1
|
Gopal V, Palanisamy G, Lee J, Abu-Yousef IA, Majdalawieh AF, Mahasneh A, Prabu KM, Kanan S. Fabrication of SrTiO 3 anchored rGO/g-C 3N 4 photocatalyst for the removal of mixed dye from wastewater: dual photocatalytic mechanism. Sci Rep 2024; 14:16259. [PMID: 39009639 PMCID: PMC11251063 DOI: 10.1038/s41598-024-66844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
A metal-free combination of rGO/g-C3N4-coupled SrTiO3 (SRN) ternary nanocomposite prepared via a wet impregnation method for UV-Vis light photocatalytic applications. Various physicochemical properties of the samples were investigated by several spectroscopic techniques including X-ray diffraction (XRD), FT-IR, Raman, field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FE-SEM-EDX), high-resolution transmission electron microscopy (HR-TEM), UV-Vis, photoluminescence (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The data suggest agglomerated SRT nanoparticles are dispersed and distributed throughout the surface of the rGO sheets and GCN nanostructures. The photocatalytic performance of the SRN towards combined mixed dye and its degradation activities were evaluated towards the most common industrial effluents, Rhodamine B (RhB) and Methylene blue (MB), under UV-Vis light illumination. The results revealed that the degradation efficiency of the SRN photocatalyst shows excellent performance compared with that of the binary composition and the pure SrTiO3 (SRT) sample. The reaction rate constant for RhB was estimated to be 0.0039 min-1 and for MB to be 0.0316 min-1, which are 3.26 (RhB) and 4.21 (MB) times faster than the pure SRT sample. The enhanced degradation efficiency was attained not only by interfacial formation but also by the speedy transportation of electrons across the heterojunction. After 5 runs of the photocatalytic recylic process, the SRN photocatalyst exhibited ultimate stability without structural changes, and no noticeable degradation was observed. The outcomes of the ternary SRN nanocomposite manifest a dual photocatalytic scheme, the photocatalytic enrichment could be caused by the Z-scheme charge transfer process between GCN, SRT, and rGO nanocomposite, which helps effectual charge separation and keeps a high redox potential. From the results, SRN sample provides insight into the integration of an effective and potential photocatalyst for wastewater treatment toward real-time environmental remediation applications.
Collapse
Affiliation(s)
- Venkatesh Gopal
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amjad Mahasneh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Kattupatti M Prabu
- PG and Research Department of Physics, Sri Vidya Mandir Arts and Science College, Katteri, Uthangarai, Tamilnadu, 636 902, India
| | - Sofian Kanan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Hegazy MBZ, Hassan F, Hu M. Hofmann-Type Cyanide Bridged Coordination Polymers for Advanced Functional Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306709. [PMID: 37890186 DOI: 10.1002/smll.202306709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Since the discovery of Hofmann clathrates of inorganic cyanide bridged coordination polymers (Hofmann-type CN-CPs), extensive research is done to understand their behavior during spin transitions caused by guest molecules or external stimuli. Lately, research on their nanoscale architectures for sensors and switching devices is of interest. Their potential is reported for producing advanced functional inorganic materials in two-dimensional (2D) morphology using a scalable solid-state thermal treatment method. For instance, but not restricted to, alloys, carbides, chalcogenides, oxides, etc. Simultaneously, their in situ crystallization at graphene oxide (GO) nanosheet surfaces, followed by a subsequent self-assembly to build layered lamellar structures, is reported providing hybrid materials with a variety of uses. Hence, an overview of the most recent developments is presented here in the synthesis of nanoscale structures, including thin films and powders, using Hofmann-type CN-CPs. Also thoroughly demonstrated are the most recent synthetic ideas with the modest control over the size and shape of nanoscale particles. Additionally, in order to create new functional hybrid materials for electrical and energy applications, their thermal decomposition in various environments and hybridization with GO and other guest molecules is examined. This review article also conveyed their spin transition, astounding innovative versatile adhesives, and structure features.
