1
|
Liu J, Zhou Y, Lyu Q, Yao X, Wang W. Targeted protein delivery based on stimuli-triggered nanomedicine. EXPLORATION (BEIJING, CHINA) 2024; 4:20230025. [PMID: 38939867 PMCID: PMC11189579 DOI: 10.1002/exp.20230025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yang Zhou
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Qingyang Lyu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Xiaotong Yao
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of ChemistryFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Weiping Wang
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
2
|
On-demand release of the small-molecule TrkB agonist improves neuron-Schwann cell interactions. J Control Release 2022; 343:482-491. [DOI: 10.1016/j.jconrel.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
|
3
|
Kim H, Solak K, Han Y, Cho YW, Koo KM, Kim CD, Luo Z, Son H, Kim HR, Mavi A, Kim TH. Electrically controlled mRNA delivery using a polypyrrole-graphene oxide hybrid film to promote osteogenic differentiation of human mesenchymal stem cells. NANO RESEARCH 2022; 15:9253-9263. [PMID: 35911478 PMCID: PMC9308036 DOI: 10.1007/s12274-022-4613-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Direct messenger ribonucleic acid (mRNA) delivery to target cells or tissues has revolutionized the field of biotechnology. However, the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers. Herein, we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) via electrically controlled mRNA delivery. To find optimal electrical conductivity and mRNA-loading capacity, the polypyrrole-graphene oxide (PPy-GO) hybrid film was electropolymerized on indium tin oxide substrates. We found that the fluorescein sodium salt, a molecule partially mimicking the physical and chemical properties of mRNAs, can be effectively absorbed and released by electrical stimulation (ES). The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation. This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (electrochemical and FT-IR analysis on the film, additional SEM, AFM and C-AFM images of the film, optical and fluorescence images of cells, and the primers used for RT-qPCR analysis) is available in the online version of this article at 10.1007/s12274-022-4613-y.
Collapse
Affiliation(s)
- Huijung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Kübra Solak
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, 25240 Turkey
| | - Yoojoong Han
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077 China
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science, Atatürk University, Erzurum, 25240 Turkey
- Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, 25240 Turkey
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
4
|
Zhang T, Tang JZ, Fei X, Li Y, Song Y, Qian Z, Peng Q. Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery? Acta Pharm Sin B 2021; 11:651-667. [PMID: 33777673 PMCID: PMC7982494 DOI: 10.1016/j.apsb.2020.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023] Open
Abstract
Insulin therapy plays an essential role in the treatment of diabetes mellitus. However, frequent injections required to effectively control the glycemic levels lead to substantial inconvenience and low patient compliance. In order to improve insulin delivery, many efforts have been made, such as developing the nanoparticles (NPs)-based release systems and oral insulin. Although some improvements have been achieved, the ultimate results are still unsatisfying and none of insulin-loaded NPs systems have been approved for clinical use so far. Recently, nano‒protein interactions and protein corona formation have drawn much attention due to their negative influence on the in vivo fate of NPs systems. As the other side of a coin, such interactions can also be used for constructing advanced drug delivery systems. Herein, we aim to provide an insight into the advance and flaws of various NPs-based insulin delivery systems. Particularly, an interesting discussion on nano‒protein interactions and its potentials for developing novel insulin delivery systems is initiated. Insulin therapy plays essential roles in treating diabetes. Optimizing insulin delivery enhances insulin therapy. Nanoparticles are promising systems for delivery of insulin. Nano-protein interactions influence the delivery of nanoparticles. Nano-protein interactions can be used for advanced delivery of insulin.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - James Zhenggui Tang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, School of Pharmacy, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Xiaofan Fei
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Song
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author.
| |
Collapse
|
5
|
Chambre L, Rosselle L, Barras A, Aydin D, Loczechin A, Gunbay S, Sanyal R, Skandrani N, Metzler-Nolte N, Bandow JE, Boukherroub R, Szunerits S, Sanyal A. Photothermally Active Cryogel Devices for Effective Release of Antimicrobial Peptides: On-Demand Treatment of Infections. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56805-56814. [PMID: 33289537 DOI: 10.1021/acsami.0c17633] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There has been significant interest in the use of peptides as antimicrobial agents, and peptide containing hydrogels have been proposed as biological scaffolds for various applications. Limited stability and rapid clearance of small molecular weight peptides pose challenges to their widespread implementation. As a common approach, antibacterial peptides are physically loaded into hydrogel scaffolds, which leads to continuous release through the passive mode with spatial control but provides limited control over drug dosage. Although utilization of peptide covalent linkage onto hydrogels addresses partially this problem, the peptide release is commonly too slow. To alleviate these challenges, in this work, maleimide-modified antimicrobial peptides are covalently conjugated onto furan-based cryogel (CG) scaffolds via the Diels-Alder cycloaddition at room temperature. The furan group offers a handle for specific loading of the peptides, thus minimizing passive and burst drug release. The porous nature of the CG matrix provides rapid loading and release of therapeutic peptides, apart from high water uptake. Interfacing the peptide adduct containing a CG matrix with a reduced graphene oxide-modified Kapton substrate allows "on-demand" photothermal heating upon near-infrared (NIR) irradiation. A fabricated photothermal device enables tunable and efficient peptide release through NIR exposure to kill bacteria. Apart from spatial confinement offered by this CG-based bandage, the selective ablation of planktonic Staphylococcus aureus is demonstrated. It can be envisioned that this modular "on-demand" peptide-releasing device can be also employed for other topical applications by appropriate choice of therapeutic peptides.
