1
|
Han X, Yang Y, Chen R, Zhou J, Yang X, Wang X, Ji H. One-dimensional Ga 2O 3-Al 2O 3 nanofibers with unsaturated coordination Ga: Catalytic dehydrogenation of propane under CO 2 atmosphere with excellent stability. J Colloid Interface Sci 2024; 666:76-87. [PMID: 38583212 DOI: 10.1016/j.jcis.2024.03.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
The pressing demand for propylene has spurred intensive research on the catalytic dehydrogenation of propane to produce propylene. Gallium-based catalysts are regarded as highly promising due to their exceptional dehydrogenation activity in the presence of CO2. However, the inherent coking issue associated with high temperature reactions poses a constraint on the stability development of this process. In this study, we employed the electrospinning method to prepare a range of Ga2O3-Al2O3 mixed oxide one-dimensional nanofiber catalysts with varying molar ratios for CO2 oxidative dehydrogenation of propane (CO2-OPDH). The propane conversion was up to 48.4 % and the propylene selectivity was high as 96.8 % at 500 °C, the ratio of propane to carbon dioxide is 1:2. After 100 h of reaction, the catalyst still maintains approximately 10 % conversion and exhibits a propylene selectivity of around 98 %. The electrospinning method produces one-dimensional nanostructures with a larger specific surface area, unique multi-stage pore structure and low-coordinated Ga3+, which enhances mass transfer and accelerates reaction intermediates. This results in less coking and improved catalyst stability. The high activity of the catalyst is attributed to an abundance of low-coordinated Ga3+ ions associated with weak/medium-strong Lewis acid centers. In situ infrared analysis reveals that the reaction mechanism involves a two-step dehydrogenation via propane isocleavage, with the second dehydrogenation of Ga-OR at the metal-oxygen bond being the decisive speed step.
Collapse
Affiliation(s)
- Xue Han
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China, 530004
| | - Yun Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275
| | - Rui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275
| | - Jiaqi Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275
| | - Xupeng Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275
| | - Xuyu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275.
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China, 530004; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China, 310014.
| |
Collapse
|
2
|
Ali AM, El-Hosainy H, Alhassan IY, Al-Hajji LA, Ismail AA, Algarni H, El-Bery HM. Synthesis of mesoporous Ag/α-Fe 2O 3/TiO 2 heterostructures with enhanced and accelerated photo/-catalytic reduction of 4-nitrophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41405-41418. [PMID: 36633742 DOI: 10.1007/s11356-023-25228-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
4-Nitrophenol (4-NP) is reported to originate disadvantageous effects on the human body collected from industrial pollutants; therefore, the detoxification of 4-NP in aqueous contamination is strongly recommended. In this study, the heterojunction mesoporous α-Fe2O3/TiO2 modulated with diverse Ag percentages has been constructed via a sol-gel route in the occurrence of a soft template P123. The formation of biphasic crystalline TiO2 anatase and brookite phases has been successfully achieved with the average 10 nm particle sizes. The photo/-catalytic reduction of 4-NP has been performed utilizing NaBH4 as a reducing agent with and without visible illumination. All Ag/Fe2O3/TiO2 nanocomposites exhibited significantly higher photo/-catalytic reduction efficiency than pure Fe2O3, TiO2 NPs, and Fe2O3/TiO2 nanocomposite. 2.5% Ag/Fe2O3/TiO2 nanocomposite was considered the highest and superior photocatalytic reduction efficiency, and it almost achieved 98% after 9 min. Interestingly, the photocatalytic reduction of 4-NP was accelerated 9 times higher than the catalytic reduction over 2.5% Ag/Fe2O3/TiO2; its rate constant value was 709 and 706 times larger than pure TiO2 and Fe2O3 NPs, respectively. The enhanced photocatalytic reduction ability of Ag/Fe2O3/TiO2 nanocomposite might be referred to as significantly providing visible light absorption and a large surface area, and it can upgrade the effective separation and mobility of electron holes. The stability of the synthesized catalysts exhibited that the obtained catalysts can undergo a slight decrease in reduction efficiency after five successive cycles. This approach highlights a novel route for constructing ternary nanocomposite systems with high photo/-catalytic ability.