Collapse
Affiliation(s)
- Mohamed Barakat Zakaria Hegazy
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, El-Gharbia, 31527, Egypt
- Alexander von Humboldt (AvH) Foundation, 53173, Bonn, Germany
| | - Fathy Hassan
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, El-Gharbia, 31527, Egypt
| | - Ming Hu
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Hegazy MBZ, Harrath K, Tetzlaff D, Smialkowski M, Siegmund D, Li J, Cao R, Apfel UP. Boosting the overall electrochemical water splitting performance of pentlandites through non-metallic heteroatom incorporation. iScience 2022; 25:105148. [PMID: 36204269 PMCID: PMC9529978 DOI: 10.1016/j.isci.2022.105148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
We report on synthesis of the heterotrimetallic pentlandite-type material Fe3Co3Ni3S8 (FCNS) in presence of suitable phosphorus-(FCNSP) and nitrogen-(FCNSN) donors for the overall electrochemical water splitting. Throughout the experiments, a preferential incorporation of N into the FCNS-lattice is observed whereas the addition of phosphorus generally leads to metal-phosphate-FCNS composites. The obtained FCNSP, FCNSN, and FCNSNP facilitate the oxygen evolution reaction (OER) at 100 mAcm-2 in 1.0M KOH with overpotentials of 479, 440, and 427 mV, respectively, outperforming the benchmark IrO2 (564 mV) and commercial Ni metal powder (>600 mV). Likewise, FCNSN and FCNSNP reveal an improved performance toward the hydrogen evolution reaction (HER) in 0.5M H2SO4, outperforming the pristine FCNS. All materials revealed high stability and morphological robustness during OER and HER. Notably, DFT calculation suggests that N and P doping boost the OER activity of the pristine FCNS, whereas N doping enhances the HER activity.
Collapse
Affiliation(s)
- Mohamed Barakat Zakaria Hegazy
- Inorganic Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Karim Harrath
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - David Tetzlaff
- Inorganic Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
| | - Mathias Smialkowski
- Inorganic Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniel Siegmund
- Inorganic Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
| |
Collapse
|
4
|
Geng W, Zhang Z, Yang Z, Tang H, He G. Non-aqueous synthesis of high-quality Prussian blue analogues for Na-ion batteries. Chem Commun (Camb) 2022; 58:4472-4475. [DOI: 10.1039/d2cc00699e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microwave-assisted solvothermal (MW-ST) method was developed to synthesize high-quality Prussian blue analogues. The tuned NaFeHCF exhibits low water content as well as good thermal stability. It delivers a high...
Collapse
|
5
|
Ultrafine CoO nanoparticles and Co-N-C lamellae supported on mesoporous carbon for efficient electrocatalysis of oxygen reduction in zinc-air batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Nayebi B, Niavol KP, Nayebi B, Kim SY, Nam KT, Jang HW, Varma RS, Shokouhimehr M. Prussian blue-based nanostructured materials: Catalytic applications for environmental remediation and energy conversion. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Hegazy MBZ, Berber MR, Yamauchi Y, Pakdel A, Cao R, Apfel UP. Synergistic Electrocatalytic Hydrogen Evolution in Ni/NiS Nanoparticles Wrapped in Multi-Heteroatom-Doped Reduced Graphene Oxide Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34043-34052. [PMID: 34255483 DOI: 10.1021/acsami.1c05888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen production is a key driver for sustainable and clean fuels used to generate electricity, which can be achieved through electrochemical splitting of water in alkaline solutions. However, the hydrogen evolution reaction (HER) is kinetically sluggish in alkaline media. Therefore, it has become imperative to develop inexpensive and highly efficient electrocatalysts that can replace the existing expensive and scarce noble-metal-based catalysts. Herein, we report on the rational design of nonprecious heterostructured electrocatalysts comprising a highly conductive face-centered cubic nickel metal, a nickel sulfide (NiS) phase, and a reduced graphene oxide (rGO) doped with phosphorous (P), sulfur (S), and nitrogen (N) in one ordered heteromaterial named Ni/NiS/P,N,S-rGO. The Ni/NiS/P,N,S-rGO electrode shows the best performance toward HER in 1.0 M KOH media among all materials tested with an overpotential of 155 mV at 10.0 mA cm-2 and a Tafel slope of 135 mV dec-1. The performance is comparable to the herein used Pt/C-20% benchmark catalyst examined under the same experimental conditions. The chronoamperometry and chronopotentiometry measurements have reflected the high durability of the Ni/NiS/P,N,S-rGO electrode for technological applications. At the same time, the current catalyst showed a high robustness and structure retention after long-term HER performance, which is reflected by SEM, XRD, and XPS measurements.