Collapse
Affiliation(s)
- Laura Chambre
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Léa Rosselle
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
- TISSUEAEGIS SAS, 14E Rue Pierre de Coubertin, Dijon 21000, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
| | - Duygu Aydin
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Aleksandra Loczechin
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Suzan Gunbay
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
- RS Research, Teknopark Istanbul, Pendik, Istanbul 34912, Turkey
| | - Nadia Skandrani
- TISSUEAEGIS SAS, 14E Rue Pierre de Coubertin, Dijon 21000, France
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
6
|
Emadi F, Emadi A, Gholami A. A Comprehensive Insight Towards Pharmaceutical Aspects of Graphene Nanosheets. Curr Pharm Biotechnol 2020; 21:1016-1027. [PMID: 32188383 DOI: 10.2174/1389201021666200318131422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Graphene Derivatives (GDs) have captured the interest and imagination of pharmaceutical scientists. This review exclusively provides pharmacokinetics and pharmacodynamics information with a particular focus on biopharmaceuticals. GDs can be used as multipurpose pharmaceutical delivery systems due to their ultra-high surface area, flexibility, and fast mobility of charge carriers. Improved effects, targeted delivery to tissues, controlled release profiles, visualization of biodistribution and clearance, and overcoming drug resistance are examples of the benefits of GDs. This review focuses on the application of GDs for the delivery of biopharmaceuticals. Also, the pharmacokinetic properties and the advantage of using GDs in pharmaceutics will be reviewed to achieve a comprehensive understanding about the GDs in pharmaceutical sciences.
Collapse
Affiliation(s)
- Fatemeh Emadi
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Iran
| | - Arash Emadi
- Faculty of Pharmacy and Pharmaceutical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, P.O. Box: 7146864685, Iran
| |
Collapse
|
7
|
Pagneux Q, Ye R, Chengnan L, Barras A, Hennuyer N, Staels B, Caina D, Osses JIA, Abderrahmani A, Plaisance V, Pawlowski V, Boukherroub R, Melinte S, Szunerits S. Electrothermal patches driving the transdermal delivery of insulin. NANOSCALE HORIZONS 2020; 5:663-670. [PMID: 32226966 DOI: 10.1039/c9nh00576e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transdermal patches have become a widely used approach for painless delivery of drugs. One major current limitation of these systems remains the restricted skin permeation of proteins and peptides as exemplified by insulin, necessitating different considerations for their successful transdermal delivery. We present a novel patch design based on the integration of nano-engineered heating elements on polyimide substrates for electrothermal transdermal therapy. The results reveal that tuning of the electrical resistivity of an array of gold nanoholes, patterned on polyimide, facilitates a fast-responding electrothermal skin patch, while post-coating with reduced graphene oxide offers capabilities for drug encapsulation, like insulin. Application of insulin-loaded patches to the skin of mice resulted in blood glucose regulation within minutes. While demonstrated for insulin, the skin patches might be well adapted to other low and high molecular weight therapeutic drugs, enabling on-demand electrothermal transdermal delivery.
