1
|
Ni F, Huang Y, Qiu L, Yang C. Synthetic progress of organic thermally activated delayed fluorescence emitters via C-H activation and functionalization. Chem Soc Rev 2024; 53:5904-5955. [PMID: 38717257 DOI: 10.1039/d3cs00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.
Collapse
Affiliation(s)
- Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yipan Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
2
|
Martín J, Schörgenhumer J, Biedrzycki M, Nevado C. (P^N^C) Ligands to Stabilize Gold(III): A Straightforward Access to Hydroxo, Formate, and Hydride Complexes. Inorg Chem 2024; 63:8390-8396. [PMID: 38657169 PMCID: PMC11080065 DOI: 10.1021/acs.inorgchem.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
A novel class of (P^N^C) pincer ligands capable of stabilizing elusive gold(III) species is reported here. Straightforward access to (P^N^C)gold(III) hydroxo, formate, and hydride complexes has been streamlined by first incorporating a cycloauration step devoid of toxic metals or harsh conditions. The resulting gold complexes exhibit remarkable stability in solution as well as in the solid state under ambient conditions, which enabled their characterization by X-ray diffraction analyses. Interestingly, the influence of the ligand allowed the preparation of gold(III)-hydrides using mild hydride donors such as H-Bpin, which contrasts with sensitive super hydrides or strong acids and cryogenic conditions employed in previous protocols. A detailed bonding characterization of these species is complemented by reactivity studies.
Collapse
Affiliation(s)
- Jaime Martín
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Johannes Schörgenhumer
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Michał Biedrzycki
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| |
Collapse
|
3
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Busch J, Rehak FR, Ferraro V, Nieger M, Kemell M, Fuhr O, Klopper W, Bräse S. From Mono- to Polynuclear 2-(Diphenylphosphino)pyridine-Based Cu(I) and Ag(I) Complexes: Synthesis, Structural Characterization, and DFT Calculations. ACS OMEGA 2024; 9:2220-2233. [PMID: 38250424 PMCID: PMC10795044 DOI: 10.1021/acsomega.3c05755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
A series of monometallic Ag(I) and Cu(I) halide complexes bearing 2-(diphenylphosphino)pyridine (PyrPhos, L) as a ligand were synthesized and spectroscopically characterized. The structure of most of the derivatives was unambiguously established by X-ray diffraction analysis, revealing the formation of mono-, di-, and tetranuclear complexes having general formulas MXL3 (M = Cu, X = Cl, Br; M = Ag, X = Cl, Br, I), Ag2X2L3 (X = Cl, Br), and Ag4X4L4 (X = Cl, Br, I). The Ag(I) species were compared to the corresponding Cu(I) analogues from a structural point of view. The formation of Cu(I)/Ag(I) heterobimetallic complexes MM'X2L3 (M/M' = Cu, Ag; X = Cl, Br, I) was also investigated. The X-ray structure of the bromo-derivatives revealed the formation of two possible MM'Br2L3 complexes with Cu/Ag ratios, respectively, of 7:1 and 1:7. The ratio between Cu and Ag was studied by scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX) measurements. The structure of the binuclear homo- and heterometallic derivatives was investigated using density functional theory (DFT) calculations, revealing the tendency of the PyrPhos ligands not to maintain the bridging motif in the presence of Ag(I) as the metal center.
Collapse
Affiliation(s)
- Jasmin
M. Busch
- Institute
of Organic Chemistry (IOC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Florian R. Rehak
- Institute
of Physical Chemistry (IPC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Valentina Ferraro
- Institute
of Organic Chemistry (IOC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Martin Nieger
- Department
of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, FI 00014 Helsinki, Finland
| | - Marianna Kemell
- Department
of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, FI 00014 Helsinki, Finland
| | - Olaf Fuhr
- Institute
of Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Karlsruhe
Nano-Micro Facility (KNMFi), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute
of Physical Chemistry (IPC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Institute
of Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry (IOC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Institute
of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Au-Yeung CC, Leung MY, Lai SL, Cheng SC, Li LK, Tang MC, Kwok WK, Ko CC, Chan MY, Yam VWW. Thermally activated delayed fluorescence tetradentate ligand-containing gold(III) complexes with preferential molecular orientation and their application in organic light-emitting devices. MATERIALS HORIZONS 2024; 11:151-162. [PMID: 37889511 DOI: 10.1039/d3mh00910f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A new class of thermally activated delayed fluorescence (TADF) pyridine-/pyrazine-containing tetradentate C^C^N^N gold(III) complexes have been designed and synthesized. Displaying photoluminescence quantum yields (PLQYs) of up to 0.77 in solid-state thin films, these complexes showed at-least a six-fold increase in the radiative decay rate constant (kr) in toluene upon increasing temperature from 210 to 360 K. Using variable-temperature (VT) ultrafast transient absorption (TA) spectroscopy, the reverse intersystem crossing (RISC) processes were directly observed and the activation parameters were determined, in line with the results of the Boltzmann two-level model fittings, in which the energy separation values between the lowest-lying singlet excited state (S1) and the lowest-lying triplet excited state (T1), ΔE(S1-T1), of these complexes were estimated to be in the range of 0.16-0.18 eV. Through strategic modification of the position of the electron-donating -tBu substituent in the cyclometalating ligand, the permanent dipole moments (PDMs) of these tetradentate gold(III) emitters could be manipulated to enhance their horizontal alignment in the emitting layer of organic light-emitting devices (OLEDs). Consequently, the resulting vacuum-deposited OLEDs demonstrated a 30% increase in the theoretical out-coupling efficiency (ηout), as well as promising electroluminescence (EL) performance with maximum external quantum efficiencies (EQEs) of up to 15.7%.