Collapse
Affiliation(s)
- Atif Mossad Ali
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Physics, Faculty of Science, Assiut University, Asyut, 71516, Egypt
| | - Hamza El-Hosainy
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Iman Y Alhassan
- Laboratory Technology, Department College of Technological Studies (PAAET), Shuwaikh, Kuwait
| | - Latifa A Al-Hajji
- Nanotechnologyand Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, 13109, Safat, Kuwait
| | - Adel A Ismail
- Nanotechnologyand Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, 13109, Safat, Kuwait.
| | - Hamed Algarni
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Haitham M El-Bery
- Department of Chemistry, Faculty of Science, Assiut University, Asyut, 71516, Egypt
| |
Collapse
|
3
|
Wang F, Yu Z, Zhai S, Li Y, Xu Y, Ye Y, Wei X, Xu J, Xue B. CuO decorated vacancy-rich CeO 2 nanopencils for highly efficient catalytic NO reduction by CO at low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31895-31904. [PMID: 36459322 DOI: 10.1007/s11356-022-24508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
With the rapid development of transportation and vehicles, the elimination of NOx and CO has highly attracted public attention. In this work, vacancy-rich CeO2 nanopencil supported CuO catalysts (CuO/CeO2-NPC) were successfully prepared for NO reduction by CO. Importantly, CeO2 with nanopencil-like shape (CeO2-NPC) have been synthesis by solvothermal method for the first time. The physicochemical properties of all samples were studied in detail by combining the means of X-ray diffraction (XRD), Raman spectroscopy, electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), H2-temperature-programmed reduction (H2-TPR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 physisorption (Brunauer-Emmett-Teller), and NO and CO temperature-programmed desorption (NO-TPD and CO-TPD) techniques. Compared with CeO2 nanorods and nanoparticles supported CuO catalysts (CuO/CeO2-NR and CuO/CeO2-NP), the CuO/CeO2-NPC catalysts showed the highest catalytic activity, affording more than 90% NO conversion at 69 °C as well as excellent H2O tolerance at 150 °C, which is superior to catalysts previously reported. Characterization results indicated that the synergistic effect between the well-dispersed CuO and the CeO2 nanopencil support enables a favorable electron transfer between these components and enhances the density of surface oxygen vacancies and Cu+ species, which consequently accelerating the redox cycle. The results indicated that the morphology control of CeO2 support could be an efficient way to evidently enhance the catalytic performance for NO + CO reaction.
Collapse
Affiliation(s)
- Fei Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Zairan Yu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Shuai Zhai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Yuanyuan Li
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Yang Xu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Yuyang Ye
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Xuejiao Wei
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, People's Republic of China
| | - Jie Xu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Bing Xue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| |
Collapse
|
4
|
In situ IR spectroscopy study of NO removal over CuCe catalyst for CO-SCR reaction at different temperature. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Effects of Ti modified CeCu mixed oxides on the catalytic performance and SO2 resistance towards benzene combustion. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
6
|
Deng C, Wang K, Qian X, Yao J, Xue N, Peng L, Guo X, Zhu Y, Ding W. Mild Oxidation of Toluene to Benzaldehyde by Air. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Changshun Deng
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kai Wang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaofeng Qian
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jun Yao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Nianhua Xue
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Luming Peng
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
7
|
Zhang Y, Zhao L, Chen Z, Li X. Promotional effect for SCR of NO with CO over MnO -doped Fe3O4 nanoparticles derived from metal-organic frameworks. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Abstract
Selective catalytic reduction of NO with CO (CO-SCR) has been suggested as an attractive and promising technology for removing NO and CO simultaneously from flue gas. Manganese-copper spinels are a promising CO−SCR material because of the high stability and redox properties of the spinel structure. Here, we synthesized CuxMn3-xO4 spinel by a citrate-based modified pechini method combining CuO and MnOx, controlling the molar Cu/Mn concentrations. All the samples were characterized by SEM, EDX, XRD, TEM, H2−TPR, XPS and nitrogen adsorption measurements. The Cu1.5Mn1.5O4 catalyst exhibits 100% NO conversion and 53.3% CO conversion at 200 °C. The CuxMn3-xO4 catalyst with Cu-O-Mn structure has a high content of high valence Mn, and the high mass transfer characteristics of the foam-like structure together promoted the reaction performance. The CO-SCR catalytic performance of Cu was related to the spinel structure with the high ratio of Mn4+/Mn, the synergistic effect between the two kinds of metal oxides and the multistage porous structure.