Collapse
Affiliation(s)
- Mohamed Barakat Zakaria Hegazy
- Inorganic Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
- Department of Chemistry, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Mohamed Reda Berber
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Amir Pakdel
- Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Dublin D02PN40, Ireland
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
| |
Collapse
|
8
|
Cheng L, Ding H, Wu C, Wang S, Zhan X. Synthesis of a new Ag +-decorated Prussian blue analog with high peroxidase-like activity and its application in measuring the content of the antioxidant substances in Lycium ruthenicum Murr. RSC Adv 2021; 11:7913-7924. [PMID: 35423344 PMCID: PMC8695107 DOI: 10.1039/d0ra10396a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 01/12/2023] Open
Abstract
A new Prussian blue analog (PBA) that contains three metal elements and has peroxidase-like activity was synthesized by a simple method. Then, AgNO3 solution was added slowly to the PBA solution under continuous stirring. We found that this synthesis method could be used to prepare other PBAs, and that the anchoring of Ag+ on the surface of PBA could enhance the peroxidase-like activity of the material, suggesting potential applications for the Ag+-decorated Prussian blue analog (Ag-PBA) in traditional Chinese medicine. Ag-PBA is a new type of multi-metal cubic nano-enzyme that exhibits good stability and excellent peroxidase-like activity; as such, it could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 and Ag-PBA. We then developed a new method to measure the content of antioxidant substances in Chinese herbs by using the excellent peroxidase-like activity of Ag-PBA. Using the Chinese herb Lycium ruthenicum Murr. as a model compound, we measured the content of the antioxidant substances in Lycium ruthenicum Murr. by this new method. After optimization of reaction temperature, concentrations of TMB and H2O2, and reaction time, the content of the antioxidant substances was measured and calculated in comparison with anthocyanidin standards. The results of the Ag-PBA method and the classical DPPH method were compared by a paired t-test, with no statistically significant difference found between the methods. Hence, these two methods can be used interchangeably, although the Ag-PBA method had the advantages of simplicity, rapidness, and good stability. Moreover, the Ag-PBA method has a low limit of quantification and a shorter reaction time, which are improvements on the DPPH method, and it is not necessary to avoid light. Therefore, we anticipate that the Ag-PBA method may be used widely for the measurement of the content of antioxidant substances in Chinese herbs.
Collapse
Affiliation(s)
- Linqi Cheng
- Beijing University of Chinese Medicine Beijing 102400 China
| | - Haoxue Ding
- Beijing University of Chinese Medicine Beijing 102400 China
| | - Chunying Wu
- Beijing University of Chinese Medicine Beijing 102400 China
| | - Shuyu Wang
- Beijing University of Chinese Medicine Beijing 102400 China
| | - Xueyan Zhan
- Beijing University of Chinese Medicine Beijing 102400 China
- Beijing Key Laboratory for Process Control and Quality Evaluation of Traditional Chinese Medicine Beijing 102400 China
| |
Collapse
|
9
|
Zakaria MB, Guo Y, Na J, Tahawy R, Chikyow T, El-Said WA, El-Hady DA, Alshitari W, Yamauchi Y, Lin J. Layer-by-Layer Motif Heteroarchitecturing of N,S-Codoped Reduced Graphene Oxide-Wrapped Ni/NiS Nanoparticles for the Electrochemical Oxidation of Water. CHEMSUSCHEM 2020; 13:3269-3276. [PMID: 32133787 DOI: 10.1002/cssc.202000159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/21/2020] [Indexed: 06/10/2023]
Abstract
A new heterostructured material is synthesized with lamellar arrangements in nanoscale precision through an innovative synthetic approach. The self-assembled Ni-based cyano-bridged coordination polymer flakes (Ni-CP) and graphene oxide (GO) nanosheets with a layered morphology (Ni-CP/GO) are used as precursors for the synthesis of multicomponent hybrid materials. Annealing of Ni-CP/GO in nitrogen at 450 °C allows the formation of Ni3 C/rGO nanocomposites. Grinding Ni-CP/GO and thiourea and annealing under the same conditions produces N,S-codoped reduced GO-wrapped NiS2 flakes (NiS2 /NS-rGO). Interestingly, further heating up to 550 °C allows the phase transformation of NiS2 into NiS accompanied by the formation of a face-centered cubic (FCC-Ni) metal phase between NS-rGO layers (FCC-Ni-NiS/NS-rGO). Among all the materials, the resulting FCC-Ni-NiS/NS-rGO exhibits good electrocatalytic activity and stability toward the oxygen evolution reaction (OER) owing to the synergistic effect of multiphases, the well-designed alternating layered structures on the nanoscale with abundant active sites.
