1
|
Yoshikawa R, Hamada S, Matsuo JI. Strain-promoted azide-alkyne cycloaddition enhanced by secondary interactions. Org Biomol Chem 2025. [PMID: 39821266 DOI: 10.1039/d4ob01752h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Azide-alkyne cycloaddition of cyclooct-2-yn-1-ol and 2-(azidophenyl)boronic acid proceeded rapidly at room temperature with complete regioselectivity to afford a triazole having a boronate ester group. The secondary interaction to form a boronate ion contributed to cycloaddition rate acceleration and the control of regioselectivity. The interaction to form an imine or hemiaminal was also evaluated.
Collapse
Affiliation(s)
- Riko Yoshikawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shohei Hamada
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Jun-Ichi Matsuo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
2
|
Zheng M, Kong L, Gao J. Boron enabled bioconjugation chemistries. Chem Soc Rev 2024; 53:11888-11907. [PMID: 39479937 PMCID: PMC11525960 DOI: 10.1039/d4cs00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Indexed: 11/02/2024]
Abstract
Novel bioconjugation reactions have been heavily pursued for the past two decades. A myriad of conjugation reactions have been developed for labeling molecules of interest in their native context as well as for constructing multifunctional molecular entities or stimuli-responsive materials. A growing cluster of bioconjugation reactions were realized by tapping into the unique properties of boron. As a rare element in human biology, boronic acids and esters exhibit remarkable biocompatibility. A number of organoboron reagents have been evaluated for bioconjugation, targeting the reactivity of either native biomolecules or those incorporating bioorthogonal functional groups. Owing to the dynamic nature of B-O and B-N bond formation, a significant portion of the boron-enabled bioconjugations exhibit rapid reversibility and accordingly have found applications in the development of reversible covalent inhibitors. On the other hand, stable bioconjugations have been developed that display fast kinetics and significantly expand the repertoire of bioorthogonal chemistry. This contribution presents a summary and comparative analysis of the recently developed boron-mediated bioconjugations. Importantly, this article seeks to provide an in-depth discussion of the thermodynamic and kinetic profiles of these boron-enabled bioconjugations, which reveals structure-reactivity relationships and provides guidelines for bioapplications.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Lingchao Kong
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
3
|
Xu J, Yang W, Liu Y. An innovative carbon dots polarity probe based on intramolecular charge-transfer for visual monitoring of the total polar materials in frying oil. Food Chem 2024; 455:139770. [PMID: 38823139 DOI: 10.1016/j.foodchem.2024.139770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The presence of Total Polar Materials (TPM) in edible oils is a crucial indicator for assessing oil quality. It is of paramount importance to develop a rapid and dependable technique for monitoring polarity in frying oil. Sensitive polarity responsive fluorescence carbon dots (F-CDs) were synthesized by using p-phenylenediamine as precursors and 2-formylphenylboronic acid pinacol ester (2-FAPE) as a post-modifier. The construction of the fluorescent probe F-CDs involved a strong intramolecular charge-transfer (ICT) mechanism, with 2-FAPE serving as the electron-withdrawing fluorophore and the π-conjugated structure acting as a potent electron-donating group. A strong linear relationship was observed between the emission wavelength and the TPM value of frying oil within a range of 11% to 30%. Notably, the fluorescence color of the probe transitioned from blue to yellow under UV light at 365 nm as the TMP value increased. This study expands the range of sensing applications for CDs in food safety.
Collapse
Affiliation(s)
- Jiangbin Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; Future Food (Bai Ma) Research Institute, 111 Baima Road, Nanjing 211200, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev 2023; 43:319-342. [PMID: 36177531 DOI: 10.1002/med.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Nature has the remarkable ability to realize reactions under physiological conditions that normally would require high temperature and other forcing conditions. In doing so, often proximity effects such as simultaneous binding of two reactants in the same pocket and/or strategic positioning of catalytic functional groups are used as ways to achieve otherwise kinetically challenging reactions. Though true biomimicry is challenging, there have been many beautiful examples of how to leverage proximity effects in realizing reactions that otherwise would not readily happen under near-physiological conditions. Along this line, click chemistry is often used to endow proximity effects, and proximity effects are also used to further leverage the facile and bioorthogonal nature of click chemistry. This review brings otherwise seemingly unrelated topics in chemical biology and drug discovery under one unifying theme of mutual leveraging of proximity effects and click chemistry and aims to critically analyze the biomimicry use of such leveraging effects as powerful approaches in chemical biology and drug discovery. We hope that this review demonstrates the power of employing mutual leveraging proximity effects and click chemistry and inspires the development of new strategies that will address unmet needs in chemistry and biology.