Collapse
|
9
|
Li F, Zhao B, Tan Y, Chen W, Tian M. Preparation of Al 2O 3–CeO 2 by Hydrothermal Method Supporting Copper Oxide for the Catalytic Oxidation of CO and C 3H 8. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fan Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou China
| | - Yifeng Tan
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou China
| | - Wenlin Chen
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou China
| | - Mengkui Tian
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou China
| |
Collapse
|
10
|
Using XRD extrapolation method to design Ce-Cu-O solid solution catalysts for methanol steam reforming to produce H2: The effect of CuO lattice capacity on the reaction performance. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
The effect of transition metals (Me: Mn, Cu) on Pt/CeO2/Al2O3 catalysts for the catalytic reduction of NO by CO. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Hamad H, Elsenety MM, Sadik W, El-Demerdash AG, Nashed A, Mostafa A, Elyamny S. The superior photocatalytic performance and DFT insights of S-scheme CuO@TiO 2 heterojunction composites for simultaneous degradation of organics. Sci Rep 2022; 12:2217. [PMID: 35140284 PMCID: PMC8828870 DOI: 10.1038/s41598-022-05981-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
The necessity to resolve the issue of rapid charge carrier recombination for boosting photocatalytic performance is a vigorous and challenging research field. To address this, the construction of a binary system of step-scheme (S-scheme) CuO@TiO2 heterostructure composite has been demonstrated through a facile solid-state route. The remarkably enhanced photocatalytic performance of CuO@TiO2, compared with single TiO2, which can consequence in the more efficient separation of photoinduced charge carriers, reduced the band gap of TiO2, improved the electrical transport performance, and improved the lifetimes, thus donating it with the much more powerful oxidation and reduction capability. A photocatalytic mechanism was proposed to explain the boosted photocatalytic performance of CuO@TiO2 on a complete analysis of physicochemical, DFT calculations, and electrochemical properties. In addition, this work focused on the investigation of the stability and recyclability of CuO@TiO2 in terms of efficiency and its physical origin using XRD, BET, and XPS. It is found that the removal efficiency diminishes 4.5% upon five recycling runs. The current study not only promoted our knowledge of the binary system of S-scheme CuO@TiO2 heterojunction composite photocatalyst but also shed new light on the design of heterostructure photocatalysts with high-performance and high stability.
Collapse
Affiliation(s)
- Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Mohamed M Elsenety
- Department of Chemistry, Faculty of Science, Al-Azhar University, P.O. 11823, Nasr City, Cairo, Egypt
| | - Wagih Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Abdel-Ghaffar El-Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Adel Nashed
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Amr Mostafa
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Shaimaa Elyamny
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
13
|
Du Y, Lu D, Liu J, Li X, Wu C, Wu X, An X. Insight into the potential application of CuO x/CeO 2 catalysts for NO removal by CO: a perspective from the morphology and crystal-plane of CeO 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj03542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of CuOx/CeO2-X were fabricated and employed as the NO + CO reaction catalysts.
Collapse
Affiliation(s)
- Yali Du
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, P. R. China
| | - Dong Lu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jiangning Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaodong Li
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, P. R. China
| | - Chaohui Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xia An
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
14
|
In situ DRIFTS and CO-TPD studies of CeO2 and SiO2 supported CuOx catalysts for CO oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Li W, Liu Z, Yu F, Pan K, Zhao H, Gao F, Zhou M, Dai B, Dan J. CuCeO x/VMT powder and monolithic catalyst for CO-selective catalytic reduction of NO with CO. NEW J CHEM 2022. [DOI: 10.1039/d2nj00047d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction path of a CuCe/VMT(M) catalyst in the CO-SCR reaction at N2O low temperature was found.
