1
|
Xu L, Pan Y, Wang X, Xu Z, Tian H, Liu Y, Bu X, Jing H, Wang T, Liu Y, Liu M. Reconfigurable Touch Panel Based on a Conductive Thixotropic Supramolecular Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4458-4468. [PMID: 36629334 DOI: 10.1021/acsami.2c18471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Touch panels based on ionic conductive hydrogels perform excellent flexibility and biocompatibility, becoming promising candidates for the next-generation human-machine interface. However, these ionic hydrogels are usually composed of cross-linked polymeric networks that are difficult to be recycled or reconfigured, resulting in environmental issues. Herein, we designed a lithium ion-triggered gelation strategy to provide a conductive molecular hydrogel with thixotropy, which can be mechanically recycled or reconfigured at room temperature. In this hydrogel, lithium ions function as ionic bridges to construct supramolecular nanoassemblies and charge carriers to impart ionic conductivity. With polymer additives, the mechanical accommodability of the hydrogel was improved to meet the requirements of the daily use of touch panels. When this molecular hydrogel was fabricated into a surface capacitive touch panel, real-time sensing and reliable touch locating abilities were achieved. Remarkably, this touch panel can be reconfigured into 1D, 2D, and 3D device structures by a simple stirring-remolding method under ambient conditions. This work brings new insight into enriching the functionalities of hydrogel-based ionotronics with a supramolecular approach.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Ying Pan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| | - Xuanqi Wang
- School of Software, Shandong University, Jinan, Shandong250101, China
| | - Zhijun Xu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| | - Huasheng Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Yue Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Xiaodan Bu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin130012, China
| | - Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Minghua Liu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing100190, China
| |
Collapse
|
2
|
Gumtya M, Mondal S, Kumar S, Ibukun OJ, Haldar D. A peptidomimetic-based thixotropic organogel showing syneresis-induced anti-adhesion against water and ice. NEW J CHEM 2022. [DOI: 10.1039/d1nj04647k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A peptidomimetic containing 2,6-dimethylpyridine-3,5-dicarboxylic acid and phenylalanine formed a thixotropic gel which shows syneresis under appropriate conditions and anti-adhesion against water and ice.
Collapse
Affiliation(s)
- Milan Gumtya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sahabaj Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Santosh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Olamilekan Joseph Ibukun
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
- Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
3
|
Kumar S, Bera S, Nandi SK, Haldar D. The effect of amide bond orientation and symmetry on the self-assembly and gelation of discotic tripeptides. SOFT MATTER 2021; 17:113-119. [PMID: 33155010 DOI: 10.1039/d0sm01804j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of discotic tripeptides containing a rigid aromatic core and l-phenylalanine have been developed. The orientation of the amide bonds yielded variations of the structure and self-assembly properties of the compounds. The aggregation behavior of the discotic tripeptides was studied by various spectroscopic techniques. The morphology of the resulting aggregates was studied by field emission electron microscopy and atomic force microscopy. These studies showed that the orientation of the amide bonds has a strong influence on the intermolecular interactions, resulting in huge differences in the aggregation properties, and morphology of the discotic tripeptides. Only the C3-symmetric discotic tripeptides formed organogels. The supramolecular aggregation mechanism of N-centered and C[double bond, length as m-dash]O-centered discotic tripeptides for forming 3-fold intermolecular H-bonded helical column were the same, there was only a smaller enthalpy change due to the occurrence of longer distances for the N-HO[double bond, length as m-dash]C bonds of the N-centered discotic tripeptide. Whereas, the C2-symmetric discotic tripeptides 2 and 3 adopted a 6-fold intermolecular H-bonded dimer structure. Thus, this report presents a valuable approach for the fine-tuning of the discotic tripeptide based functional material.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | | | | | | |
Collapse
|
4
|
Nuthanakanti A, Srivatsan SG. Multi-stimuli responsive heterotypic hydrogels based on nucleolipids show selective dye adsorption. NANOSCALE ADVANCES 2020; 2:4161-4171. [PMID: 34286214 PMCID: PMC7611312 DOI: 10.1039/d0na00509f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/11/2020] [Indexed: 06/13/2023]
