1
|
Zhou H, Cheng M, Chu D, Liu X, An R, Pan S, Yang Z. Sulfate Derivatives with Heteroleptic Tetrahedra: New Deep-Ultraviolet Birefringent Materials in which Weak Interactions Modulate Functional Module Ordering. Angew Chem Int Ed Engl 2025; 64:e202413680. [PMID: 39143747 DOI: 10.1002/anie.202413680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Deep-ultraviolet (UV) birefringent materials are urgently needed to facilitate light polarization in deep-UV lithography. Maximizing anisotropy by regulating the alignment of functional modules is essential for improving the linear optical performance of birefringent materials. In this work, we proposed a strategy to design deep-UV birefringent materials that achieve functional module ordering via weak interactions. Following this strategy, four compounds CN4H7SO3CF3, CN4H7SO3CH3, C(NH2)3SO3CH3, and C(NH2)3SO3CF3 were identified as high-performance candidates for deep-UV birefringent materials. The millimeter-sized crystals of CN4H7SO3CF3, CN4H7SO3CH3, and C(NH2)3SO3CH3 were grown, and the transmittance spectra show that their cutoff edges are below 200 nm. CN4H7SO3CF3 exhibits the largest birefringence (0.149 @ 546 nm, 0.395 @ 200 nm) in the deep-UV region among reported sulfates and sulfate derivatives. It reveals that the hydrogen bond can modulate the module ordering of the heteroleptic tetrahedra and planar π-conjugated cations, thus greatly enhancing the birefringence. Our study not only discovers new deep-UV birefringent materials but also provides an upgraded strategy for optimizing optical anisotropy to achieve efficient birefringence.
Collapse
Affiliation(s)
- Huan Zhou
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Cheng
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
| | - Ran An
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Venkatesan P, Thamotharan S, Percino MJ, Ilangovan A. Intramolecular resonance assisted N–H⋅⋅⋅O=C hydrogen bond and weak noncovalent interactions in two asymmetrically substituted geminal amido-esters: Crystal structures and quantum chemical exploration. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Blagojević Filipović JP, Hall MB, Zarić SD. Stacking interactions of resonance-assisted hydrogen-bridged rings and C 6-aromatic rings. Phys Chem Chem Phys 2020; 22:13721-13728. [PMID: 32529195 DOI: 10.1039/d0cp01624a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stacking interactions between six-membered resonance-assisted hydrogen-bridged (RAHB) rings and C6-aromatic rings were systematically studied by analyzing crystal structures in the Cambridge Structural Database (CSD). The interaction energies were calculated by quantum-chemical methods. Although the interactions are stronger than benzene/benzene stacking interactions (-2.7 kcal mol-1), the strongest calculated RAHB/benzene stacking interaction (-3.7 kcal mol-1) is significantly weaker than the strongest calculated RAHB/RAHB stacking interaction (-4.7 kcal mol-1), but for a particular composition of RAHB rings, RAHB/benzene stacking interactions can be weaker or stronger than the corresponding RAHB/RAHB stacking interactions. They are also weaker than the strongest calculated stacking interaction between five-membered saturated hydrogen-bridged rings and benzene (-4.4 kcal mol-1) and between two five-membered saturated hydrogen-bridged rings (-4.9 kcal mol-1). SAPT energy decomposition analyses show that the strongest attractive term in RAHB/benzene stacking interactions is dispersion, however, it is mostly canceled by a repulsive exchange term; hence the geometries of the most stable structures are determined by an electrostatic term.
Collapse
Affiliation(s)
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
4
|
Ninković D, Blagojević Filipović JP, Hall MB, Brothers EN, Zarić SD. What Is Special about Aromatic-Aromatic Interactions? Significant Attraction at Large Horizontal Displacement. ACS CENTRAL SCIENCE 2020; 6:420-425. [PMID: 32232142 PMCID: PMC7099588 DOI: 10.1021/acscentsci.0c00005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 05/22/2023]
Abstract
High-level ab initio calculations show that the most stable stacking for benzene-cyclohexane is 17% stronger than that for benzene-benzene. However, as these systems are displaced horizontally the benzene-benzene attraction retains its strength. At a displacement of 5.0 Å, the benzene-benzene attraction is still ∼70% of its maximum strength, while benzene-cyclohexane attraction has fallen to ∼40% of its maximum strength. Alternatively, the radius of attraction (>2.0 kcal/mol) for benzene-benzene is 250% larger than that for benzene-cyclohexane. Thus, at relatively large distances aromatic rings can recognize each other, a phenomenon that helps explain their importance in protein folding and supramolecular structures.