Collapse
Affiliation(s)
- Cathay Chai Au-Yeung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, P. R. China
| | - Shiu-Lun Lai
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Lok-Kwan Li
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Man-Chung Tang
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Wing-Kei Kwok
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, P. R. China
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Mei-Yee Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, P. R. China
| |
Collapse
|
6
|
Giuso V, Yang J, Forté J, Dossmann H, Daniel C, Gourlaouen C, Mauro M, Bertrand B. Binuclear Biphenyl Organogold(III) Complexes: Synthesis, Photophysical and Theoretical Investigation, and Anticancer Activity. Chempluschem 2023; 88:e202300303. [PMID: 37610058 DOI: 10.1002/cplu.202300303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
A series of four binuclear complexes of general formula [(C^C)Au(Cl)(L^L)(Cl)Au(C^C)], where C^C is 4,4'-diterbutylbiphenyl and L^L is either a bridging diphosphine or 4,4'-bipyridine, are synthetized with 52 to 72 % yield and structurally characterized by X-ray diffraction. The use of the chelating 1,2-diphenylphosphinoethane ligand in a 1 : 2 (P^P):Au stoichiometry leads to the near quantitative formation of a gold double-complex salt of general formula [(C^C)Au(P^P)][(C^C^)AuCl2 ]. The compounds display long-lived yellow-green phosphorescence with λem in the range of 525 to 585 nm in the solid state with photoluminescence quantum yields (PLQY) up to 10 %. These AuIII complexes are tested for their antiproliferative activity against lung adenocarcinoma cells A549 and results show that compounds 2 and 5 are the most promising candidates. The digold salt 5 shows anticancer activity between 66 and 200 nM on the tested cancer cell lines, whereas derivative 2 displays concentration values required to reduce by 50 % the cell viability (IC50 ) between 7 and 11 μM. Reactivity studies of compound 5 reveal that the [(C^C)Au(P^P)]+ cation is stable in the presence of relevant biomolecules including glutathione suggesting a structural mechanism of action.
Collapse
Affiliation(s)
- Valerio Giuso
- Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg, France
| | - Jeannine Yang
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Jérémy Forté
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Héloïse Dossmann
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Chantal Daniel
- Institut de Chimie de Strasbourg, UMR 7177, Laboratoire de Chimie Quantique, Université de Strasbourg & CNRS, 4 rue Blaise Pascal, 67081, Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie de Strasbourg, UMR 7177, Laboratoire de Chimie Quantique, Université de Strasbourg & CNRS, 4 rue Blaise Pascal, 67081, Strasbourg, France
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg, France
| | - Benoît Bertrand
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
7
|
Lara Garnica R, Rama RJ, Chambrier I, Agonigi G, Hughes DL, Lalinde E, Bochmann M, Fernandez-Cestau J. Luminescent Au(III)-M(I) (M = Cu, Ag) Aggregates Based on Dicyclometalated Bis(alkynyl) Gold Anions†. Inorg Chem 2023; 62:12683-12696. [PMID: 37534700 PMCID: PMC10428224 DOI: 10.1021/acs.inorgchem.3c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 08/04/2023]
Abstract
The syntheses and structures of a series of complexes based on the C∧C-chelated Au(III) unit (C∧C = 4,4'-bis(t-butyl) 2,2'-biphenyl-1,1'-diyl) are reported, namely, [{(C∧C)Au(C≡CtBu)2}2M2], (C∧C)Au(C≡CR)(C≡NXyl), and [{(C∧C)Au(C≡CR)2}{M(C≡NXyl)}] (M = Ag, Cu; R = tBu, C6H4tBu-4, C6H4OMe-4; Xyl = 3,5-Me2C6H3). The X-ray structures reveal a broad range of dispositions determined by the different coordination modes of Ag(I) or Cu(I). The complexes are bright photoemitters in the solid state and in poly(methyl methacrylate) (PMMA) films. The photoluminescence is dominated by 3IL(C∧C) transitions, with indirect effects from the rest of the molecules, as supported by theoretical calculations. This work opens up the possibility of accessing Au(III) carbon-rich anions to construct photoluminescent aggregates.
Collapse
Affiliation(s)
- Rebeca Lara Garnica
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- Departamento
de Química—Centro de Investigación en Síntesis
Química (CISQ), Universidad de La
Rioja, E-26006 Logroño, Spain
| | - Raquel J. Rama
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- Departamento
de Química Inorgánica, Universidad
de Sevilla, 41071 Sevilla, Spain
- SMN Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371 Oslo, Norway
| | - Isabelle Chambrier
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Gabriele Agonigi
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, I-56124 Pisa, Italy
| | - David L. Hughes
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Elena Lalinde
- Departamento
de Química—Centro de Investigación en Síntesis
Química (CISQ), Universidad de La
Rioja, E-26006 Logroño, Spain
| | - Manfred Bochmann
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Julio Fernandez-Cestau
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- Departamento
de Química—Centro de Investigación en Síntesis
Química (CISQ), Universidad de La
Rioja, E-26006 Logroño, Spain
| |
Collapse
|
8
|
Yersin H, Czerwieniec R, Monkowius U, Ramazanov R, Valiev R, Shafikov MZ, Kwok WM, Ma C. Intersystem crossing, phosphorescence, and spin-orbit coupling. Two contrasting Cu(I)-TADF dimers investigated by milli- to micro-second phosphorescence, femto-second fluorescence, and theoretical calculations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Li S, Cao Y, Dong H. Solvent polarity dependent excited state behaviors for 2‐(2‐hydroxyphenyl) benzothiazole‐5‐(9H‐carbazol‐9‐yl)phenol fluorophore: A theoretical study. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Songtao Li
- Hebei Key Laboratory of Physics and Energy Technology, Department of Mathematics and Physics North China Electric Power University Baoding China
| | - Yahui Cao
- Hebei Key Laboratory of Physics and Energy Technology, Department of Mathematics and Physics North China Electric Power University Baoding China
| | - Hao Dong
- Hebei Key Laboratory of Physics and Energy Technology, Department of Mathematics and Physics North China Electric Power University Baoding China
| |
Collapse
|
10
|
Liu H, Xie G. Post-synthesis from Lewis acid–base interaction: an alternative way to generate light and harvest triplet excitons. Beilstein J Org Chem 2022; 18:825-836. [PMID: 35923156 PMCID: PMC9296988 DOI: 10.3762/bjoc.18.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
The changes in absorption and emission of fluorescent materials with the introduction of Lewis acids have been frequently observed due to either physical or chemical interactions. In this mini-review, we elaborate how Lewis acids adjust the optical properties and the bandgap of luminescent materials by simple coordination reactions. It is common that fluorescent materials containing Lewis basic nitrogen heterocycles are more likely to provide the feasible band gap modulation. The essence of such phenomenon originates from Lewis acid–base coordination and adducts, which highly depends on the electron-accepting property of the Lewis acids. This intermolecular mechanism, considered as post-synthesis of new luminescent compounds offers promising applications in sensing and electroluminescence by manipulating the frontier molecular orbital energy levels of organic conjugated materials, simply based on Lewis acid–base chemistry.