Collapse
Affiliation(s)
- Mohamed Barakat Zakaria
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, China
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Gharbeya, 31527, Egypt
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yanna Guo
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jongbeom Na
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rafat Tahawy
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Toyohiro Chikyow
- Materials Data & Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. 80327, Jeddah, 21589, Saudi Arabia
| | - Deia A El-Hady
- Department of Chemistry, College of Science, University of Jeddah, P.O. 80327, Jeddah, 21589, Saudi Arabia
| | - Wael Alshitari
- Department of Chemistry, College of Science, University of Jeddah, P.O. 80327, Jeddah, 21589, Saudi Arabia
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, China
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| | - Jianjian Lin
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, China
| |
Collapse
|
10
|
Feeney MJ, Thomas SW. Combining Top-Down and Bottom-Up with Photodegradable Layer-by-Layer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13791-13804. [PMID: 31487186 DOI: 10.1021/acs.langmuir.9b02005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Layer-by-layer (LbL) self-assembly of polymer coatings is a bottom-up fabrication technique with broad applicability across a wide range of materials and applications that require control over interfacial properties. While most LbL coatings are chemically uniform in directions both tangent and perpendicular to their substrate, control over the properties of surface coatings as a function of space can enhance their function. To contribute to this rapidly advancing field, our group has focused on the top-down spatiotemporal control possible with photochemically reactive LbL coatings, harnessed through charge-shifting polyelectrolytes enabled by photocleavable ester pendants. The photolysis of the photocleavable esters degrades LbL films containing these polyelectrolytes. The chemical structures of the photocleavable groups dictate the wavelengths responsible for disrupting these coatings, ranging from ultraviolet to near-infrared in our work. In addition, spatially segregating reactive groups into "compartments" within LbL films has enabled us to fabricate reactive free-standing polymer films and multiheight photopatterned coatings. Overall, by combining bottom-up and top-down approaches, photoreactive LbL films enable precise control over the interfacial properties of polymer and composite coatings.
Collapse
Affiliation(s)
- Matthew J Feeney
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Samuel W Thomas
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| |
Collapse
|
11
|
Li WJ, Han C, Cheng G, Chou SL, Liu HK, Dou SX. Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900470. [PMID: 30977287 DOI: 10.1002/smll.201900470] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Prussian blue analogues (PBAs, A2 T[M(CN)6 ], A = Li, K, Na; T = Fe, Co, Ni, Mn, Cu, etc.; M = Fe, Mn, Co, etc.) are a large family of materials with an open framework structure. In recent years, they have been intensively investigated as active materials in the field of energy conversion and storage, such as for alkaline-ion batteries (lithium-ion, LIBs; sodium-ion, NIB; and potassium-ion, KIBs), and as electrochemical catalysts. Nevertheless, few review papers have focused on the intrinsic chemical and structural properties of Prussian blue (PB) and its analogues. In this Review, a comprehensive insight into the PBAs in terms of their structural and chemical properties, and the effects of these properties on their materials synthesis and corresponding performance is provided.