Collapse
Affiliation(s)
- Ru Dong
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Kondengadan SM, Bansal S, Yang C, Liu D, Fultz Z, Wang B. Click chemistry and drug delivery: A bird’s-eye view. Acta Pharm Sin B 2022; 13:1990-2016. [DOI: 10.1016/j.apsb.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022] Open
|
6
|
Hu J, Sun Y, Geng X, Wang J, Guo Y, Qu L, Zhang K, Li Z. High-fidelity carbon dots polarity probes: revealing the heterogeneity of lipids in oncology. LIGHT, SCIENCE & APPLICATIONS 2022; 11:185. [PMID: 35718791 PMCID: PMC9207028 DOI: 10.1038/s41377-022-00873-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 05/07/2023]
Abstract
Polarity is an integral microenvironment parameter in biological systems closely associated with a multitude of cellular processes. Abnormal polarity variations accompany the initiation and development of pathophysiological processes. Thus, monitoring the abnormal polarity is of scientific and practical importance. Current state-of-the-art monitoring techniques are primarily based on fluorescence imaging which relies on a single emission intensity and may cause inaccurate detection due to heterogeneous accumulation of the probes. Herein, we report carbon dots (CDs) with ultra-sensitive responses to polarity. The CDs exhibit two linear relationships: one between fluorescence intensity and polarity and the other between polarity and the maximum emission wavelength. The emission spectrum is an intrinsic property of the probes, independent of the excitation intensity or probe concentration. These features enable two-color imaging/quantitation of polarity changes in lipid droplets (LDs) and in the cytoplasm via in situ emission spectroscopy. The probes reveal the polarity heterogeneity in LDs which can be applied to make a distinction between cancer and normal cells, and reveal the polarity homogeneity in cytoplasm.
Collapse
Affiliation(s)
- Jingyu Hu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Yuanqiang Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Xin Geng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Junli Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Yifei Guo
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Lingbo Qu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
- Institute of Chemical Biology and Clinical Application at the First Affiliate Hospital, Zhengzhou University, 450001, Zhengzhou, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China.
- Institute of Chemical Biology and Clinical Application at the First Affiliate Hospital, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
7
|
Abstract
Imines, versatile intermediates for organic synthesis, can be exploited for the
preparation of diverse classes of biologically active benzazoles. Because of the special
characteristics of the C=N bond, imines can be simultaneously used in the synthesis of
1,3-benzazoles and 1,2-benzazoles. With the development of imine synthesis, a variety of
novel cascade reactions for benzazole synthesis have been reported in the last decade.
Therefore, there is a strong need to elucidate the recent progress in the formation of various
classes of benzazoles, including benzimidazoles, benzoxazoles, benzothiazoles, indazoles,
and benzisoxazoles, via imines obtained by condensation reactions or oxidative/
redox coupling reactions In this review, we provide a comprehensive survey of this
area. In particular, various green and mild synthetic methodologies are summarized, and
the multiple roles of novel catalysts and significant mechanisms for several transformations are highlighted in
detail. We believe that this review will aid researchers studying the synthesis of complex molecules containing
the benzazole motif via imines.
Collapse
Affiliation(s)
- Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingbo Zang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Makau J, Kitagawa A, Kitamura K, Yamaguchi T, Mizuta S. Design and Development of an HBT-Based Ratiometric Fluorescent Probe to Monitor Stress-Induced Premature Senescence. ACS OMEGA 2020; 5:11299-11307. [PMID: 32478217 PMCID: PMC7254510 DOI: 10.1021/acsomega.9b04208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/29/2020] [Indexed: 05/11/2023]
Abstract
Stress-induced premature senescence (SIPS) can be induced in tumor cells by reactive oxygen species (ROS) or oncogenes. The antineoplastic drugs cause apoptosis and senescence by damaging the DNA. Although the detection of cellular senescence is important to monitor drug response during anticancer therapy, only a few probes have been studied for imaging SIPS. In this study, we developed 2-(2'-hydroxyphenyl)benzothiazole (HBT)-based fluorescent probes to determine SIPS by monitoring the oxidative stress and β-galactosidase activity. HBT is a commonly used fluorophore because of its luminescence mechanism via excited-state intramolecular proton transfer, and it has attractive properties, such as a four-level photochemical process and large Stokes shift (151 nm). A novel fluorescent probe, (2-(benzo[d]thiazol-2-yl)phenyl)boronic acid, was prepared for the detection of ROS, including H2O2, via the oxidation reaction of arylboronic acids to form the fluorescent phenol, HBT. In addition, to determine the enzymatic activity of β-galactosidase, a 2-(4'-chloro-2'-hydroxyphenyl)benzothiazole (CBT)-based enzymatic turn-on probe (CBT-β-Gal) was designed and synthesized. β-Galactosidase catalyzed the hydrolysis of β-galactopyranoside from CBT-β-Gal to release the fluorescent CBT. These probes were capable of ratiometric imaging the accumulation of H2O2 and the degree of β-galatosidase activity in contrast to H2O2-untreated and H2O2-treated HeLa cells. Furthermore, these probes were successfully employed for imaging the increased levels of ROS and β-galactosidase activity in the doxorubicin-treated HeLa cells.