Collapse
Affiliation(s)
- Hengjia Liu
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
- Key Laboratory for preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 518060, People’s Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
11
|
Cavinato LM, Wölfl S, Pöthig A, Fresta E, Garino C, Fernandez-Cestau J, Barolo C, Costa RD. Multivariate Analysis Identifying [Cu(N^N)(P^P)] + Design and Device Architecture Enables First-Class Blue and White Light-Emitting Electrochemical Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109228. [PMID: 35034407 DOI: 10.1002/adma.202109228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
White light-emitting electrochemical cells (LECs) comprising only [Cu(N^N)(P^P)]+ have not been reported yet, as all the attempts toward blue-emitting complexes failed. Multivariate analysis, based on prior-art [Cu(N^N)(P^P)]+ -based thin-film lighting (>90 papers) and refined with computational calculations, identifies the best blue-emitting [Cu(N^N)(P^P)]+ design for LECs, that is, N^N: 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine and P^P: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, to achieve predicted thin-film emission at 490 nm and device performance of 3.8 cd A-1 @170 cd m-2 . Validation comes from synthesis, X-ray structure, thin-film spectroscopic/microscopy/electrochemical characterization, and device optimization, realizing the first [Cu(N^N)(P^P)]+ -based blue-LEC with 3.6 cd A-1 @180 cd m-2 . This represents a record performance compared to the state-of-the-art tricoordinate Cu(I)-complexes blue-LECs (0.17 cd A-1 @20 cd m-2 ). Versatility is confirmed with the synthesis of the analogous complex with 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrazine (N^N), showing a close prediction/experiment match: λ = 590/580 nm; efficiency = 0.55/0.60 cd A-1 @30 cd m-2 . Finally, experimental design is applied to fabricate the best white multicomponent host:guest LEC, reducing the number of trial-error attempts toward the first white all-[Cu(N^N)(P^P)]+ -LECs with 0.6 cd A-1 @30 cd m-2 . This corresponds to approximately ten-fold enhancement compared to previous LECs (<0.05 cd A-1 @<12 cd m-2 ). Hence, this work sets in the first multivariate approach to design emitters/active layers, accomplishing first-class [Cu(N^N)(P^P)]+ -based blue/white LECs that were previously elusive.
Collapse
Affiliation(s)
- Luca M Cavinato
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Sarah Wölfl
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Alexander Pöthig
- Department of Chemistry & Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Elisa Fresta
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Claudio Garino
- Department of Chemistry, University of Turin, Via Giuria 7, Turin, 10125, Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Gioacchino Quarello 15/a, Turin, 10125, Italy
| | - Julio Fernandez-Cestau
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Claudia Barolo
- Department of Chemistry, University of Turin, Via Giuria 7, Turin, 10125, Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Gioacchino Quarello 15/a, Turin, 10125, Italy
- ICxT Interdepartmental Centre, University of Turin, Lungo Dora Siena 100, Turin, 10153, Italy
| | - Rubén D Costa
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| |
Collapse
|
12
|
Li LK, Au-Yeung CC, Tang MC, Lai SL, Cheung WL, Ng M, Chan MY, Yam VWW. Design and synthesis of yellow- to red-emitting gold(III) complexes containing isomeric thienopyridine and thienoquinoline moieties and their applications in operationally stable organic light-emitting devices. MATERIALS HORIZONS 2022; 9:281-293. [PMID: 34473166 DOI: 10.1039/d1mh00821h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new class of yellow- to red-emitting carbazolylgold(III) complexes containing isomeric thienopyridine or thienoquinoline moieties in the cyclometalating ligand has been designed and synthesized, which showed high photoluminescence quantum yields of over 80% in solid-state thin films. The isomeric effect and extended π-conjugation of the N-heterocycles have been found to remarkably perturb the photophysical, electrochemical and electroluminescence properties of the gold(III) complexes. In particular, the operational lifetimes of organic light-emitting devices based on that incorporated with thieno[2,3-c]pyridine are almost three orders of magnitude longer than that incorporated with thieno[3,2-c]pyridine. This has led to long device operational stability with a LT70 value of up to 63 200 h at a luminance of 100 cd m-2 and a long half-lifetime of 206 800 h, as well as maximum external quantum efficiencies of up to 8.6% and 14.5% in the solution-processed and vacuum-deposited devices, respectively. This work provides insights into the development of robust and highly luminescent gold(III) complexes and the identification of stable molecular motifs for designing efficient emitters.
Collapse
Affiliation(s)
- Lok-Kwan Li
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Cathay Chai Au-Yeung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Man-Chung Tang
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Shiu-Lun Lai
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Wai-Lung Cheung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Mei-Yee Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
13
|
Khodjoyan S, Remadna E, Dossmann H, Lesage D, Gontard G, Forté J, Hoffmeister H, Basu U, Ott I, Spence P, Waller ZAE, Salmain M, Bertrand B. [(C C)Au(N N)] + Complexes as a New Family of Anticancer Candidates: Synthesis, Characterization and Exploration of the Antiproliferative Properties. Chemistry 2021; 27:15773-15785. [PMID: 34436799 DOI: 10.1002/chem.202102751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/31/2022]
Abstract
A library of eleven cationic gold(III) complexes of the general formula [(C C)Au(N N)]+ when C C is either biphenyl or 4,4'-ditertbutyldiphenyl and N N is a bipyridine, phenanthroline or dipyridylamine derivative have been synthesized and characterized. Contrasting effects on the viability of the triple negative breast cancer cells MDA-MB-231 was observed from a preliminary screening. The antiproliferative activity of the seven most active complexes were further assayed on a larger panel of human cancer cells as well as on non-cancerous cells for comparison. Two complexes stood out for being either highly active or highly selective. Eventually, reactivity studies with biologically meaningful amino acids, glutathione, higher order DNA structures and thioredoxin reductase (TrxR) revealed a markedly different behavior from that of the well-known coordinatively isomeric [(C N C)Au(NHC)]+ structure. This makes the [(C C)Au(N N)]+ complexes a new class of organogold compounds with an original mode of action.