Collapse
Affiliation(s)
- Wei-Jie Li
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chao Han
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan, 430073, P.R. China
| | - Shu-Lei Chou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Hua-Kun Liu
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
12
|
Structurally controlled layered Ni3C/graphene hybrids using cyano-bridged coordination polymers. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
13
|
Jia S, Zang J, Li W, Tian P, Zhou S, Cai H, Tian X, Wang Y. A novel synthesis of Prussian blue nanocubes/biomass-derived nitrogen-doped porous carbon composite as a high-efficiency oxygen reduction reaction catalyst. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Azhar A, Zakaria MB, Lin J, Chikyow T, Martin DJ, Alghamdi YG, Alshehri AA, Bando Y, Hossain MSA, Wu KCW, Kumar NA, Yamauchi Y. Graphene-Wrapped Nanoporous Nickel-Cobalt Oxide Flakes for Electrochemical Supercapacitors. ChemistrySelect 2018. [DOI: 10.1002/slct.201801174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alowasheeir Azhar
- College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) and Materials Data & Integrated System (MaDIS); National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba; Ibaraki 305-0044 Japan
- Faculty of Science and Engineering; Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo; 169-8555 Japan
| | - Mohamed B. Zakaria
- College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) and Materials Data & Integrated System (MaDIS); National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba; Ibaraki 305-0044 Japan
- Department of Chemistry; Faculty of Science; Tanta University, Tanta; Gharbeya 31527 Egypt
| | - Jianjian Lin
- College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Toyohiro Chikyow
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) and Materials Data & Integrated System (MaDIS); National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba; Ibaraki 305-0044 Japan
| | - Darren J. Martin
- School of Chemical Engineering; School of Mechanical and Mining Engineering, and Australian Institute for Bioengineering and Nanotechnology (AIBN); The University of Queensland, Brisbane, QLD 4072; Australia
| | - Yousef Gamaan Alghamdi
- Department of Chemistry; King Abdulaziz University, P.O. Box. 80203; Jeddah 21589 Saudi Arabia
| | | | - Yoshio Bando
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) and Materials Data & Integrated System (MaDIS); National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba; Ibaraki 305-0044 Japan
| | - Md. Shahriar A. Hossain
- School of Chemical Engineering; School of Mechanical and Mining Engineering, and Australian Institute for Bioengineering and Nanotechnology (AIBN); The University of Queensland, Brisbane, QLD 4072; Australia
| | - Kevin C.-W. Wu
- Department of Chemical Engineering; National Taiwan University, No. 1, Sec. 4; Roosevelt Road Taipei 10617 Taiwan
| | - Nanjundan Ashok Kumar
- School of Chemical Engineering; School of Mechanical and Mining Engineering, and Australian Institute for Bioengineering and Nanotechnology (AIBN); The University of Queensland, Brisbane, QLD 4072; Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering; School of Mechanical and Mining Engineering, and Australian Institute for Bioengineering and Nanotechnology (AIBN); The University of Queensland, Brisbane, QLD 4072; Australia
- Department of Plant & Environmental New Resources; Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si; Gyeonggi-do 446-701 South Korea
| |
Collapse
|
15
|
Zakaria MB, Chikyow T. Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.014] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Fukuzumi S, Lee YM, Nam W. Mechanisms of Two-Electron versus Four-Electron Reduction of Dioxygen Catalyzed by Earth-Abundant Metal Complexes. ChemCatChem 2017. [DOI: 10.1002/cctc.201701064] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
- Faculty of Science and Engineering; Meijo University; SENTAN, Japan, Science and Technology Agency, JST; Nagoya Aichi 468-8502 Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
17
|
Fu S, Zhu C, Song J, Engelhard MH, Xiao B, Du D, Lin Y. Nitrogen and Fluorine‐Codoped Carbon Nanowire Aerogels as Metal‐Free Electrocatalysts for Oxygen Reduction Reaction. Chemistry 2017; 23:10460-10464. [DOI: 10.1002/chem.201701969] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Shaofang Fu
- School of Mechanical and Materials EngineeringWashington State University, Pullman WA 99164 USA
| | - Chengzhou Zhu
- School of Mechanical and Materials EngineeringWashington State University, Pullman WA 99164 USA
| | - Junhua Song
- School of Mechanical and Materials EngineeringWashington State University, Pullman WA 99164 USA
| | - Mark H. Engelhard
- Environmental Molecular Sciences LaboratoryPacific Northwest National Laboratory Richland WA 99352 USA
| | - Biwei Xiao
- Energy and Environmental DirectoryPacific Northwest National Laboratory Richland WA 99352 USA
| | - Dan Du
