1
|
Ur Rahim J, Ahmad SM, Amin T, Chowdhary R, Goswami A, Rai R. Synthesis, conformation and cytotoxic activity of short hybrid peptides containing conformationally constrained 1-(aminomethyl)cyclohexanecarboxylic acid and gabapentin. Peptides 2022; 158:170897. [PMID: 36279986 DOI: 10.1016/j.peptides.2022.170897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
The present work describes the synthesis,conformation and cytotoxic activities of short β/γ hybrid peptides, Boc-β2,2-Ac6c-Gpn-NHMe, BG1; Boc-(β2,2-Ac6c-Gpn)2-OMe, BG2; Boc-(β2,2-Ac6c-Gpn)3-OMe, BG3; H-β2,2-Ac6c-Gpn-NHMe, BG4; H-(β2,2-Ac6c-Gpn)2-OMe, BG5; H-(β2,2-Ac6c-Gpn)3-OMe, BG6, Boc-β2,2-Ac6c-Gpn-OMe, BG7 and H-β2,2-Ac6c-Gpn-OMe, BG8. Mixed C6/C7 conformations were observed for β/γ hybrid peptides. Further, BG1-BG8 were screened against MCF-7 (Breast cancer), A549 (Lung Cancer), PC-3 (Prostate cancer), HCT-116 (Colon cancer), and MDA-MB-231 (Breast cancer) cell lines. Among all, BG6 exhibited potent cytotoxicity against all cancer cell lines with IC50 ranging from 1.6 μM to 6.3 μM with relatively low cytotoxicity against normal epithelial breast cell line fR-2 and human embryonic kidney cell line HEK-293. Minimal hemolytic activity was observed for BG6 against human erythrocytes. Peptide BG6 displayed anti-migratory and anti-invasive potentials showing strong interactions with intrinsic apoptotic markers Bcl-2, Bax, and cleaved-PARP, as well as the induction of the mitochondria maladjustment mediated apoptosis.
Collapse
Affiliation(s)
- Junaid Ur Rahim
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Mudabir Ahmad
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tanzeeba Amin
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rubina Chowdhary
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajkishor Rai
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Reja RM, Kumar V, George G, Patel R, Puneeth Kumar DRGKR, Raghothama S, Gopi HN. Structural Investigation of Hybrid Peptide Foldamers Composed of α-Dipeptide Equivalent β-Oxy-δ 5 -amino Acids. Chemistry 2020; 26:4304-4309. [PMID: 31960517 DOI: 10.1002/chem.201904780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Indexed: 01/05/2023]
Abstract
Due to their equivalent lengths, δ-amino acids can serve as surrogates of α-dipeptides. However, δ-amino acids with proteinogenic side chains have not been well studied because of synthetic difficulties and because of their insolubility in organic solvents. Recently we reported the spontaneous supramolecular gelation of δ-peptides composed of β(O)-δ5 -amino acids. Here, we report the incorporation of β(O)-δ5 -amino acids as guests into the host α-helix, α,γ-hybrid peptide 12-helix and their single-crystal conformations. In addition, we studied the solution conformations of hybrid peptides composed of 1:1 alternating α and β(O)-δ5 -amino acids. In contrast to the control α-helix structures, the crystal structure of peptides with β(O)-δ5 -amino acids exhibit α-helical conformations consisting of both 13- and 10-membered H-bonds. The α,δ-hybrid peptide adopted mixed 13/11-helix conformation in solution with alternating H-bond directionality. Crystal-structure analysis revealed that the α,γ4 -hybrid peptide accommodated the guest β(O)-δ5 -amino acid without significant deviation to the overall helix folding. The results reported here emphasize that β(O)-δ5 -amino acids with proteinogenic side chains can be accommodated into regular α-helix or 12-helix as guests without much deviation of the overall helix folding of the peptides.