Collapse
Affiliation(s)
- Dragan
B. Ninković
- Innovation
Center of the Faculty of Chemistry in Belgrade, Studentski trg 12-16, Belgrade 11001, Serbia
| | | | - Michael B. Hall
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- E-mail:
| | - Edward N. Brothers
- Department
of Chemistry, Texas A&M University at
Qatar, P.O. Box 23874, Doha, Qatar
| | - Snežana D. Zarić
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia
- Department
of Chemistry, Texas A&M University at
Qatar, P.O. Box 23874, Doha, Qatar
- E-mail:
| |
Collapse
|
5
|
Maity S, Ghosh TK, Gomila RM, Frontera A, Ghosh A. Recurrent π(arene)⋯π(chelate ring) motifs in four trinuclear Cu II2M II (M = Cd/Zn) complexes derived from an unsymmetrical N 2O 2 donor ligand: structural and theoretical investigations. CrystEngComm 2020. [DOI: 10.1039/d0ce01219j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Detailed DFT calculations of four new trinuclear Cu2M (M = ZnII and CdII) complexes derived from a N2O2 donor unsymmetrical Schiff base ligand have been accomplished.
Collapse
Affiliation(s)
- Souvik Maity
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Tanmoy Kumar Ghosh
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Rosa M. Gomila
- Serveis Científico-Tècnics
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- SPAIN
| | - Ashutosh Ghosh
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
6
|
Madni M, Ahmed MN, Hafeez M, Ashfaq M, Tahir MN, Gil DM, Galmés B, Hameed S, Frontera A. Recurrent π–π stacking motifs in three new 4,5-dihydropyrazolyl–thiazole–coumarin hybrids: X-ray characterization, Hirshfeld surface analysis and DFT calculations. NEW J CHEM 2020. [DOI: 10.1039/d0nj02931a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two different π–π stacking modes are described, studied and characterized in the crystal structures of 4,5-dihydropyrazolyl–thiazole–coumarin hybrids, including a partial aliphatic ring.
Collapse
Affiliation(s)
- Murtaza Madni
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry
- The University of Azad Jammu and Kashmir
- Muzaffarabad
- Pakistan
| | - Muhammad Hafeez
- Department of Chemistry
- The University of Azad Jammu and Kashmir
- Muzaffarabad
- Pakistan
| | | | | | - Diego M. Gil
- INBIOFAL (CONICET – UNT)
- Instituto de Química Orgánica – Cátedra de Química Orgánica I
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - Bartomeu Galmés
- Department de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Shahid Hameed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Antonio Frontera
- Department de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| |
Collapse
|
7
|
Chen X, Guo Z, Zhang C, Gao R, Zhang J, Ma H. Constructing a 3D-layered energetic metal–organic framework with the strong stacking interactions of hydrogen-bridged rings: the way to an insensitive high energy complex. CrystEngComm 2020. [DOI: 10.1039/d0ce00643b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Constructing 3D-layered EMOFs with strong stacking interactions of hydrogen-bridged rings to enhance their packing efficiency and energetic performances.
Collapse
Affiliation(s)
- Xiang Chen
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Zhaoqi Guo
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Cong Zhang
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Rong Gao
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Jianguo Zhang
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Haixia Ma
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|
8
|
Malenov DP, Zarić SD. Strong stacking interactions at large horizontal displacements of tropylium and cyclooctatetraenide ligands of transition metal complexes: crystallographic and DFT study. CrystEngComm 2020. [DOI: 10.1039/d0ce00501k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Large offset stacking of tropylium and COT ligands, which is dominant in crystal structures, surpasses an energy of −3.0 kcal mol−1.