Collapse
Affiliation(s)
- Silva Khodjoyan
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Edwyn Remadna
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Héloïse Dossmann
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Denis Lesage
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Geoffrey Gontard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Jérémy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Henrik Hoffmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Uttara Basu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Philip Spence
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK.,UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1 N, UK
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| | - Benoît Bertrand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 75005, Paris, France
| |
Collapse
|
14
|
Malmberg R, Suter D, Blacque O, Venkatesan K. Monocyclometalated (C N) Gold(III) Metallacycles: Tunable Emission and Singlet Oxygen ( 1 O 2 ) Generation Properties. Chemistry 2021; 27:14410-14417. [PMID: 34406672 DOI: 10.1002/chem.202102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization and photoluminescent properties of four cyclometalated (C N)-type gold(III) complexes bearing a bidentate diacetylide ligand, tolan-2,2'-diacetylide (tda), are reported. The complexes exhibit highly tunable excited state properties and show photoluminescence (PL) across the entire visible spectrum from sky-blue (λPL =493 nm) to red (λPL =675 nm) with absolute PL quantum yields (PLQY) of up to 75 % in solution, the highest PLQY found for any monocyclometalated Au(III) complex in solution. As a consequence of the use of the strongly rigidifying diacetylide bidentate ligand, a significant increase in the excited state lifetimes (τ0 =16-258 μs) was found in solution and in thin films. The complexes showed remarkable singlet oxygen generation in aerated solution with absolute singlet oxygen quantum yield (ϕ1Δ ) values reaching up to 7.5×10-5 and singlet oxygen lifetimes (τ0 1Δ ) in the range of 66-95 μs. Furthermore, the radiative and non-radiative rates of singlet oxygen were determined using the ϕ1Δ and τ0 1Δ values and correlations are drawn between the formation of singlet oxygen and its interaction with cyclometalated (C N) gold(III) complexes.
Collapse
Affiliation(s)
- Robert Malmberg
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dominik Suter
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Koushik Venkatesan
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
16
|
Au-Yeung CC, Li LK, Tang MC, Lai SL, Cheung WL, Ng M, Chan MY, Yam VWW. Molecular design of efficient yellow- to red-emissive alkynylgold(iii) complexes for the realization of thermally activated delayed fluorescence (TADF) and their applications in solution-processed organic light-emitting devices. Chem Sci 2021; 12:9516-9527. [PMID: 34349927 PMCID: PMC8278967 DOI: 10.1039/d1sc02256c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
Here, we report the design and synthesis of a new class of fused heterocyclic alkynyl ligand-containing gold(iii) complexes, which show tunable emission colors spanning from the yellow to red region in the solid state and exhibit thermally activated delayed fluorescence (TADF) properties. These complexes display high photoluminescence quantum yields of up to 0.87 and short excited-state lifetimes in sub-microsecond timescales, yielding high radiative decay rate constants on the order of up to 106 s−1. The observation of the drastic enhancement in the emission intensity of the complexes with insignificant change in the excited-state lifetime upon increasing the temperature from 200 to 360 K indicates an increasing radiative decay rate. The experimentally estimated energy splitting between the lowest-lying singlet excited state (S1) and the lowest-lying triplet excited state (T1), ΔES1–T1, is found to be as small as ∼0.03 eV (250 cm−1), comparable to the value of ∼0.05 eV (435 cm−1) obtained from computational studies. The delicate choice of the cyclometalating ligand and the fused heterocyclic ligand is deemed the key to induce TADF through the control of the energy levels of the intraligand and the ligand-to-ligand charge transfer excited states. This work represents the realization of highly emissive yellow- to red-emitting gold(iii) TADF complexes incorporated with fused heterocyclic alkynyl ligands and their applications in organic light-emitting devices. We report the design of a new class of fused heterocyclic alkynyl ligand-containing gold(iii) complexes, which shows tunable emission colors spanning yellow to red region and exhibits thermally activated delayed fluorescence (TADF) properties.![]()
Collapse
Affiliation(s)
- Cathay Chai Au-Yeung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China +86-852-2857-1586 +86-852-2859-2153
| | - Lok-Kwan Li
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China +86-852-2857-1586 +86-852-2859-2153
| | - Man-Chung Tang
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China +86-852-2857-1586 +86-852-2859-2153
| | - Shiu-Lun Lai
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China +86-852-2857-1586 +86-852-2859-2153
| | - Wai-Lung Cheung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China +86-852-2857-1586 +86-852-2859-2153
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China +86-852-2857-1586 +86-852-2859-2153
| | - Mei-Yee Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China +86-852-2857-1586 +86-852-2859-2153
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China +86-852-2857-1586 +86-852-2859-2153
| |
Collapse
|
17
|
Tang MC, Chan MY, Yam VWW. Molecular Design of Luminescent Gold(III) Emitters as Thermally Evaporable and Solution-Processable Organic Light-Emitting Device (OLED) Materials. Chem Rev 2021; 121:7249-7279. [DOI: 10.1021/acs.chemrev.0c00936] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Man-Chung Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Mei-Yee Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| |
Collapse
|
18
|
P∩N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules 2021; 26:molecules26113415. [PMID: 34200044 PMCID: PMC8200198 DOI: 10.3390/molecules26113415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
We present an overview over eight brightly luminescent Cu(I) dimers of the type Cu2X2(P∩N)3 with X = Cl, Br, I and P∩N = 2-diphenylphosphino-pyridine (Ph2Ppy), 2-diphenylphosphino-pyrimidine (Ph2Ppym), 1-diphenylphosphino-isoquinoline (Ph2Piqn) including three new crystal structures (Cu2Br2(Ph2Ppy)3 1-Br, Cu2I2(Ph2Ppym)3 2-I and Cu2I2(Ph2Piqn)3 3-I). However, we mainly focus on their photo-luminescence properties. All compounds exhibit combined thermally activated delayed fluorescence (TADF) and phosphorescence at ambient temperature. Emission color, decay time and quantum yield vary over large ranges. For deeper characterization, we select Cu2I2(Ph2Ppy)3, 1-I, showing a quantum yield of 81%. DFT and SOC-TDDFT calculations provide insight into the electronic structures of the singlet S1 and triplet T1 states. Both stem from metal+iodide-to-ligand charge transfer transitions. Evaluation of the emission decay dynamics, measured from 1.2 ≤ T ≤ 300 K, gives ∆E(S1-T1) = 380 cm−1 (47 meV), a transition rate of k(S1→S0) = 2.25 × 106 s−1 (445 ns), T1 zero-field splittings, transition rates from the triplet substates and spin-lattice relaxation times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet harvesting can be highly favorable for improvement of the device performance.