Collapse
Affiliation(s)
- Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhu M, Hao Y, Ma X, Feng L, Zhai Y, Ding Y, Cheng G. Construction of a graphene/polypyrrole composite electrode as an electrochemically controlled release system. RSC Adv 2019; 9:12667-12674. [PMID: 35515836 PMCID: PMC9063647 DOI: 10.1039/c9ra00800d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
A biocompatible conductive composite electrode GN–PPy–FL can realize controlled release of a drug model triggered by low voltages.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
- CAS Key Laboratory of Nano-Bio Interface
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Xun Ma
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Lin Feng
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Yuanxin Zhai
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Yaping Ding
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| |
Collapse
|
9
|
Reddy S, Song L, Zhao Y, Zhao R, Wu D, He L, Ramakrishana S. Reduced graphene oxide-based electrochemically stimulated method for temozolomide delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/mds3.10014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sathish Reddy
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR); Jinan University; Guangzhou Guangdong China
| | - Li Song
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR); Jinan University; Guangzhou Guangdong China
| | - Yuyuan Zhao
- Department of Biomedical Engineering; College of Life Science and Technology; Jinan University; Guangzhou Guangdong China
| | - Rong Zhao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR); Jinan University; Guangzhou Guangdong China
| | - Dongni Wu
- Department of Biomedical Engineering; College of Life Science and Technology; Jinan University; Guangzhou Guangdong China
| | - Liumin He
- Department of Biomedical Engineering; College of Life Science and Technology; Jinan University; Guangzhou Guangdong China
| | - Seeram Ramakrishana
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR); Jinan University; Guangzhou Guangdong China
- Center for Nanofibers and Nanotechnology; Department of Mechanical Engineering; Faculty of Engineering; National University of Singapore; Singapore City Singapore
| |
Collapse
|
10
|
He L, Sarkar S, Barras A, Boukherroub R, Szunerits S, Mandler D. Electrochemically stimulated drug release from flexible electrodes coated electrophoretically with doxorubicin loaded reduced graphene oxide. Chem Commun (Camb) 2018; 53:4022-4025. [PMID: 28338701 DOI: 10.1039/c7cc00381a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The electrochemically triggered release of doxorubicin (DOX) from flexible electrodes modified electrophoretically with reduced graphene oxide (rGO)-DOX is reported. The release is driven by a positive potential pulse that decreases the pH of the rGO-DOX surface locally, which is confirmed by scanning electrochemical microscopy (SECM) in situ. In vitro cell viability tests confirms that the delivery system meets therapeutic needs.
Collapse
Affiliation(s)
- Lijie He
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Sujoy Sarkar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
11
|
Oz Y, Barras A, Sanyal R, Boukherroub R, Szunerits S, Sanyal A. Functionalization of Reduced Graphene Oxide via Thiol-Maleimide "Click" Chemistry: Facile Fabrication of Targeted Drug Delivery Vehicles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34194-34203. [PMID: 28905618 DOI: 10.1021/acsami.7b08433] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Materials based on reduced graphene oxide (rGO) have shown to be amenable to noncovalent functionalization through hydrophobic interactions. The scaffold, however, does not provide sufficient covalent linkage given the low number of reactive carboxyl and alcohol groups typically available on the rGO. The integration of clickable groups, particularly the ones that can undergo efficient conjugation without any metal catalyst, would allow facile functionalization of these materials. This study reports on the noncovalent association of a maleimide-containing catechol (dopa-MAL) surface anchor onto the rGO. Thiol-maleimide chemistry allows thereafter the facile attachment of thiol-containing molecules under ambient metal-free conditions. Although the attachment of glutathione and 6-(ferrocenyl)hexanethiol was used as model thiols, the attachment of a cancer cell targeting cyclic peptide, c(RGDfC), opened the possibility of using the dopa-MAL-modified rGO as a targeted drug delivery system for doxorubicin (DOX). Although free DOX showed to be more effective at killing the human cervical cancer cells (HeLa) over human breast adenocarcinoma cancer cells (MDA-MB-231), the DOX-loaded rGO/dopa-MAL-c (RGDfC) nanostructure showed an opposite effect being notably more effective at targeting and killing the MDA-MB-231 cells. The effect is enhanced upon laser irradiation for 10 min at 2 W cm-2. The facile fabrication and functionalization to readily obtain a functional material in a modular fashion make this clickable-rGO construct an attractive platform for various applications.
Collapse
Affiliation(s)
| | - Alexandre Barras
- Université Lille, CNRS, Centrale Lille, ISEN, Université Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
| | - Rana Sanyal
- RS Research Inc. , Teknopark Istanbul, Pendik, 34912 Istanbul, Turkey
| | - Rabah Boukherroub
- Université Lille, CNRS, Centrale Lille, ISEN, Université Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
| | - Sabine Szunerits
- Université Lille, CNRS, Centrale Lille, ISEN, Université Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
| | | |
Collapse
|
12
|
Honarvarfard E, Gamella M, Channaveerappa D, Darie CC, Poghossian A, Schöning MJ, Katz E. Electrochemically Stimulated Insulin Release from a Modified Graphene‐functionalized Carbon Fiber Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elham Honarvarfard
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Maria Gamella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Devika Channaveerappa
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Arshak Poghossian
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences Campus Jülich Heinrich-Mußmann-Str. 1 D-52428 Jülich Germany
- Peter Grünberg Institute (PGI-8) Research Centre Jülich GmbH D-52425 Jülich Germany
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences Campus Jülich Heinrich-Mußmann-Str. 1 D-52428 Jülich Germany
- Peter Grünberg Institute (PGI-8) Research Centre Jülich GmbH D-52425 Jülich Germany
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|
13
|
Hosseini-Nassab N, Samanta D, Abdolazimi Y, Annes JP, Zare RN. Electrically controlled release of insulin using polypyrrole nanoparticles. NANOSCALE 2017; 9:143-149. [PMID: 27929180 PMCID: PMC5215613 DOI: 10.1039/c6nr08288b] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Conducting polymers present an opportunity for developing programmable, adjustable, spatially, and temporally controllable drug delivery systems. While several small molecule drugs have been released from thin conductive polymeric films successfully, delivering large molecule therapeutics, such as polypeptides and nucleic acids, has remained a significant challenge. Poor drug loading (∼ng cm-2) of thin films coupled with film instability has, in many cases, made conducting polymer films refractory to clinical development. To address these limitations, we have utilized conductive polymer nanoparticulate backbones to controllably release insulin, a high molecular weight, clinically relevant polypeptide. We find that the interaction between insulin and the polymer scaffold can be described by a simple Langmuir-type adsorption model. By modifying the ratio of the amount of nanoparticles to the amount of insulin, we have obtained drug loading percentages estimated to be as high as 51 wt% percent. In vivo experiments in mice confirmed retained bioactivity of the released insulin after electrical stimulation.