Collapse
Affiliation(s)
- Wenjian Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhisong Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Carbon Neutralization and Environmental Catalytic Technology Laboratory, Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, China
| | - Keke Pan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Huanhuan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Fei Gao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Mei Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jianming Dan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
16
|
Ji Y, Cheng W, Li C, Liu X. Oxygen Vacancies of CeO 2 Nanospheres by Mn-Doping: An Efficient Electrocatalyst for N 2 Reduction under Ambient Conditions. Inorg Chem 2021; 61:28-31. [PMID: 34935385 DOI: 10.1021/acs.inorgchem.1c02989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical N2 reduction reaction (NRR) demonstrates a process of NH3 synthesis from N2 molecules under ambient conditions, which is environmentally friendly and recyclable. However, it requires an efficient electrocatalyst to activate inert N2 molecules, which is still difficult to satisfy. Recently, as an active NRR electrocatalyst and a typical metal oxide, CeO2 has featured ultrahigh thermal stability and the ability to apply heteroatom doping, which is an imperative approach importing oxygen vacancy by replacing metal ions with selective elements to greatly influence the activity of catalysts. Here, we analyze the unique properties of manganese dopants in modulating the activity of CeO2 nanospheres for NRR. It attains a larger NH3 yield of 27.79 μg h-1 mgcat-1 and a higher Faradaic efficiency of 9.1% than pure CeO2 at -0.30 V in 0.1 M HCl, with high electrochemical and structure stability. With calculations by density functional theory, the performance enhancement of Mn-doped CeO2 is also proved mathematically.
Collapse
Affiliation(s)
- Yuyao Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wendong Cheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Chengbo Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xingquan Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
17
|
Jia S, Pu G, Xiong W, Wang P, Gao J, Yuan C. Investigation on Simultaneous Removal of SO2 and NO over a Cu–Fe/TiO2 Catalyst Using Vaporized H2O2: An Analysis on SO2 Effect. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuaihui Jia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Ge Pu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Weicheng Xiong
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Pengcheng Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jie Gao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Cong Yuan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
18
|
Zedan AF, Gaber S, AlJaber AS, Polychronopoulou K. CO Oxidation at Near-Ambient Temperatures over TiO 2-Supported Pd-Cu Catalysts: Promoting Effect of Pd-Cu Nanointerface and TiO 2 Morphology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1675. [PMID: 34202357 PMCID: PMC8306827 DOI: 10.3390/nano11071675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Significant improvement of the catalytic activity of palladium-based catalysts toward carbon monoxide (CO) oxidation reaction has been achieved through alloying and using different support materials. This work demonstrates the promoting effects of the nanointerface and the morphological features of the support on the CO oxidation reaction using a Pd-Cu/TiO2 catalyst. Pd-Cu catalysts supported on TiO2 were synthesized with wet chemical approaches and their catalytic activities for CO oxidation reaction were evaluated. The physicochemical properties of the prepared catalysts were studied using standard characterization tools including SEM, EDX, XRD, XPS, and Raman. The effects of the nanointerface between Pd and Cu and the morphology of the TiO2 support were investigated using three different-shaped TiO2 nanoparticles, namely spheres, nanotubes, and nanowires. The Pd catalysts that are modified through nanointerfacing with Cu and supported on TiO2 nanowires demonstrated the highest CO oxidation rates, reaching 100% CO conversion at temperature regime down to near-ambient temperatures of ~45 °C, compared to 70 °C and 150 °C in the case of pure Pd and pure Cu counterpart catalysts on the same support, respectively. The optimized Pd-Cu/TiO2 nanowires nanostructured system could serve as efficient and durable catalyst for CO oxidation at near-ambient temperature.
Collapse
Affiliation(s)
- Abdallah F. Zedan
- National Institute of Laser Enhanced Science, Cairo University, Main Campus, Giza 12613, Egypt
| | - Safa Gaber
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | | | - Kyriaki Polychronopoulou
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
19
|