Collapse
|
19
|
Rodriguez J, Tabey A, Mallet-Ladeira S, Bourissou D. Oxidative additions of alkynyl/vinyl iodides to gold and gold-catalyzed vinylation reactions triggered by the MeDalphos ligand. Chem Sci 2021; 12:7706-7712. [PMID: 34168822 PMCID: PMC8188461 DOI: 10.1039/d1sc01483h] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
The hemilabile Ad2P(o-C6H4)NMe2 ligand promotes fast, quantitative and irreversible oxidative addition of alkynyl and vinyl iodides to gold. The reaction is general. It works with a broad range of substrates of various electronic bias and steric demand, and proceeds with complete retention of stereochemistry from Z and E vinyl iodides. Both alkynyl and vinyl iodides react faster than aryl iodides. The elementary step is amenable to catalysis. Oxidative addition of vinyl iodides to gold and π-activation of alkenols (and N-alkenyl amines) at gold have been combined to achieve hetero-vinylation reactions. A number of functionalized heterocycles, i.e. tetrahydrofuranes, tetrahydropyranes, oxepanes and pyrrolidines were obtained thereby (24 examples, 87% average yield). Taking advantage of the chemoselectivity for vinyl iodides over aryl iodides, sequential transformations involving first a hetero-vinylation step and then a C-N coupling, a C-C coupling or an heteroarylation were achieved from a vinyl/aryl bis-iodide substrate.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Alexis Tabey
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
20
|
Feuerstein W, Holzer C, Gui X, Neumeier L, Klopper W, Breher F. Synthesis of New Donor-Substituted Biphenyls: Pre-ligands for Highly Luminescent (C^C^D) Gold(III) Pincer Complexes. Chemistry 2020; 26:17156-17164. [PMID: 32735695 PMCID: PMC7821303 DOI: 10.1002/chem.202003271] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/31/2020] [Indexed: 12/31/2022]
Abstract
We herein report on new synthetic strategies for the preparation of pyridine and imidazole substituted 2,2'-dihalo biphenyls. These structures are pre-ligands suitable for the preparation of respective stannoles. The latter can successfully be transmetalated to K[AuCl4 ] forming non-palindromic [(C^C^D)AuIII ] pincer complexes featuring a lateral pyridine (D=N) or N-heterocyclic carbene (NHC, D=C') donor. The latter is the first report on a pincer complex with two formally anionic sp2 and one carbenic carbon donor. The [(C^C^D)AuIII ] complexes show intense phosphorescence in solution at room temperature. We discuss the developed multistep strategy and touch upon synthetic challenges. The prepared complexes have been fully characterized including X-ray diffraction analysis. The gold(III) complexes' photophysical properties have been investigated by absorption and emission spectroscopy as well as quantum chemical calculations on the quasi-relativistic two-component TD-DFT and GW/Bethe-Salpeter level including spin-orbit coupling. Thus, we shed light on the electronic influence of the non-palindromic pincer ligand and reveal non-radiative relaxation pathways of the different ligands employed.
Collapse
Affiliation(s)
- Wolfram Feuerstein
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Christof Holzer
- Institute of Theoretical Solid State PhysicsKarlsruhe Institute of, Technology (KIT)Wolfgang-Gaede-Straße 176131KarlsruheGermany
| | - Xin Gui
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Lilly Neumeier
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Wim Klopper
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| |
Collapse
|
21
|
Benzai A, Derridj F, Doucet H, Soulé J. Palladium−Ruthenium Catalyst Complementarity Strengthens
Ortho
‐Directed C−H Bond Arylation of 2‐Arylpyrazines. ChemCatChem 2020. [DOI: 10.1002/cctc.202001338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Amal Benzai
- Univ Rennes CNRS, ISCR UMR6226 F-3500 Rennes France
- Laboratoire de Physique et Chimie des Matériaux (LPCM) UMMTO University BP 17 RP 15000 Tizi-Ouzou Algeria
| | - Fazia Derridj
- Laboratoire de Physique et Chimie des Matériaux (LPCM) UMMTO University BP 17 RP 15000 Tizi-Ouzou Algeria
| | - Henri Doucet
- Univ Rennes CNRS, ISCR UMR6226 F-3500 Rennes France
| | | |
Collapse
|
22
|
Chen M, Qin A, Lam JW, Tang BZ. Multifaceted functionalities constructed from pyrazine-based AIEgen system. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213472] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Billups JR, Fokakis ZN, Creutz SE. Octahedral Iron Complexes of Pyrazine(diimine) Pincers: Ligand Electronic Effects and Protonation. Inorg Chem 2020; 59:15228-15239. [DOI: 10.1021/acs.inorgchem.0c02211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaylan R. Billups
- Department of Chemistry, Mississippi State University, Starkville Mississippi 39762, United States
| | - Zoe N. Fokakis
- Department of Chemistry, Mississippi State University, Starkville Mississippi 39762, United States
| | - Sidney E. Creutz
- Department of Chemistry, Mississippi State University, Starkville Mississippi 39762, United States
| |
Collapse
|
24
|
To WP, Wan Q, Tong GSM, Che CM. Recent Advances in Metal Triplet Emitters with d6, d8, and d10 Electronic Configurations. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Kleinhans G, Chan AKW, Leung MY, Liles DC, Fernandes MA, Yam VWW, Fernández I, Bezuidenhout DI. Synthesis and Photophysical Properties of T-Shaped Coinage-Metal Complexes. Chemistry 2020; 26:6993-6998. [PMID: 32182384 PMCID: PMC7317956 DOI: 10.1002/chem.202000726] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 11/28/2022]
Abstract
The photophysical properties of a series of T‐shaped coinage d10 metal complexes, supported by a bis(mesoionic carbene)carbazolide (CNC) pincer ligand, are explored. The series includes a rare new example of a tridentate T‐shaped AgI complex. Post‐complexation modification of the AuI complex provides access to a linear cationic AuI complex following ligand alkylation, or the first example of a cationic square planar AuIII−F complex from electrophilic attack on the metal centre. Emissions ranging from blue (CuI) to orange (AgI) are obtained, with variable contributions of thermally‐dependent fluorescence and phosphorescence to the observed photoluminescence. Green emissions are observed for all three gold complexes (neutral T‐shaped AuI, cationic linear AuI and square planar cationic AuIII). The higher quantum yield and longer decay lifetime of the linear gold(I) complex are indicative of increased phosphorescence contribution.