Collapse
Affiliation(s)
- Juliann
Nzembi Makau
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Ayako Kitagawa
- Graduate
School of Biomedical Sciences, Nagasaki
University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kanami Kitamura
- Graduate
School of Biomedical Sciences, Nagasaki
University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tomoko Yamaguchi
- Graduate
School of Biomedical Sciences, Nagasaki
University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Satoshi Mizuta
- Graduate
School of Biomedical Sciences, Nagasaki
University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
9
|
Van Lijsebetten F, Holloway JO, Winne JM, Du Prez FE. Internal catalysis for dynamic covalent chemistry applications and polymer science. Chem Soc Rev 2020; 49:8425-8438. [DOI: 10.1039/d0cs00452a] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, we provide a concise analysis of internal catalysis as an attractive design principle to combine chemical robustness with reactivity in dynamic covalent chemistry applications and a material context.
Collapse
Affiliation(s)
- Filip Van Lijsebetten
- Polymer Chemistry Research group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences, Ghent University
- Ghent
| | - Joshua O. Holloway
- Polymer Chemistry Research group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences, Ghent University
- Ghent
| | - Johan M. Winne
- Laboratory of Organic Synthesis
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences
- Ghent University
- Ghent
| | - Filip E. Du Prez
- Polymer Chemistry Research group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences, Ghent University
- Ghent
| |
Collapse
|
10
|
Li K, Kelly MA, Gao J. Biocompatible conjugation of Tris base to 2-acetyl and 2-formyl phenylboronic acid. Org Biomol Chem 2019; 17:5908-5912. [PMID: 31145403 PMCID: PMC6581600 DOI: 10.1039/c9ob00726a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We describe the biocompatible conjugation of the Tris base to 2-formyl and 2-acetylphenylboronic acid (abbreviated as 2-FPBA and 2-APBA respectively), which have emerged as a versatile chemotype for fast biocompatible conjugation reactions. Tris base was found to react with 2-FPBA/APBA to give oxazolidinoboronate (OzB) complexes, analogous to the thiazolidinoboronate (TzB) and imidazolidinoboronate (IzB) complex formation that we recently reported. The Tris conjugations proceed well in complex biological media, and in contrast to the TzB/IzB complexes, the Tris conjugates exhibit superior kinetic stability (dissociation over days) as well as chemical stability against oxidation. We demonstrate the utility of such conjugation chemistries via a small molecule-induced peptide cyclization in blood serum.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, USA.
| | - Michael A Kelly
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, USA.
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, USA.
| |
Collapse
|
11
|
Ma Y, Tian H, Jin Z, Li X, Li Y. Observation of the generation of peroxynitrite in mouse liver after acetaminophen overdose with a boronate-based ratiometric fluorescence probe. RSC Adv 2019; 9:6510-6514. [PMID: 35518452 PMCID: PMC9061049 DOI: 10.1039/c8ra10053e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/15/2019] [Indexed: 11/21/2022] Open
Abstract
A ratiometric fluorescent probe, BTPB, for the selective monitoring of hepatic peroxynitrite in situ after acetaminophen overdose has been developed.
Collapse
Affiliation(s)
- Ying Ma
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Haigang Tian
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Zhengyu Jin
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Xiaoyong Li
- School of Science
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Yiping Li
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an 710061
- China
| |
Collapse
|
12
|
António JPM, Russo R, Carvalho CP, Cal PMSD, Gois PMP. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem Soc Rev 2019; 48:3513-3536. [DOI: 10.1039/c9cs00184k] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes boronic acid's contribution to the development of bioconjugates with a particular focus on the molecular mechanisms underlying its role in the construction and function of the bioconjugate, namely as a bioconjugation warhead, as a payload and as part of a bioconjugate linker.