Collapse
Affiliation(s)
- Dušan P. Malenov
- University of Belgrade – Faculty of Chemistry
- 11000 Belgrade
- Serbia
| | - Snežana D. Zarić
- University of Belgrade – Faculty of Chemistry
- 11000 Belgrade
- Serbia
| |
Collapse
|
9
|
Milovanović MR, Živković JM, Ninković DB, Stanković IM, Zarić SD. How flexible is the water molecule structure? Analysis of crystal structures and the potential energy surface. Phys Chem Chem Phys 2020; 22:4138-4143. [DOI: 10.1039/c9cp07042g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High level ab initio calculations predicted a possibility for energetically low-cost (±1 kcal mol−1) change of the bond angle and bond lengths in wide range,from 96.4° to 112.8° and from 0.930 Å to 0.989 Å, respectively.
Collapse
Affiliation(s)
| | | | | | - Ivana M. Stanković
- Institute of Chemistry, Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Snežana D. Zarić
- Faculty of Chemistry
- University of Belgrade
- Belgrade
- Serbia
- Texas A&M University at Qatar
| |
Collapse
|
10
|
Malenov DP, Aladić AJ, Zarić SD. Stacking interactions of borazine: important stacking at large horizontal displacements and dihydrogen bonding governed by electrostatic potentials of borazine. Phys Chem Chem Phys 2019; 21:24554-24564. [PMID: 31663532 DOI: 10.1039/c9cp02966d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Potential energy surfaces of borazine-benzene and borazine-borazine stacking interactions were studied by performing DFT, CCSD(T)/CBS and SAPT calculations. The strongest borazine-benzene stacking was found in a parallel-displaced geometry, with a CCSD(T)/CBS interaction energy of -3.46 kcal mol-1. The strongest borazine-borazine stacking has a sandwich geometry, with a CCSD(T)/CBS interaction energy of -3.57 kcal mol-1. The study showed that borazine forms significant stacking interactions at large horizontal displacements (over 4.5 Å), with energies of -2.20 kcal mol-1 for the borazine-benzene and -1.96 kcal mol-1 for the borazine-borazine system. The strength of interactions and their geometrical preferences can be rationalized by observing the electrostatic potentials of borazine and benzene, which is in agreement with SAPT analysis showing that electrostatics is the most important energy component for borazine stacking. All the interactions found in crystal structures of borazine and related compounds were identified either as potential curve minima or the geometries obtained from their optimizations. We also report a new dihydrogen bonding dimer with a CCSD(T)/CBS interaction energy of -2.37 kcal mol-1, which is encountered in the borazine crystal structures and enables the formation of additional simultaneous interactions that contribute to the overall stability of the crystals.
Collapse
Affiliation(s)
- Dušan P Malenov
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | | | | |
Collapse
|
11
|
Taylor R, Wood PA. A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. Chem Rev 2019; 119:9427-9477. [PMID: 31244003 DOI: 10.1021/acs.chemrev.9b00155] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The founding in 1965 of what is now called the Cambridge Structural Database (CSD) has reaped dividends in numerous and diverse areas of chemical research. Each of the million or so crystal structures in the database was solved for its own particular reason, but collected together, the structures can be reused to address a multitude of new problems. In this Review, which is focused mainly on the last 10 years, we chronicle the contribution of the CSD to research into molecular geometries, molecular interactions, and molecular assemblies and demonstrate its value in the design of biologically active molecules and the solid forms in which they are delivered. Its potential in other commercially relevant areas is described, including gas storage and delivery, thin films, and (opto)electronics. The CSD also aids the solution of new crystal structures. Because no scientific instrument is without shortcomings, the limitations of CSD research are assessed. We emphasize the importance of maintaining database quality: notwithstanding the arrival of big data and machine learning, it remains perilous to ignore the principle of garbage in, garbage out. Finally, we explain why the CSD must evolve with the world around it to ensure it remains fit for purpose in the years ahead.
Collapse
Affiliation(s)
- Robin Taylor
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Peter A Wood
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| |
Collapse
|
12
|
Antonijević IS, Malenov DP, Hall MB, Zarić SD. Study of stacking interactions between two neutral tetrathiafulvalene molecules in Cambridge Structural Database crystal structures and by quantum chemical calculations. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2019; 75:1-7. [DOI: 10.1107/s2052520618015494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 11/10/2022]
Abstract
Tetrathiafulvalene (TTF) and its derivatives are very well known as electron donors with widespread use in the field of organic conductors and superconductors. Stacking interactions between two neutral TTF fragments were studied by analysing data from Cambridge Structural Database crystal structures and by quantum chemical calculations. Analysis of the contacts found in crystal structures shows high occurrence of parallel displaced orientations of TTF molecules. In the majority of the contacts, two TTF molecules are displaced along their longer C
2 axis. The most frequent geometry has the strongest TTF–TTF stacking interaction, with CCSD(T)/CBS energy of −9.96 kcal mol−1. All the other frequent geometries in crystal structures are similar to geometries of the minima on the calculated potential energy surface.