Collapse
Affiliation(s)
- George Kleinhans
- Chemistry Department, University of Pretoria, Private X20, Hatfield, 0028, South Africa.,Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Alan K-W Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - David C Liles
- Chemistry Department, University of Pretoria, Private X20, Hatfield, 0028, South Africa
| | - Manuel A Fernandes
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Vivian W-W Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Israel Fernández
- Departamento de Química Orgánica I, Centro de Innovación en Química Avanzado (ORFEO-CINQA) and, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Daniela I Bezuidenhout
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.,Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014, Oulu, Finland
| |
Collapse
|
26
|
Eppel D, Rudolph M, Rominger F, Hashmi ASK. Mercury-Free Synthesis of Pincer [C^N^C]Au III Complexes by an Oxidative Addition/CH Activation Cascade. CHEMSUSCHEM 2020; 13:1986-1990. [PMID: 32134179 PMCID: PMC7217051 DOI: 10.1002/cssc.202000310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/05/2020] [Indexed: 05/16/2023]
Abstract
Starting from the commercially available dimethyl sulfide-gold(I) chloride complex (DMSAuCl) and diazonium salts in the presence of 2,6-di-tert-butyl-4-methylpyridine as base, symmetric and unsymmetric [C^N^C]AuIII Cl complexes were synthesized in a selective, photosensitizer-free, photochemical reaction using blue LED light. This new protocol provides the first mercury-free synthesis of these types of pincer-complexes in moderate-to-excellent yields, starting from a readily available gold(I) precursor. Owing to the extraordinary properties of the target compounds, like excellent luminescence and high anticancer activities, the synthesis of such complexes is a highly active field of research, which might make its way to an industrial application. Owing to the disadvantages of the known protocols, especially the toxicity and the selectivity issues in the case of unsymmetric complexes, avoiding the use of mercury, should further accelerate this ongoing development.
Collapse
Affiliation(s)
- Daniel Eppel
- Organisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJedda21589Saudi-Arabia
- Heidelberg Center for the Environment (HCE)Universität HeidelbergIm Neuenheimer Feld 22969120HeidelbergGermany
| |
Collapse
|
27
|
Conformationally Driven Ru(II)-Catalyzed Multiple ortho-C–H Bond Activation in Diphenylpyrazine Derivatives in Water: Where Is the Limit? Catalysts 2020. [DOI: 10.3390/catal10040421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ru(II)/carboxylate/PPh3 catalyst system enabled the preparation of highly conjugated pyrazine derivatives in water under microwave irradiation. Both nitrogen atoms efficiently dictated cleavage of the ortho-C–H bonds in both benzene rings of 2,3-diphenylpyrazine substrates through chelation assistance. In conformationally more flexible diphenyldihydropyrazine 1, the arylation of four ortho-C–H bonds was possible, while in the aromatic analog 2, the triarylation was the limit.
Collapse
|
28
|
Eng J, Penfold TJ. Understanding and Designing Thermally Activated Delayed Fluorescence Emitters: Beyond the Energy Gap Approximation. CHEM REC 2020; 20:831-856. [PMID: 32267093 DOI: 10.1002/tcr.202000013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
In this article recent progress in the development of molecules exhibiting Thermally Activated Delayed Fluorescence (TADF) is discussed with a particular focus upon their application as emitters in highly efficient organic light emitting diodes (OLEDs). The key aspects controlling the desirable functional properties, e. g. fast intersystem crossing, high radiative rate and unity quantum yield, are introduced with a particular focus upon the competition between the key requirements needed to achieve high performance OLEDs. The design rules required for organic and metal organic materials are discussed, and the correlation between them outlined. Recent progress towards understanding the influence of the interaction between a molecule and its environment are explained as is the role of the mechanism for excited state formation in OLEDs. Finally, all of these aspects are combined to discuss the ability to implement high level design rules for achieving higher quality materials for commercial applications. This article highlights the significant progress that has been made in recent years, but also outlines the significant challenges which persist to achieve a full understanding of the TADF mechanism and improve the stability and performance of these materials.
Collapse
Affiliation(s)
- Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
29
|
Leung MY, Tang MC, Cheung WL, Lai SL, Ng M, Chan MY, Wing-Wah Yam V. Thermally Stimulated Delayed Phosphorescence (TSDP)-Based Gold(III) Complexes of Tridentate Pyrazine-Containing Pincer Ligand with Wide Emission Color Tunability and Their Application in Organic Light-Emitting Devices. J Am Chem Soc 2020; 142:2448-2459. [DOI: 10.1021/jacs.9b12136] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Man-Chung Tang
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wai-Lung Cheung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shiu-Lun Lai
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mei-Yee Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
30
|
Abstract
Thermally activated delayed fluorescence (TADF) and TADF-organic light-emitting diodes (OLEDs) systems are being given increasing attention in research nowadays. Much more work has been done for organic-based materials in this field, but the use of TADF organometallic systems has also emerged in recent years. In particular, TADF-based gold compounds have not been particularly well-explored, with a higher number of examples of Au(I)-molecules and fewer for the higher oxidation state Au(III) derivatives. Nevertheless, the novelty and observed results deserve attention. A careful analysis has been performed in this review by classifying the reported compounds into two different groups regarding the oxidation state of the metal, and within each group, the ancillary ligands. Specific examples to illustrate their potential applications are included in the different sections.