Collapse
Affiliation(s)
- Rahi M Reja
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Vivek Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Gijo George
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Rajat Patel
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - DRGKoppalu R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | | | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
3
|
Misra R, George G, Reja RM, Dey S, Raghothama S, Gopi HN. Structural insight into hybrid peptide ε-helices. Chem Commun (Camb) 2020; 56:2171-2173. [PMID: 31970340 DOI: 10.1039/c9cc07413a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique ε-helical organizations (11-helices) from β,γ-hybrid peptides composed of chiral β3-amino acids along with achiral 3,3- or 4,4-dimethyl substituted γ-amino acids are disclosed.
Collapse
Affiliation(s)
- Rajkumar Misra
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411021, India.
| | - Gijo George
- NMR Research Center, Indian Institute of Science, Bangalore-560012, India.
| | - Rahi M Reja
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411021, India.
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411021, India.
| | | | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411021, India.
| |
Collapse
|
4
|
Ghisu L, Melis N, Serusi L, Luridiana A, Soddu F, Secci F, Caboni P, Guillot R, Aitken DJ, Frongia A. Synthesis of β-sulfinyl cyclobutane carboxylic amides via a formal α to β sulphoxide migration process. Org Biomol Chem 2019; 17:6143-6147. [PMID: 31180093 DOI: 10.1039/c9ob00758j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An original tandem reaction consisting of a thermal elimination-addition process was developed. Highly substituted β-sulfinyl cyclobutane carboxylic acid derivatives were obtained from isomeric α-sulfinyl derivatives in a single operation in good to high yields and with high trans diastereoselectivity.
Collapse
Affiliation(s)
- Lorenza Ghisu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kerres S, Plut E, Malcherek S, Rehbein J, Reiser O. Visible Light‐Mediated Synthesis of Enantiopure γ‐Cyclobutane Amino and 3‐(Aminomethyl)‐5‐phenylpentanoic Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sabine Kerres
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Eva Plut
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Simon Malcherek
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Julia Rehbein
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Oliver Reiser
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| |
Collapse
|
6
|
Amabili P, Calvaresi M, Martelli G, Orena M, Rinaldi S, Sgolastra F. Imidazolidinone-Tethered α-Hydrazidopeptides - Synthesis and Conformational Investigation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Paolo Amabili
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Matteo Calvaresi
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Gianluca Martelli
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Mario Orena
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Samuele Rinaldi
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Federica Sgolastra
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| |
Collapse
|
7
|
Konda M, Jadhav RG, Maiti S, Mobin SM, Kauffmann B, Das AK. Understanding the conformational analysis of gababutin based hybrid peptides. Org Biomol Chem 2018; 16:1728-1735. [DOI: 10.1039/c8ob00035b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new class of gababutin-based tetrapeptide shows a C12/C10 hydrogen-bonded hybrid turn.
Collapse
Affiliation(s)
- Maruthi Konda
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Rohit G. Jadhav
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Sayan Maiti
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Shaikh M. Mobin
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Brice Kauffmann
- Université de Bordeaux
- CNRS
- UMS 3033
- INSERM US001 Institut Européen de Chimie et de Biologie (IECB)
- 33600 Pessac
| | - Apurba K. Das
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| |
Collapse
|
8
|
Awada H, Grison CM, Charnay-Pouget F, Baltaze JP, Brisset F, Guillot R, Robin S, Hachem A, Jaber N, Naoufal D, Yazbeck O, Aitken DJ. Conformational Effects through Hydrogen Bonding in a Constrained γ-Peptide Template: From Intraresidue Seven-Membered Rings to a Gel-Forming Sheet Structure. J Org Chem 2017; 82:4819-4828. [PMID: 28398045 DOI: 10.1021/acs.joc.7b00494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of three short oligomers (di-, tri-, and tetramers) of cis-2-(aminomethyl)cyclobutane carboxylic acid, a γ-amino acid featuring a cyclobutane ring constraint, were prepared, and their conformational behavior was examined spectroscopically and by molecular modeling. In dilute solutions, these peptides showed a number of low-energy conformers, including ribbonlike structures pleated around a rarely observed series of intramolecular seven-membered hydrogen bonds. In more concentrated solutions, these interactions defer to an organized supramolecular assembly, leading to thermoreversible organogel formation notably for the tripeptide, which produced fibrillar xerogels. In the solid state, the dipeptide adopted a fully extended conformation featuring a one-dimensional network of intermolecularly H-bonded molecules stacked in an antiparallel sheet alignment. This work provides unique insight into the interplay between inter- and intramolecular H-bonded conformer topologies for the same peptide template.