Abstract
Analogous to nucleic acids, the building blocks of nucleic acids and their derivatives are widely used to create supramolecular architectures for application mainly in the field of biomedicine. Here, we describe the construction of a multi-stimuli responsive and toxic dye adsorbing heterotypic hydrogel system formed using simple nucleoside-fatty acid conjugates. The nucleolipids are derived by coupling fatty acid chains of different lengths at the 5' position of ribothymidine and uridine. The nucleolipids in the presence of a strong base (e.g. NaOH) undergo partial hydrolysis, which triggers the self-assembly of the hydrolysed components resulting in the formation of heterotypic hydrogels. Notably, the gels are formed specifically in the presence of Na+ ions as other ions such as Li+ and K+ did not support the hydrogelation process. Systematic analysis by microscopy, NMR, single crystal and powder X-ray diffraction and rheology indicated that the deprotonated nucleolipid and fatty acid salt interdigitate and provide necessary electrostatic interactions supported by Na+ ions to set the path for the hierarchical assembly process. Notably, the hydrogels are highly sensitive to external stimuli, wherein gel-sol transition can be reversibly controlled by using temperature, pH and host-guest interaction. One of the hydrogels made of 5'-O-myristate-conjugated ribothymidine was found to selectively adsorb cationic dyes such as methylene blue and rhodamine 6G in a recyclable fashion. Taken together, the easily scalable assembly, multi-stimuli responsiveness and ability to capture and release dyes highlight the potential of our nucleolipid hydrogel system in material applications and in the treatment of dye industry wastes.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and ResearchDr Homi Bhabha Road, PashanPune 411008India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and ResearchDr Homi Bhabha Road, PashanPune 411008India
| |
Collapse
|
5
|
Facile preparation of black phosphorus-based rGO-BP-Pd composite hydrogels with enhanced catalytic reduction of 4-nitrophenol performances for wastewater treatment. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Langmuir-Blodgett films of two chiral perylene bisimide-based molecules: Aggregation and supramolecular chirality. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124563] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Geng R, Yin J, Zhou J, Jiao T, Feng Y, Zhang L, Chen Y, Bai Z, Peng Q. In Situ Construction of Ag/TiO 2/g-C 3N 4 Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E1. [PMID: 31861272 PMCID: PMC7022471 DOI: 10.3390/nano10010001] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
The construction of heterojunctions provides a promising strategy to improve photocatalytic hydrogen evolution. However, how to fabricate a nanoscale TiO2/g-C3N4 heterostructure and hinder the aggregation of bulk g-C3N4 using simple methods remains a challenge. In this work, we use a simple in situ construction method to design a heterojunction model based on molecular self-assembly, which uses a small molecule matrix for self-integration, including coordination donors (AgNO3), inorganic titanium source (Ti(SO4)2) and g-C3N4 precursor (melamine). The self-assembled porous g-C3N4 nanotube can hamper carrier aggregation and it provides numerous catalytic active sites, mainly via the coordination of Ag+ ions. Meanwhile, the TiO2 NPs are easily mineralized on the nanotube template in dispersive distribution to form a heterostructure via an N-Ti bond of protonation, which contributes to shortening the interfacial carrier transport, resulting in enhanced electron-hole pairs separation. Originating from all of the above synergistic effects, the obtained Ag/TiO2/g-C3N4 heterogenous photocatalysts exhibit an enhanced H2 evolution rate with excellent sustainability 20.6-fold-over pure g-C3N4. Our report provides a feasible and simple strategy to fabricate a nanoscale heterojunction incorporating g-C3N4, and has great potential in environmental protection and water splitting.
Collapse
Affiliation(s)
- Rui Geng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (R.G.); (Q.P.)
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (Y.F.); (L.Z.); (Y.C.)
| | - Juanjuan Yin
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (Y.F.); (L.Z.); (Y.C.)
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (Y.F.); (L.Z.); (Y.C.)
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (R.G.); (Q.P.)
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (Y.F.); (L.Z.); (Y.C.)
| | - Yao Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (Y.F.); (L.Z.); (Y.C.)
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (Y.F.); (L.Z.); (Y.C.)
| | - Yan Chen
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (Y.F.); (L.Z.); (Y.C.)
| | - Zhenhua Bai
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China;
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (R.G.); (Q.P.)