Collapse
|
31
|
Gukathasan S, Parkin S, Awuah SG. Cyclometalated Gold(III) Complexes Bearing DACH Ligands. Inorg Chem 2019; 58:9326-9340. [DOI: 10.1021/acs.inorgchem.9b01031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
32
|
Malmberg R, Bachmann M, Blacque O, Venkatesan K. Thermally Robust and Tuneable Phosphorescent Gold(III) Complexes Bearing (N^N)‐Type Bidentate Ligands as Ancillary Chelates. Chemistry 2019; 25:3627-3636. [DOI: 10.1002/chem.201805486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Robert Malmberg
- Department of Molecular SciencesMacquarie University 4 Wally's Walk, NSW 2109 North Ryde Australia
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Michael Bachmann
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Olivier Blacque
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Koushik Venkatesan
- Department of Molecular SciencesMacquarie University 4 Wally's Walk, NSW 2109 North Ryde Australia
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
33
|
Fernandez-Cestau J, Rama RJ, Rocchigiani L, Bertrand B, Lalinde E, Linnolahti M, Bochmann M. Synthesis and Photophysical Properties of Au(III)–Ag(I) Aggregates. Inorg Chem 2019; 58:2020-2030. [DOI: 10.1021/acs.inorgchem.8b02987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Raquel J. Rama
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
- Departamento de Química Inorgánica, Universidad de Sevilla, E- 41092 Sevilla, Spain
| | - Luca Rocchigiani
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Benoı̂t Bertrand
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Elena Lalinde
- Departamento de Química − Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006, Logroño, Spain
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu, Finland
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
34
|
Bachmann M, Fessler R, Blacque O, Venkatesan K. Towards blue emitting monocyclometalated gold(iii) complexes – synthesis, characterization and photophysical investigations. Dalton Trans 2019; 48:7320-7330. [DOI: 10.1039/c8dt05034a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The electronic properties of cyclometalating ligands and ancillary ligands were successfully tailored to achieve blue emission in monocyclometalated gold(iii) complexes.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - Reto Fessler
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - Olivier Blacque
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - Koushik Venkatesan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
- Department of Molecular Sciences
| |
Collapse
|
35
|
Williams MRM, Bertrand B, Fernandez-Cestau J, Waller ZAE, O'Connell MA, Searcey M, Bochmann M. Acridine-decorated cyclometallated gold(iii) complexes: synthesis and anti-tumour investigations. Dalton Trans 2018; 47:13523-13534. [PMID: 30204186 DOI: 10.1039/c8dt02507j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
(C^N) and (C^N^C) cyclometalated Au(iii) represent a highly promising class of potential anticancer agents. We report here the synthesis of seven new cyclometalated Au(iii) complexes with five of them bearing an acridine moiety attached via (N^O) or (N^N) chelates, acyclic amino carbenes (AAC) and N-heterocyclic carbenes (NHC). The antiproliferative properties of the different complexes were evaluated in vitro on a panel of cancer cells including leukaemia, lung and breast cancer cells. We observed a trend between the cytotoxicity and the intracellular gold uptake of some representative compounds of the series. Some of the acridine-decorated complexes were demonstrated to interact with ds-DNA using FRET-melting techniques.
Collapse
|
36
|
Tang MC, Leung MY, Lai SL, Ng M, Chan MY, Wing-Wah Yam V. Realization of Thermally Stimulated Delayed Phosphorescence in Arylgold(III) Complexes and Efficient Gold(III) Based Blue-Emitting Organic Light-Emitting Devices. J Am Chem Soc 2018; 140:13115-13124. [DOI: 10.1021/jacs.8b09205] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Man-Chung Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Ming-Yi Leung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Shiu-Lun Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Maggie Ng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Mei-Yee Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
37
|
Thompson S, Eng J, Penfold TJ. The intersystem crossing of a cyclic (alkyl)(amino) carbene gold (i) complex. J Chem Phys 2018; 149:014304. [DOI: 10.1063/1.5032185] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- S. Thompson
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - J. Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - T. J. Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
38
|
Osawa M, Aino MA, Nagakura T, Hoshino M, Tanaka Y, Akita M. Near-unity thermally activated delayed fluorescence efficiency in three- and four-coordinate Au(i) complexes with diphosphine ligands. Dalton Trans 2018; 47:8229-8239. [PMID: 29756141 DOI: 10.1039/c8dt01097h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and photoluminescence properties of three-coordinate Au(i) complexes with rigid diphosphine ligands LMe {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene} are investigated. The LMe and LEt ligands afford two types of complexes: dinuclear complexes [μ-LMe(AuCl)2] (1d) and [μ-LEt(AuCl)2] (2d) with an Au(i)-Au(i) bond and mononuclear three-coordinate Au(i) complexes LMeAuCl (1) and LEtAuCl (2). On the other hand, the bulkiest ligand, LiPr, affords three-coordinate Au(i) complexes, LiPrAuCl (3) and LiPrAuI (4), but no dinuclear complexes. X-ray analysis suggests that both 3 and 4 possess a highly distorted trigonal planar geometry. Moreover, luminescence data reveal that at room temperature, 3 and 4 exhibit yellow-green thermally activated delayed fluorescence in the crystalline state with maximum emission wavelengths at 558 and 549 nm, respectively. The emission yields are close to unity. Quantum chemical calculations suggest that the emission of 4 originates from the (σ + X) → π* excited state that possesses strong intraligand charge-transfer character. The luminescent properties of four-coordinate Au(i) complex (5) possessing a tetrahedral geometry are discussed on the basis of the emission spectra and decay times measured in a temperature range of 309-77 K.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Masa-Aki Aino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Takaki Nagakura
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Mikio Hoshino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
39
|
Bertrand B, Williams MRM, Bochmann M. Gold(III) Complexes for Antitumor Applications: An Overview. Chemistry 2018; 24:11840-11851. [DOI: 10.1002/chem.201800981] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Benoît Bertrand
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
- Sorbonne UniversitésUPMC Univ Paris 06CNRSInstitut Parisien de Chimie Moléculaire (IPCM) 4 Place Jussieu 75005 Paris France
| | | | - Manfred Bochmann
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
| |
Collapse
|
40
|
