultrasensitive fluorescent sensor for sequence-specific recognition of dsDNA based on the quenching of gold nanoparticles (AuNPs) to a fluorophore labeled DNA probe.
Collapse
Affiliation(s)
- Xiangmin Miao
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Zongbing Li
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Liansheng Ling
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- PR China
| |
Collapse
|
25
|
Herrmann IK. How nanotechnology-enabled concepts could contribute to the prevention, diagnosis and therapy of bacterial infections. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:239. [PMID: 26025027 PMCID: PMC4448307 DOI: 10.1186/s13054-015-0957-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This viewpoint summarizes a selection of nanotechnology-based key concepts relevant to critical care medicine. It focuses on novel approaches for a trigger-dependent release of antimicrobial substances from degradable nano-sized carriers, the ultra-sensitive detection of analytes in body fluid samples by plasmonic and fluorescent nanoparticles, and the rapid removal of pathogens from whole blood using magnetic nanoparticles. The concepts presented here could significantly contribute to the prevention, diagnosis and therapy of bacterial infections in future and it is now our turn to bring them from the bench to the bedside.
Collapse
Affiliation(s)
- Inge K Herrmann
- Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St Gallen, Switzerland.
| |
Collapse
|
26
|
Zeng S, Huang H, Huang Y, Liu X, Qin J, Zhao S, Chen ZF, Liang H. Label-free and amplified colorimetric assay of ribonuclease H activity and inhibition based on a novel enzyme-responsive DNAzyme cascade. RSC Adv 2015. [DOI: 10.1039/c5ra05712d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A simple, label-free and amplified colorimetric assay strategy based on a novel enzyme-responsive DNAzyme cascade is developed for assay of ribonuclease H activity and inhibition. This assay exhibits high sensitivity and selectivity.
Collapse
Affiliation(s)
- Shulan Zeng
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| | - Huakui Huang
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
- College of Chemistry and Pharmacy
| | - Yong Huang
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
- College of Chemistry and Pharmacy
| | - Xiaoqian Liu
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Jian Qin
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
- College of Chemistry and Pharmacy
| | - Zhen-Feng Chen
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| | - Hong Liang
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
- College of Chemistry and Pharmacy
| |
Collapse
|