Collapse
|
14
|
Boulahneche S, Jijie R, Barras A, Chekin F, Singh SK, Bouckaert J, Medjram MS, Kurungot S, Boukherroub R, Szunerits S. On demand electrochemical release of drugs from porous reduced graphene oxide modified flexible electrodes. J Mater Chem B 2017; 5:6557-6565. [DOI: 10.1039/c7tb00687j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the advantages of an electrochemical control of drug release, only a handful of electrochemical-based release systems have been developed so far.
Collapse
Affiliation(s)
| | - Roxana Jijie
- Univ. Lille
- CNRS
- Centrale Lille
- ISEN
- Univ. Valenciennes
| | | | | | - Santosh K. Singh
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF)
- UMR 8576 du CNRS et Université Lille
- 59658 Villeneuve d'Ascq
- France
| | - Mohamed Salah Medjram
- Laboratoire de Génie Chimique et Environnement Skikda (LGCES)
- Université de 20 août
- 1955-Skikda
- Algeria
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research
| | | | | |
Collapse
|
15
|
Photothermally triggered on-demand insulin release from reduced graphene oxide modified hydrogels. J Control Release 2017; 246:164-173. [DOI: 10.1016/j.jconrel.2016.10.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 11/22/2022]
|
16
|
Teodorescu F, Quéniat G, Foulon C, Lecoeur M, Barras A, Boulahneche S, Medjram MS, Hubert T, Abderrahmani A, Boukherroub R, Szunerits S. Transdermal skin patch based on reduced graphene oxide: A new approach for photothermal triggered permeation of ondansetron across porcine skin. J Control Release 2017; 245:137-146. [DOI: 10.1016/j.jconrel.2016.11.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/23/2016] [Accepted: 11/25/2016] [Indexed: 01/07/2023]
|
17
|
|
18
|
Wang Q, Coffinier Y, Li M, Boukherroub R, Szunerits S. Light-Triggered Release of Biomolecules from Diamond Nanowire Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6515-6523. [PMID: 27244476 DOI: 10.1021/acs.langmuir.6b00734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The controlled release of biomolecules from a substrate surface is a challenging task. Photocleavable linkers appear as attractive candidates for light-triggered delivery. We show here the possibility of creating photoactivable diamond nanowire interfaces, from which molecules can be photochemically released upon irradiation at 365 nm for several minutes. The approach is based on the covalent modification of boron-doped diamond nanowires (BDD NWs) with o-nitrobenzyl containing ligands, to which different biomolecules can be attached via amide bond formation. The photodecomposition reaction and the subsequent release of small proteins such as lysozyme or enzymes such as horseradish peroxidase (HRP) are investigated using electrochemical impedance spectroscopy. Using a colorimetric assay, we demonstrate that, while complete cleavage of HRP was achieved upon irradiation for 10 min at 1 W cm(-2), this exposure time resulted in a partial loss of enzymatic activity.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille 1 University , Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Yannick Coffinier
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille 1 University , Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Musen Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille 1 University , Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille 1 University , Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
19
|
Turcheniuk K, Dumych T, Bilyy R, Turcheniuk V, Bouckaert J, Vovk V, Chopyak V, Zaitsev V, Mariot P, Prevarskaya N, Boukherroub R, Szunerits S. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv 2016. [DOI: 10.1039/c5ra24662h] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Gold nanorods (Au NRs) are known for their efficient conversion of photon energy into heat, resulting in hyperthermia and suppression of tumor growths in vitro and in vivo.
Collapse
|