Wang D, Huang B, Shi Z, Long H, Li L, Yang Z, Dai M. Influence of cerium doping on Cu-Ni/activated carbon low-temperature CO-SCR denitration catalysts. RSC Adv 2021; 11:18458-18467. [PMID: 35480934 PMCID: PMC9033397 DOI: 10.1039/d1ra02352g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, to evaluate the effects of two methods for activation of nitric acid, air thermal oxidation and Ce doping were applied to a Cu–Ni/activated carbon (AC) low-temperature CO-SCR denitration catalyst. The Cu–Ni–Ce/AC0,1 catalyst was prepared using the ultrasonic equal volume impregnation method. The physical and chemical structures of Cu–Ni–Ce/AC0,1 were studied using scanning electron microscopy, Brunauer–Emmett–Teller analysis, Fourier-transform infrared spectroscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, CO-temperature programmed desorption (TPD) and NO-TPD characterisation techniques. It was found that the denitration efficiency of 6Cu–4Ni–5Ce/AC1 can reach 99.8% at a denitration temperature of 150 °C, a GHSV of 30 000 h−1 and 5% O2. Although the specific surface area of the AC activated by nitric acid was slightly lower than that activated by air thermal oxidation, the pore structure of the AC activated by nitric acid was more developed, and the number of acidic oxygen-containing functional groups was significantly increased. Ce metal ions were inserted into the graphite microcrystalline structure of AC, splitting it into smaller graphene fragments, whereby the dispersibility of Cu and Ni was improved. In addition, many reaction units were formed on the catalyst surface, which could adsorb more CO and NO reaction gases. With the increase in Ce doping, the relative proportions of Cu2+/Cun+, Ni3+/Nin+ and surface adsorbed oxygen (Oα) in the Cu–Ni–Ce/AC0,1 catalyst increased. In addition, after the introduction of Ce into Cu–Ni/AC, the amount of weak and medium acids significantly increased. This may be due to the Ce species or its influence on the Cu/Ni species. Further, the active sites of the acid were more exposed. According to the results of the study, a composite metal oxide CO-SCR denitration mechanism is proposed. Through the oxidation–reduction reaction between the metals, the reaction gas of CO and NO is adsorbed and the incoming O2 is converted into (Oα), which promotes the conversion of NO into NO2. The CO-SCR reaction is accelerated, and the rate of low-temperature denitration was increased. Overall, the results of this study will provide theoretical support for the research and development of low-temperature denitration catalysts for sintering flue gas in iron and steel enterprises. In the process of denitrification, the reaction between NO and CO (NO + CO → N2 + CO2) occurs. There will be a redox reaction between copper, nickel and cerium (Cu2+ + Ce3+ → Cu+ + Ce4+, Ni3+ + Ce3+ → Ni2+ + Ce4+).![]()
Collapse
Affiliation(s)
- Defu Wang
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China .,Clean Metallurgy Key Laboratory of Complex Iron Resources Kunming 650093 China
| | - Bangfu Huang
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China .,Clean Metallurgy Key Laboratory of Complex Iron Resources Kunming 650093 China
| | - Zhe Shi
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China .,Clean Metallurgy Key Laboratory of Complex Iron Resources Kunming 650093 China
| | - Hongming Long
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education Ma'anshan 243002 China
| | - Lu Li
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China .,Clean Metallurgy Key Laboratory of Complex Iron Resources Kunming 650093 China
| | - Zhengyu Yang
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China .,Clean Metallurgy Key Laboratory of Complex Iron Resources Kunming 650093 China
| | - Meng Dai
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China .,Clean Metallurgy Key Laboratory of Complex Iron Resources Kunming 650093 China
| |
Collapse
|
20
|
Sun R, Yu F, Wan Y, Pan K, Li W, Zhao H, Dan J, Dai B. Reducing N
2
O Formation over CO‐SCR Systems with CuCe Mixed Metal Oxides. ChemCatChem 2021. [DOI: 10.1002/cctc.202100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruobing Sun
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
- Bingtuan Industrial Technology Research Institute Shihezi University Shihezi 832003 P.R. China
| | - Yinji Wan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Keke Pan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Wenjian Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Huanhuan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Jianming Dan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| |
Collapse
|
21
|
Abstract
Removal of nitrogen oxides during coal combustion is a subject of great concerns. The present study reviews the state-of-art catalysts for NO reduction by CO, CH4, and H2. In terms of NO reduction by CO and CH4, it focuses on the preparation methodologies and catalytic properties of noble metal catalysts and non-noble metal catalysts. In the technology of NO removal by H2, the NO removal performance of the noble metal catalyst is mainly discussed from the traditional carrier and the new carrier, such as Al2O3, ZSM-5, OMS-2, MOFs, perovskite oxide, etc. By adopting new preparation methodologies and introducing the secondary metal component, the catalysts supported by a traditional carrier could achieve a much higher activity. New carrier for catalyst design seems a promising aspect for improving the catalyst performance, i.e., catalytic activity and stability, in future. Moreover, mechanisms of catalytic NO reduction by these three agents are discussed in-depth. Through the critical review, it is found that the adsorption of NOx and the decomposition of NO are key steps in NO removal by CO, and the activation of the C-H bond in CH4 and H-H bonds in H2 serves as a rate determining step of the reaction of NO removal by CH4 and H2, respectively.