Collapse
|
13
|
Malenov DP, Zarić SD. Stacking interactions between ruthenium p-cymene complexes: combined crystallographic and density functional study. CrystEngComm 2019. [DOI: 10.1039/c9ce01290g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stacking interactions between ruthenium p-cymene complexes are significantly strengthened by additional simultaneous C–H/π interactions of aromatic rings and their substituents.
Collapse
Affiliation(s)
| | - Snežana D. Zarić
- Faculty of Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
- Department of Chemistry
| |
Collapse
|
14
|
Malenov DP, Zarić SD. Strong stacking interactions of metal–chelate rings are caused by substantial electrostatic component. Dalton Trans 2019; 48:6328-6332. [DOI: 10.1039/c9dt00182d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stacking interactions of metal–chelate rings are strong due to very strong electrostatic energy component.
Collapse
Affiliation(s)
- Dušan P. Malenov
- Faculty of Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
- Department of Chemistry
| | - Snežana D. Zarić
- Faculty of Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
- Department of Chemistry
| |
Collapse
|
15
|
Milovanović MR, Andrić JM, Medaković VB, Djukic JP, Zarić SD. Investigation of interactions in Lewis pairs between phosphines and boranes by analyzing crystal structures from the Cambridge Structural Database. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2018; 74:255-263. [PMID: 29927388 DOI: 10.1107/s2052520618003736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
The interactions between phosphines and boranes in crystal structures have been investigated by analyzing data from the Cambridge Structural Database (CSD). The interactions between phosphines and boranes were classified into three types; two types depend on groups on the boron atom, whereas the third one involves frustrated Lewis pairs (FLPs). The data enabled geometric parameters in structures to be compared with phosphine-borane FLPs with classical Lewis pairs. Most of the crystal structures (78.1%) contain BH3 as the borane group. In these systems, the boron-phosphorus distance is shorter than systems where the boron atom is surrounded by groups other than hydrogen atoms. The analysis of the CSD data has shown that FLPs have a tendency for the longest boron-phosphorus distance among all phosphine-borane pairs, as well as different other geometrical parameters. The results show that most of the frustrated phosphine-borane pairs found in crystal structures are bridged ones. The minority of non-bridged FLP structures contain, beside phosphorus and boron atoms, other heteroatoms (O, N, S for instance).
Collapse
Affiliation(s)
- Milan R Milovanović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Jelena M Andrić
- Innovation Center, Department of Chemistry, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Vesna B Medaković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Jean Pierre Djukic
- Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg, 67000, France
| | - Sneǽana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| |
Collapse
|
16
|
Malenov DP, Zarić SD. Chelated metal ions modulate the strength and geometry of stacking interactions: energies and potential energy surfaces for chelate-chelate stacking. Phys Chem Chem Phys 2018; 20:14053-14060. [PMID: 29745942 DOI: 10.1039/c7cp06262a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Quantum chemical calculations were performed on model systems of stacking interactions between the acac type chelate rings of nickel, palladium, and platinum. CCSD(T)/CBS calculations showed that chelate-chelate stacking interactions are significantly stronger than chelate-aryl and aryl-aryl stacking interactions. Interaction energy surfaces were calculated at the LC-ωPBE-D3BJ/aug-cc-pVDZ level, which gives energies in good agreement with CCSD(T)/CBS. The stacking of chelates in an antiparallel orientation is stronger than the stacking in a parallel orientation, which is in agreement with the larger number of antiparallel stacked chelates in crystal structures from the Cambridge Structural Database. The strongest antiparallel chelate-chelate stacking interaction is formed between two platinum chelates, with a CCSD(T)/CBS interaction energy of -9.70 kcal mol-1, while the strongest stacking between two palladium chelates and two nickel chelates has CCSD(T)/CBS energies of -9.21 kcal mol-1 and -9.50 kcal mol-1, respectively. The strongest parallel chelate-chelate stacking was found for palladium chelates, with a LC-ωPBE-D3BJ/aug-cc-pVDZ energy of -6.51 kcal mol-1. The geometries of the potential surface minima are not the same for the three metals. The geometries of the minima are governed by electrostatic interactions, which are the ones determining the positions of the energy minima. Electrostatic interactions are governed by different electrostatic potentials above the metals, which are very positive for nickel, slightly positive for palladium, and slightly negative for platinum.