| |
Collapse
|
8
|
Zhan F, Yin J, Zhou J, Jiao T, Zhang L, Xia M, Bai Z, Peng Q. Facile Preparation and Highly Efficient Catalytic Performances of Pd-Cu Bimetallic Catalyst Synthesized via Seed-Mediated Method. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E6. [PMID: 31861299 PMCID: PMC7022491 DOI: 10.3390/nano10010006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
With the rapid development of industry, the problem of environmental pollution has become increasingly prominent. Exploring and preparing green, efficient, and low cost catalysts has become the key challenge for scientists. However, some conventional preparation methods are limited by conditions, such as cumbersome operation, high energy consumption, and high pollution. Here, a simple and efficient seed-mediated method was designed and proposed to synthesize a highly efficient bimetallic catalyst for catalyzing nitro compounds. A Pd-Cu bimetallic composite (BCM) can be prepared by synthesizing the original seed crystal of precious metal palladium, then growing the mature nanocrystalline palladium and supporting the transition metal copper. Importantly, after eight consecutive catalytic cycles, the conversion of the catalyzed 2-NA was 84%, while the conversion of the catalyzed 4-NP was still 72%. And the catalytic first order rates of 2-NA and 4-NP constants were 0.015 s-1, and 0.069 s-1, respectively. Therefore, current research of nanocomposites catalyst showed great significance for serious environmental pollution problems and the protection of living environment, providing a new idea for the preparation of new bimetallic catalytic materials.
Collapse
Affiliation(s)
- Fangke Zhan
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (F.Z.); (Q.P.)
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (L.Z.); (M.X.)
| | - Juanjuan Yin
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (L.Z.); (M.X.)
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (L.Z.); (M.X.)
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (F.Z.); (Q.P.)
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (L.Z.); (M.X.)
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (L.Z.); (M.X.)
| | - Meirong Xia
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.Y.); (L.Z.); (M.X.)
| | - Zhenhua Bai
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China;
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (F.Z.); (Q.P.)
| |
Collapse
|
9
|
Hurley SK, Cutrone NM, Fath KR, Pajovich HT, Garcia J, Smith AM, Banerjee IA. Self-assembled phenylisoxazole-peptide hybrid assemblies and their interactions with breast and ovarian tumor cells. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sara K. Hurley
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | | | - Karl R. Fath
- Department of Biology, Queens College, City University of New York, New York, NY, USA
| | | | - Jeremy Garcia
- Department of Biology, Queens College, City University of New York, New York, NY, USA
| | | | | |
Collapse
|
10
|
de Brito A, Correa R, Pinto A, Matos M, Tenorio J, Taylor J, Cazati T. Synthesis, crystal structure, photophysical properties and theoretical studies of a novel bis(phenylisoxazolyl) benzene derivative. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Su T, Hong KH, Zhang W, Li F, Li Q, Yu F, Luo G, Gao H, He YP. Scaleable two-component gelator from phthalic acid derivatives and primary alkyl amines: acid-base interaction in the cooperative assembly. SOFT MATTER 2017; 13:4066-4073. [PMID: 28536712 DOI: 10.1039/c7sm00797c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A series of phthalic acid derivatives (P) with a carbon-chain tail was designed and synthesized as single-component gelators. A combination of the single-component gelator P and a non-gelling additive n-alkylamine A through acid-base interaction brought about a series of novel phase-selective two-component gelators PA. The gelation capabilities of P and PA, and the structural, morphological, thermo-dynamic and rheological properties of the corresponding gels were investigated. A molecular dynamics simulation showed that the H-bonding network in PA formed between the NH of A and the carbonyl oxygen of P altered the assembly process of gelator P. Crude PA could be synthesized through a one-step process without any purification and could selectively gel the oil phase without a typical heating-cooling process. Moreover, such a crude PA and its gelation process could be amplified to the kilogram scale with high efficiency, which offers a practical economically viable solution to marine oil-spill recovery.
Collapse
Affiliation(s)
- Ting Su
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kumar A, Singh RS, Kumar A, Ali A, Biswas A, Pandey DS. Fine-Tuning of Saponification-Triggered Gelation by Strategic Modification of Peripheral Substituents: Gelation Regulators. Chemistry 2016; 22:13799-13804. [PMID: 27434702 DOI: 10.1002/chem.201602561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 12/13/2022]
Abstract
A pioneering approach towards controlling the efficiency of saponification assisted gelation in ethyl ester based ZnII -complexes have been described. Using four new ester containing bis-salen ZnII complexes (C1-C4) involving different para-azo phenyl substituted ligands it has been clearly shown that gelation efficiency is greatly influenced by the electronic effects of the substituents (-H (C1), -CH3 (C2), -NO2 (C3), and -OCH3 (C4)). Morphological, photophysical, and rheological investigations corroborated the experimental observations well and established that gelation efficiency was enhanced with electron-withdrawing characteristics of substituents (C4<C2<C1<C3). This conclusion was also supported by DFT studies.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Roop Shikha Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Amit Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Afsar Ali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Arnab Biswas
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Daya Shankar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India.
| |
Collapse
|