Collapse
|
22
|
Bimetallic AuPd@CeO2 Nanoparticles Supported on Potassium Titanate Nanobelts: A Highly Efficient Catalyst for the Reduction of NO with CO. Catal Letters 2021. [DOI: 10.1007/s10562-020-03502-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Lee KM, Kwon G, Hwang S, Boscoboinik JA, Kim T. Investigation of the NO reduction by CO reaction over oxidized and reduced NiO x/CeO 2 catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01215k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NO reduction by CO reaction was investigated by NiOx/CeO2 catalysts with different pretreatment conditions. Surface area, oxygen defect sites, and CeO2 crystallite size are closely related to the catalytic performance.
Collapse
Affiliation(s)
- Kyung-Min Lee
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Gihan Kwon
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Taejin Kim
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
24
|
Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst. Catalysts 2020. [DOI: 10.3390/catal10111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The catalytic performance of a series of La-Fe/AC catalysts was studied for the selective catalytic reduction (SCR) of NO by CO. With the increase in La content, the Fe2+/Fe3+ ratio and amount of surface oxygen vacancies (SOV) in the catalysts increased; thus the catalytic activity improved. Incorporating the promoters to La3-Fe1/active carbon (AC) catalyst could affect the catalyst activity by changing the electronic structure. The increase in Fe2+/Fe3+ ratio after the promoter addition is possibly due to the extra synergistic interaction of M (Mn and Ce) and Fe through the redox equilibrium of M3+ + Fe3+ ↔ M4+ + Fe2+. This phenomenon could have improved the redox cycle, enhanced the SOV formation, facilitated NO decomposition, and accelerated the CO-SCR process. The presence of O2 enhanced the formation of the C(O) complex and improved the activation of the metal site. Mn@La3-Fe1/AC catalyst revealed an excellent NO conversion of 93.8% at 400 °C in the presence of 10% oxygen. The high catalytic performance of MnOx and double exchange behavior of Mn3+ and Mn4+ can increase the number of SOV and improve the catalytic redox properties.
Collapse
|
25
|
CuAlCe Oxides Issued from Layered Double Hydroxide Precursors for Ethanol and Toluene Total Oxidation. Catalysts 2020. [DOI: 10.3390/catal10080870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
CuAlCe oxides were obtained from hydrotalcite-type precursors by coprecipitation using a M2+/M3+ ratio of 3. The collapse of the layered double hydroxide structure following the thermal treatment leads to the formation of mixed oxides (CuO and CeO2). The catalytic performance of the copper-based catalysts was evaluated in the total oxidation of two Volatile Organic Compounds (VOCs): ethanol and toluene. XRD, SEM Energy-Dispersive X-ray Spectrometry (EDX), H2-temperature programmed reduction (TPR) and XPS were used to characterize the physicochemical properties of the catalysts. A beneficial effect of combining cerium with CuAl-O oxides in terms of redox properties and the abatement of the mentioned VOCs was demonstrated. The sample with the highest content of Ce showed the best catalytic properties, which were mainly related to the improvement of the reducibility of the copper species and their good dispersion on the surface. The presence of a synergetic effect between the copper and cerium elements was also highlighted.
Collapse
|
26
|
Cai Y, Wang L, Yu S, Sun J, Liu B, Dong L. Regeneration of deactivated CeCo O2 catalyst by simple thermal treatment. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Gholami F, Tomas M, Gholami Z, Vakili M. Technologies for the nitrogen oxides reduction from flue gas: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136712. [PMID: 31991274 DOI: 10.1016/j.scitotenv.2020.136712] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The required energy of the global industry is mostly generated from fossil fuel sources, such as natural gas, gasoline, diesel, oil, and coal. Nitrogen oxides are one of the main air pollutants that are produced from the combustion of fossil fuels in stationary and mobile sources. Development of new technologies to decrease the NOx emission from exhaust gases is essential due to the harmful effect of NOx on the environment and human health. Compared with pre-combustion and combustion methods (with <50% NOx removal efficiency), the post-combustion methods with higher efficiency (above 80%) have attracted more attention in NOx elimination. This review describes the currently used technologies of NOx abatement. Different available post-combustion methods of NOx removal, including selective catalytic reduction (using different types of reducing reagents, including ammonia, hydrogen, hydrocarbons, and carbon monoxide), selective noncatalytic reduction, wet scrubbing, adsorption, electron beam, nonthermal plasma, and electrochemical reduction of NOx, are discussed.