Collapse
Affiliation(s)
- Hawraà Awada
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay , Bât. 420, 15 rue Georges Clemenceau, 91405 Orsay cedex, France
- Inorganic and Organometallic Coordination Chemistry Laboratory and Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences (I) & PRASE-EDST, Lebanese University , Hadath, Lebanon
| | - Claire M Grison
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay , Bât. 420, 15 rue Georges Clemenceau, 91405 Orsay cedex, France
| | - Florence Charnay-Pouget
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay , Bât. 420, 15 rue Georges Clemenceau, 91405 Orsay cedex, France
| | - Jean-Pierre Baltaze
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay , Bât. 420, 15 rue Georges Clemenceau, 91405 Orsay cedex, France
| | - François Brisset
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay , Bât. 420, 15 rue Georges Clemenceau, 91405 Orsay cedex, France
| | - Régis Guillot
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay , Bât. 420, 15 rue Georges Clemenceau, 91405 Orsay cedex, France
| | - Sylvie Robin
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay , Bât. 420, 15 rue Georges Clemenceau, 91405 Orsay cedex, France
- UFR Sciences Pharmaceutiques et Biologiques, Université Paris Descartes , 4 avenue de l'Observatoire, 75270 Paris cedex 06, France
| | - Ali Hachem
- Inorganic and Organometallic Coordination Chemistry Laboratory and Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences (I) & PRASE-EDST, Lebanese University , Hadath, Lebanon
| | - Nada Jaber
- Inorganic and Organometallic Coordination Chemistry Laboratory and Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences (I) & PRASE-EDST, Lebanese University , Hadath, Lebanon
| | - Daoud Naoufal
- Inorganic and Organometallic Coordination Chemistry Laboratory and Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences (I) & PRASE-EDST, Lebanese University , Hadath, Lebanon
| | - Ogaritte Yazbeck
- Inorganic and Organometallic Coordination Chemistry Laboratory and Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences (I) & PRASE-EDST, Lebanese University , Hadath, Lebanon
| | - David J Aitken
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay , Bât. 420, 15 rue Georges Clemenceau, 91405 Orsay cedex, France
| |
Collapse
|
9
|
Grison CM, Miles JA, Robin S, Wilson AJ, Aitken DJ. An α-Helix-Mimicking 12,13-Helix: Designed α/β/γ-Foldamers as Selective Inhibitors of Protein-Protein Interactions. Angew Chem Int Ed Engl 2016; 55:11096-100. [PMID: 27467859 PMCID: PMC5014220 DOI: 10.1002/anie.201604517] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/28/2016] [Indexed: 12/31/2022]
Abstract
A major current challenge in bioorganic chemistry is the identification of effective mimics of protein secondary structures that act as inhibitors of protein-protein interactions (PPIs). In this work, trans-2-aminocyclobutanecarboxylic acid (tACBC) was used as the key β-amino acid component in the design of α/β/γ-peptides to structurally mimic a native α-helix. Suitably functionalized α/β/γ-peptides assume an α-helix-mimicking 12,13-helix conformation in solution, exhibit enhanced proteolytic stability in comparison to the wild-type α-peptide parent sequence from which they are derived, and act as selective inhibitors of the p53/hDM2 interaction.