- School of Mechanical and Materials EngineeringWashington State University, Pullman WA 99164 USA
| | - Yuehe Lin
- School of Mechanical and Materials EngineeringWashington State University, Pullman WA 99164 USA
| |
Collapse
|
18
|
Eom T, Woo K, Cho W, Heo JE, Jang D, Shin JI, Martin DC, Wie JJ, Shim BS. Nanoarchitecturing of Natural Melanin Nanospheres by Layer-by-Layer Assembly: Macroscale Anti-inflammatory Conductive Coatings with Optoelectronic Tunability. Biomacromolecules 2017; 18:1908-1917. [DOI: 10.1021/acs.biomac.7b00336] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Whirang Cho
- Department
of Materials Science and Engineering, University of Delaware, 201 Du Pont
Hall, Newark Delaware 19716, United States
| | | | | | | | - David C. Martin
- Department
of Materials Science and Engineering, University of Delaware, 201 Du Pont
Hall, Newark Delaware 19716, United States
| | | | | |
Collapse
|
19
|
Zheng J, Zhou W, Liu T, Liu S, Wang C, Guo L. Homologous NiO//Ni 2P nanoarrays grown on nickel foams: a well matched electrode pair with high stability in overall water splitting. NANOSCALE 2017; 9:4409-4418. [PMID: 28116394 DOI: 10.1039/c6nr07953a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Homologous NiO, Ni3S2, and Ni2P nanoarrays were obtained by thermolysis, sulfuration, and phosphorization of the Ni(SO4)0.3OH1.4 belt-like precursors. The three types of porous nickel compound films grown on nickel foam with a thickness of ∼8 μm have been used as anodes and cathodes in a two-electrode setup for overall water splitting. The electrode pairing of NixMy//NixMy (M = O, S, and P) for electrocatalysis in order of superiority is as follows: NiO//Ni2P > Ni3S2//Ni2P > Ni2P//Ni2P > Ni3S2//Ni3S2 > NiO//Ni3S2 > NiO//NiO. The other two sets of NixMy with different thicknesses of ∼5 and ∼11 μm also follow the abovementioned order. The well matched electrode pair of NiOOER//Ni2PHER only needs 1.65 V, whereas NiO//NiO pair needs 1.84 V to afford the current of 10 mA cm-2 in 1 mol L-1 of aqueous KOH solution. In particular, the current density retention of the NiO//Ni2P reached 92% after 120 hours of electrolysis at 1.70 V (NiO//NiO only maintains 72% after 30-hour electrolysis). The novelty of this study focuses on fabricating a well matched electrode pair to substantially enhance its electrochemical performance and durability, which would provide a new insight into developing non-noble, highly efficient, and stable electrode pairs.
Collapse
Affiliation(s)
- Jinlong Zheng
- School of Chemistry and Environment, Beihang University, Beijing 100191, China.
| | - Wei Zhou
- School of Chemistry and Environment, Beihang University, Beijing 100191, China.
| | - Tong Liu
- School of Chemistry and Environment, Beihang University, Beijing 100191, China.
| | - Shijie Liu
- School of Chemistry and Environment, Beihang University, Beijing 100191, China.
| | - Chengbo Wang
- School of Chemistry and Environment, Beihang University, Beijing 100191, China.
| | - Lin Guo
- School of Chemistry and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
20
|
Amiri M, Konda SK, Chen A. Facile Synthesis of a Carbon Nitride/Reduced Graphene Oxide/Nickel Hydroxide Nanocomposite for Oxygen Reduction in Alkaline Media. ChemElectroChem 2017. [DOI: 10.1002/celc.201700092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mona Amiri
- Department of Chemistry; Lakehead University; Thunder Bay ON P7B 5E1 Canada
| | - Suresh K. Konda
- Department of Chemistry; Lakehead University; Thunder Bay ON P7B 5E1 Canada
| | - Aicheng Chen
- Department of Chemistry; Lakehead University; Thunder Bay ON P7B 5E1 Canada
| |
Collapse
|
21
|
Calcagno V, Vecchione R, Sagliano A, Carella A, Guarnieri D, Belli V, Raiola L, Roviello A, Netti PA. Biostability enhancement of oil core — polysaccharide multilayer shell via photoinitiator free thiol-ene ‘click’ reaction. Colloids Surf B Biointerfaces 2016; 142:281-289. [DOI: 10.1016/j.colsurfb.2016.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 01/06/2023]
|
22
|
Li P, Ma R, Zhou Y, Chen Y, Liu Q, Peng G, Wang J. The direct growth of highly dispersed CoO nanoparticles on mesoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. RSC Adv 2016. [DOI: 10.1039/c6ra14394f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly dispersed CoO nanoparticles on mesoporous carbon show the excellent activity and stability toward the electrocatalytic oxygen reduction reaction with a four-electron reaction path, compared to commercial Pt/C.
Collapse
Affiliation(s)
- Pengxi Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ruguang Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Yao Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Yongfang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Qian Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Guihua Peng
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry & Pharmaceutical of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Jiacheng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|