Collapse
Affiliation(s)
- João P. M. António
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Roberto Russo
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Cátia Parente Carvalho
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. S. D. Cal
- Instituto de Medicina Molecular
- Faculty of Medicine
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| |
Collapse
|
13
|
Cambray S, Gao J. Versatile Bioconjugation Chemistries of ortho-Boronyl Aryl Ketones and Aldehydes. Acc Chem Res 2018; 51:2198-2206. [PMID: 30110146 DOI: 10.1021/acs.accounts.8b00154] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biocompatible and bioorthogonal conjugation reactions have proven to be powerful tools in biological research and medicine. While the advent of bioorthogonal conjugation chemistries greatly expands our capacity to interrogate specific biomolecules in situ, biocompatible reactions that target endogenous reactive groups have given rise to a number of covalent drugs as well as a battery of powerful research tools. Despite the impressive progress, limitations do exist with the current conjugation chemistries. For example, most known bioorthogonal conjugations suffer from slow reaction rates and imperfect bioorthogonality. On the other hand, covalent drugs often display high toxicity due to off-target labeling and immunogenicity. These limitations demand continued pursuit of conjugation chemistries with optimal characteristics for biological applications. A spate of papers appearing in recent literature report the conjugation chemistries of 2-formyl and 2-acetyl phenylboronic acids (abbreviated as 2-FPBA and 2-APBA, respectively). These simple reactants are found to undergo fast conjugation with various nucleophiles under physiological conditions, showing great promise for biological applications. The versatile reactivity of 2-FPBA and 2-APBA manifests in dynamic conjugation with endogenous nucleophiles as well as conjugation with designer nucleophiles in a bioorthogonal manner. 2-FPBA/APBA conjugates with amines in biomolecules, such as lysine side chains and aminophospholipids, in a highly dynamic manner to give iminoboronates. In contrast to typical imines, iminoboronates enjoy much improved thermodynamic stability, yet are kinetically labile for hydrolysis due to imine activation by the boronic acid. Dynamic conjugations as such present a novel binding mechanism analogous to hydrogen bonding and electrostatic interactions. Implementation of this covalent binding mechanism has yielded reversible covalent probes of prevalent bacterial pathogens. It has also resulted in reversible covalent inhibitors of a therapeutically important protein Mcl-1. Such covalent probes/inhibitors with 2-FPBA/APBA warheads avoid permanent modification of their biological target, potentially able to mitigate off-target labeling and immunogenicity of covalent drugs. The dynamic conjugation of 2-FPBA/APBA has been recently extended to N-terminal cysteines, which can be selectively targeted via formation of a thiazolidino boronate (TzB) complex. The dynamic TzB formation expands the toolbox for site-specific protein labeling and the development of covalent drugs. On the front of bioorthogonal conjugation, 2-FPBA/APBA has been found to conjugate with α-nucleophiles under physiologic conditions with rate constant ( k2) over 1000 M-1 s-1, which overcomes the slow kinetics problems and rekindles the interest of using the conjugation of α-nucleophiles for biological studies. With fast kinetics being a shared feature, this family of conjugation chemistries gives remarkably diverse product structures depending on the choice of nucleophile. Importantly, both dynamic and irreversible conjugations have been developed, which we believe will enable a wide array of applications in biological research. In this Account, we collectively examine this rapidly expanding family of conjugation reactions, seeking to elucidate the unifying principles that would guide further development of novel conjugation reactions, as well as their applications in biology.
Collapse
Affiliation(s)
- Samantha Cambray
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Jianmin Gao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
14
|
Liew SK, Holownia A, Diaz DB, Cistrone PA, Dawson PE, Yudin AK. Borylated oximes: versatile building blocks for organic synthesis. Chem Commun (Camb) 2017; 53:11237-11240. [PMID: 28959806 PMCID: PMC6097236 DOI: 10.1039/c7cc06579e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrate the synthesis and functionalization of α-boryl aldoximes from α-boryl aldehydes, with no sign of C-to-N boryl migration. Selective modification of the oxime functionality enables access to a wide range of borylated compounds, such as borylated heterocycles and N-acetoxyamides. By reducing the α-boryl aldoximes, MIDA deprotection yields the corresponding β-boryl hydroxylamines. As part of this study, we also demonstrate the utility of the boryl aldoxime motif in peptide conjugation.