Rocchigiani L, Fernandez-Cestau J, Budzelaar PHM, Bochmann M. Reductive Elimination Leading to C−C Bond Formation in Gold(III) Complexes: A Mechanistic and Computational Study. Chemistry 2018; 24:8893-8903. [DOI: 10.1002/chem.201801277] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/04/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Luca Rocchigiani
- School of Chemistry; University of East Anglia; Norwich Research Park NR47TJ Norwich UK
| | | | - Peter H. M. Budzelaar
- Department of Chemistry; University of Naples Federico II; Via Cintia 80126 Naples Italy
| | - Manfred Bochmann
- School of Chemistry; University of East Anglia; Norwich Research Park NR47TJ Norwich UK
| |
Collapse
|
41
|
Bertrand B, O'Connell MA, Waller ZAE, Bochmann M. A Gold(III) Pincer Ligand Scaffold for the Synthesis of Binuclear and Bioconjugated Complexes: Synthesis and Anticancer Potential. Chemistry 2018; 24:3613-3622. [PMID: 29334159 DOI: 10.1002/chem.201705902] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 12/14/2022]
Abstract
Cyclometalated (C^N^C)AuIII complexes bearing functionalized N-heterocyclic carbene (NHC) ligands provide a high-yielding, modular route to bioconjugated and binuclear complexes. This methodology has been applied to the synthesis of bioconjugated complexes presenting biotin and 17α-ethynylestradiol vectors, as well as to the synthesis of bimetallic AuIII /AuI complexes. The in vitro antiproliferative activities of these compounds against various cancer cells lines depend on the linker length, with the longer linker being the most potent. The estradiol conjugate AuC6 Estra proved to be more toxic against the estrogen receptor positive (ER+) cancer cells than against the ER- cancer cells and non-cancer cells. The bimetallic complex AuC6 Au was more selective for breast cancer cells with respect to a healthy cell standard than the monometallic complex AuNHC. The metal uptake study on cells expressing or not biotin and estrogen receptors revealed an improved and targeted delivery of gold for both the bioconjugated complexes AuC6 Biot and AuC6 Estra compared to the non-vectorised analogue AuNHC. The investigations of the interaction of the bioconjugates and bimetallic complexes with human telomeric G-quadruplex DNA using FRET-melting techniques revealed a reduced ability to stabilize this DNA structure with respect to the non-vectorised analogue AuNHC.
Collapse
Affiliation(s)
- Benoît Bertrand
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.,Institut Parisien de Chimie Moléculaire (IPCM), UPMC Univ Paris 06, CNRS, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
| | | | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
42
|
|
43
|
Currie L, Rocchigiani L, Hughes DL, Bochmann M. Carbon–sulfur bond formation by reductive elimination of gold(iii) thiolates. Dalton Trans 2018; 47:6333-6343. [DOI: 10.1039/c8dt00906f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiols were found to cleave Au–C bonds in (C^N^C)gold(iii) pincer complexes and to induce C–S reductive elimination reactions, to give aryl thioethers.
Collapse
Affiliation(s)
- Lucy Currie
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| | | | - David L. Hughes
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| | | |
Collapse
|
44
|
Bischoff L, Baudequin C, Hoarau C, Urriolabeitia EP. Organometallic Fluorophores of d 8 Metals (Pd, Pt, Au). ADVANCES IN ORGANOMETALLIC CHEMISTRY 2018. [DOI: 10.1016/bs.adomc.2018.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
To WP, Zhou D, Tong GSM, Cheng G, Yang C, Che CM. Highly Luminescent Pincer Gold(III) Aryl Emitters: Thermally Activated Delayed Fluorescence and Solution-Processed OLEDs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707193] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wai-Pong To
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Dongling Zhou
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen Guangdong 518053 China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen Guangdong 518053 China
| |
Collapse
|
46
|
To WP, Zhou D, Tong GSM, Cheng G, Yang C, Che CM. Highly Luminescent Pincer Gold(III) Aryl Emitters: Thermally Activated Delayed Fluorescence and Solution-Processed OLEDs. Angew Chem Int Ed Engl 2017; 56:14036-14041. [DOI: 10.1002/anie.201707193] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Wai-Pong To
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Dongling Zhou
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen Guangdong 518053 China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen Guangdong 518053 China
| |
Collapse
|
47
|
Jürgens S, Scalcon V, Estrada-Ortiz N, Folda A, Tonolo F, Jandl C, Browne DL, Rigobello MP, Kühn FE, Casini A. Exploring the C^N^C theme: Synthesis and biological properties of tridentate cyclometalated gold(III) complexes. Bioorg Med Chem 2017; 25:5452-5460. [DOI: 10.1016/j.bmc.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 01/06/2023]
|
48
|
Fernandez-Cestau J, Bertrand B, Pintus A, Bochmann M. Synthesis, Structures, and Properties of Luminescent (C∧N∧C)gold(III) Alkyl Complexes: Correlation between Photoemission Energies and C–H Acidity. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00439] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Benoı̂t Bertrand
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ. U.K
| | - Anna Pintus
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ. U.K
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ. U.K
| |
Collapse
|
49
|
Lee CH, Tang MC, Wong YC, Chan MY, Yam VWW. Sky-Blue-Emitting Dendritic Alkynylgold(III) Complexes for Solution-Processable Organic Light-Emitting Devices. J Am Chem Soc 2017; 139:10539-10550. [DOI: 10.1021/jacs.7b05872] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chin-Ho Lee
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Man-Chung Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yi-Chun Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Mei-Yee Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
50
|
Bachmann M, Blacque O, Venkatesan K. Harnessing White-Light Luminescence via Tunable Singlet-and Triplet-Derived Emissions Based on Gold(III) Complexes. Chemistry 2017; 23:9451-9456. [PMID: 28589572 DOI: 10.1002/chem.201702341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 11/10/2022]
Abstract
White light emitting gold(III) complexes were synthesized by tuning the percentage of metal dπ contribution in the charge transfer. This was achieved through specific tailoring of the ligand scaffold, which led to increase in the HOMO π-energy properties, resulting in a decrease of efficiency on the intersystem crossing (ISC). As a consequence, monomolecular based singlet- and triplet-derived emission covering the entire visible spectrum with quantum yield up to 28 % and CIE-1931 chromaticity coordinates of (0.29, 0.33) to (0.32, 0.40) could be obtained. Furthermore, two complexes displayed excitation-dependent emission property due to hyper-ISC allowing the regulation of the ratio between fluorescence versus phosphorescence intensity and accomplish precise tuning of white light emission.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Koushik Venkatesan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| |
Collapse
|