Collapse
Affiliation(s)
- Claire M Grison
- CP3A Organic Synthesis Group, ICMMO, CNRS, Université Paris Sud, Université Paris Saclay, 15 Rue George Clemenceau, 91405, Orsay Cedex, France
| | - Jennifer A Miles
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sylvie Robin
- CP3A Organic Synthesis Group, ICMMO, CNRS, Université Paris Sud, Université Paris Saclay, 15 Rue George Clemenceau, 91405, Orsay Cedex, France
- UFR Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4 Avenue de l'Observatoire, 75270, Paris cedex 06, France
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - David J Aitken
- CP3A Organic Synthesis Group, ICMMO, CNRS, Université Paris Sud, Université Paris Saclay, 15 Rue George Clemenceau, 91405, Orsay Cedex, France.
| |
Collapse
|
10
|
Fisher BF, Gellman SH. Impact of γ-Amino Acid Residue Preorganization on α/γ-Peptide Foldamer Helicity in Aqueous Solution. J Am Chem Soc 2016; 138:10766-9. [PMID: 27529788 DOI: 10.1021/jacs.6b06177] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
α/γ-Peptide foldamers containing either γ(4)-amino acid residues or ring-constrained γ-amino acid residues have been reported to adopt 12-helical secondary structure in nonpolar solvents and in the solid state. These observations have engendered speculation that the seemingly flexible γ(4) residues have a high intrinsic helical propensity and that residue-based preorganization may not significantly stabilize the 12-helical conformation. However, the prior studies were conducted in environments that favor intramolecular H-bond formation. Here, we use 2D-NMR to compare the ability of γ(4) residues and cyclic γ residues to support 12-helix formation in more challenging environments, methanol and water. Both γ residue types support 12-helical folding in methanol, but only the cyclically constrained γ residues promote helicity in water. These results demonstrate the importance of residue-based preorganization strategies for achieving stable folding among short foldamers in aqueous solution.
Collapse
Affiliation(s)
- Brian F Fisher
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Grison CM, Miles JA, Robin S, Wilson AJ, Aitken DJ. An α-Helix-Mimicking 12,13-Helix: Designed α/β/γ-Foldamers as Selective Inhibitors of Protein-Protein Interactions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Claire M. Grison
- CP3A Organic Synthesis Group, ICMMO, CNRS; Université Paris Sud, Université Paris Saclay; 15 Rue George Clemenceau 91405 Orsay Cedex France
| | - Jennifer A. Miles
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| | - Sylvie Robin
- CP3A Organic Synthesis Group, ICMMO, CNRS; Université Paris Sud, Université Paris Saclay; 15 Rue George Clemenceau 91405 Orsay Cedex France
- UFR Sciences Pharmaceutiques et Biologiques; Université Paris Descartes; 4 Avenue de l'Observatoire 75270 Paris cedex 06 France
| | - Andrew J. Wilson
- School of Chemistry; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology; University of Leeds; Woodhouse Lane Leeds LS2 9JT UK
| | - David J. Aitken
- CP3A Organic Synthesis Group, ICMMO, CNRS; Université Paris Sud, Université Paris Saclay; 15 Rue George Clemenceau 91405 Orsay Cedex France
| |
Collapse
|
12
|
Grison CM, Robin S, Aitken DJ. 13-Helix folding of a β/γ-peptide manifold designed from a “minimal-constraint” blueprint. Chem Commun (Camb) 2016; 52:7802-5. [DOI: 10.1039/c6cc02142e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A bottom-up design rationale was used to select an alternating β/γ-peptide motif which folds into a well-defined 13-helix in solution.
Collapse
Affiliation(s)
- Claire M. Grison
- CP3A Organic Synthesis Group
- ICMMO
- UMR 8182
- CNRS
- Université Paris-Sud
| | - Sylvie Robin
- CP3A Organic Synthesis Group
- ICMMO
- UMR 8182
- CNRS
- Université Paris-Sud
| | - David J. Aitken
- CP3A Organic Synthesis Group
- ICMMO
- UMR 8182
- CNRS
- Université Paris-Sud
| |
Collapse
|