Collapse
Affiliation(s)
- Sean K Liew
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Liu X, Li Z, Xu H, Zhan Y, Ma P, Chen H, Jiang B. Tris(2-carboxyethyl)phosphine promotes hydrolysis of iminoboronates. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Meadows MK, Roesner EK, Lynch VM, James TD, Anslyn EV. Boronic Acid Mediated Coupling of Catechols and N-Hydroxylamines: A Bioorthogonal Reaction to Label Peptides. Org Lett 2017; 19:3179-3182. [DOI: 10.1021/acs.orglett.7b01198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Margaret K. Meadows
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Emily K. Roesner
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Vincent M. Lynch
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Eric V. Anslyn
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Toyama T, Saitoh T, Takahashi Y, Oka K, Citterio D, Suzuki K, Nishiyama S. Click Reaction Based on the Biosynthesis of Firefly Luciferin. CHEM LETT 2017. [DOI: 10.1246/cl.170094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohisa Toyama
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575
| | - Yuka Takahashi
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Kotaro Oka
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Koji Suzuki
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Shigeru Nishiyama
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| |
Collapse
|
18
|
Faustino H, Silva MJSA, Veiros LF, Bernardes GJL, Gois PMP. Iminoboronates are efficient intermediates for selective, rapid and reversible N-terminal cysteine functionalisation. Chem Sci 2016; 7:5052-5058. [PMID: 30155155 PMCID: PMC6018717 DOI: 10.1039/c6sc01520d] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/14/2016] [Indexed: 12/24/2022] Open
Abstract
We show that formyl benzeno boronic acids (2FBBA) selectively react with N-terminal cysteines to yield a boronated thiazolidine featuring a B-N bond. The reaction exhibits a very rapid constant rate (2.38 ± 0.23 × 102 M-1 s-1) under mild aqueous conditions (pH 7.4, 23 °C) and tolerates different amino acids at the position adjacent to the N-cysteine. DFT calculations highlighted the diastereoselective nature of this ligation reaction and support the involvement of the proximal boronic acid in the activation of the imine functionality and the stabilisation of the boronated thiazolidine through a chelate effect. The 2FBBA reagent allowed the effective functionalisation of model peptides (C-ovalbumin and a laminin fragment) and the boronated thiazolidine construct was shown to be stable over time, though the reaction was reversible in the presence of benzyl hydroxylamine. The reaction proved to be highly chemoselective, and 2FBBA was used to functionalize the N-terminal cysteine of calcitonin in the presence of a potentially competing in-chain thiol group. This exquisite selectivity profile enabled the dual functionalisation of calcitonin and the interactive orthogonal modification of this peptide when 2FBBA was combined with conventional maleimide chemistry. These results highlight the potential of this methodology to construct complex and well-defined bioconjugates.
Collapse
Affiliation(s)
- Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal .
| | - Maria J S A Silva
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal .
| | - Luís F Veiros
- Centro de Química Estrutural , Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais 1 , 1049-001 Lisbon , Portugal
| | - Gonçalo J L Bernardes
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 , Lisboa , Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal .
| |
Collapse
|
19
|
Bandyopadhyay A, Cambray S, Gao J. Fast and selective labeling of N-terminal cysteines at neutral pH via thiazolidino boronate formation. Chem Sci 2016; 7:4589-4593. [PMID: 28044097 PMCID: PMC5201210 DOI: 10.1039/c6sc00172f] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Facile labeling of proteins of interest is highly desirable in proteomic research as well as in the development of protein therapeutics.
Facile labeling of proteins of interest is highly desirable in proteomic research as well as in the development of protein therapeutics. Herein we report a novel method that allows for fast and selective labeling of proteins with an N-terminal cysteine. Although N-terminal cysteines are well known to conjugate with aldehydes to give thiazolidines, the reaction requires acidic conditions and suffers from slow kinetics. We show that benzaldehyde with an ortho-boronic acid substituent readily reacts with N-terminal cysteines at neutral pH, giving rate constants on the order of 103 M–1 s–1. The product features a thiazolidino boronate (TzB) structure and exhibits improved stability due to formation of the B–N dative bond. While stable at neutral pH, the TzB complex dissociates upon mild acidification. These characteristics make the TzB conjugation chemistry potentially useful for the development of drug–protein conjugates that release the small molecule drug in acidic endosomes.
Collapse
Affiliation(s)
- Anupam Bandyopadhyay
- A Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467
| | - Samantha Cambray
- A Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467
| | - Jianmin Gao
- A Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467
| |
Collapse
|