Collapse
Affiliation(s)
- Dušan P Malenov
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| | | |
Collapse
|
17
|
Tiekink ER. Supramolecular assembly based on “emerging” intermolecular interactions of particular interest to coordination chemists. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Blagojević JP, Veljković DŽ, Zarić SD. Stacking interactions between hydrogen-bridged and aromatic rings: study of crystal structures and quantum chemical calculations. CrystEngComm 2017. [DOI: 10.1039/c6ce02045c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Very Strong Parallel Interactions Between Two Saturated Acyclic Groups Closed with Intramolecular Hydrogen Bonds Forming Hydrogen-Bridged Rings. CRYSTALS 2016. [DOI: 10.3390/cryst6040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Sredojević DN, Petrović PV, Janjić GV, Brothers EN, Hall MB, Zarić SD. The stacking interactions of bipyridine complexes: the influence of the metal ion type on the strength of interactions. J Mol Model 2016; 22:30. [PMID: 26757913 DOI: 10.1007/s00894-015-2888-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 11/26/2022]
Abstract
The strength of the stacking interactions in the bipy complexes of nickel, palladium, and platinum, [M(CN)2 bipy]2 (M = Ni, Pd, Pt), was calculated using the ωB97xD/def2-TZVP method. The results show that for all considered geometries, interactions are the strongest for platinum, and weakest for nickel complexes, as a result of higher dispersion contributions of platinum over the palladium and nickel complexes. It was also shown that strength of interactions considerably rises with an increase of the stacking overlap area. As a consequence of the favorable electrostatic term, the strength of interactions also rises when metal atom and cyano ligands are involved in the overlap with bipy ligand. The strongest interaction was calculated in the platinum complex, for the geometry that has overlap of metal and cyano ligands with bipy ligand with an energy of -39.80 kcal mol(-1). The energies for similar geometries of palladium and nickel complexes are -34.60 and -32.45 kcal mol(-1). These energies, remarkably, exceed the strength of the stacking interactions between organic aromatic molecules. These results can be of importance in all systems with stacking interactions, from materials to biomolecules.
Collapse
Affiliation(s)
- Dušan N Sredojević
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
- Innovation Center, Department of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Predrag V Petrović
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
- Innovation Center, Department of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Goran V Janjić
- Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, University of Belgrade, P.O.B. 473, 11001, Belgrade, Serbia
| | - Edward N Brothers
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Michael B Hall
- Department of Chemistry, Texas A&M University College Station, Texas, TX, 77843-3255, USA
| | - Snežana D Zarić
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar.
- Department of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
21
|
Ninković DB, Vojislavljević-Vasilev DZ, Medaković VB, Hall MB, Brothers EN, Zarić SD. Aliphatic–aromatic stacking interactions in cyclohexane–benzene are stronger than aromatic–aromatic interaction in the benzene dimer. Phys Chem Chem Phys 2016; 18:25791-25795. [DOI: 10.1039/c6cp03734h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stacking interactions between cyclohexane and benzene were studied in crystal structures from the Cambridge Structural Database and by ab initio calculations.
Collapse
Affiliation(s)
- D. B. Ninković
- Innovation Center of Department of Chemistry
- 11000 Belgrade
- Serbia
- Department of Chemistry
- Texas A&M University at Qatar
| | | | - V. B. Medaković
- Department of Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - M. B. Hall
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - E. N. Brothers
- Department of Chemistry
- Texas A&M University at Qatar
- Doha
- Qatar
| | - S. D. Zarić
- Department of Chemistry
- Texas A&M University at Qatar
- Doha
- Qatar
- Department of Chemistry
| |
Collapse
|