Collapse
Affiliation(s)
- Fatemeh Gholami
- New Technologies - Research Centre, Engineering of Special Materials, University of West Bohemia, Plzeň 301 00, Czech Republic.
| | - Martin Tomas
- New Technologies - Research Centre, Engineering of Special Materials, University of West Bohemia, Plzeň 301 00, Czech Republic
| | - Zahra Gholami
- Unipetrol Centre of Research and Education, a.s, Areál Chempark 2838, Záluží 1, 43670 Litvínov, Czech Republic
| | - Mohammadtaghi Vakili
- Green intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China
| |
Collapse
|
28
|
Gholami Z, Luo G, Gholami F, Yang F. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: a review. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1753972] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zahra Gholami
- Unipetrol Centre of Research and Education, Litvínov, Czech Republic
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Guohua Luo
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Fatemeh Gholami
- New Technologies - Research Centre, University of West Bohemia, Engineering of Special Materials, Plzeň, Czech Republic
| | - Fan Yang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Zeng Y, Wang Y, Song F, Zhang S, Zhong Q. The effect of CuO loading on different method prepared CeO 2 catalyst for toluene oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135635. [PMID: 31806306 DOI: 10.1016/j.scitotenv.2019.135635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The support effect on CeO2 supported CuO catalysts are extensively investigated, but few studies have been reported in volatile organic compounds (VOCs) oxidation. Herein, CuO was impregnated on three conventional method synthesized CeO2 to study its impact on toluene total oxidation over CeO2 at low temperature (≤280 °C). Characterization results demonstrated that the shape and specific surface area of CeO2 affected the degree of CuO dispersion, which determine the interaction between CuO and CeO2. CuO significantly enhanced the toluene adsorption capacity of CeO2, but lots of oxygen vacancies were lost during its loading. Although strong CuCe interaction induced new oxygen vacancies, the increase or decrease of final amount was related to the original surface properties of CeO2. Mechanism analysis suggested that the activation of oxygen on oxygen vacancies controlled the toluene oxidation reaction rate. Therefore, the promotion or inhibition effect of CuO on CeO2 for toluene oxidation depends on physical and chemical properties. Through this study, we have drawn some valuable information in guiding the synthesis and design of CuO-CeO2 based catalysts.
Collapse
Affiliation(s)
- Yiqing Zeng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yanan Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Fujiao Song
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Shule Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Qin Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
30
|
Xu Z, Li Y, Lin Y, Zhu T. A review of the catalysts used in the reduction of NO by CO for gas purification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6723-6748. [PMID: 31939011 DOI: 10.1007/s11356-019-07469-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The reduction of NO by the CO produced by incomplete combustion in the flue gas can remove CO and NO simultaneously and economically. However, there are some problems and challenges in the industrial application which limit the application of this process. In this work, noble metal catalysts and transition metal catalysts used in the reduction of NO by CO in recent years are systematically reviewed, emphasizing the research progress on Ir-based catalysts and Cu-based catalysts with prospective applications. The effects of catalyst support, additives, pretreatment methods, and physicochemical properties of catalysts on catalytic activity are summarized. In addition, the effects of atmosphere conditions on the catalytic activity are discussed. Several kinds of reaction mechanisms are proposed for noble metal catalysts and transition metal catalysts. Ir-based catalysts have an excellent activity for NO reduction by CO in the presence of O2. Cu-based bimetallic catalysts show better catalytic performance in the absence of O2, in that the adsorption and dissociation of NO can occur on both oxygen vacancies and metal sites. Finally, the potential problems existing in the application of the reduction of NO by CO in industrial flue gas are analyzed and some promising solutions are put forward through this review.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuran Li
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yuting Lin
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingyu Zhu
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
31
|
NO reduction by CO over CoOx/CeO2 catalysts: Effect of support calcination temperature on activity. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Zhang S, Lee J, Kim DH, Kim T. Effects of Ni loading on the physicochemical properties of NiOx/CeO2 catalysts and catalytic activity for NO reduction by CO. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02619c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NO reduction by CO reaction was investigated using NiOx/CeO2 catalysts with different Ni loadings. Surface NiOx controls the catalytic activity which was related to the molecular structure and reducibility of the catalysts.
Collapse
Affiliation(s)
- Shuhao Zhang
- Materials Science and Chemical Engineering Department
- Stony Brook University
- Stony Brook
- USA
| | - Jaeha Lee
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Taejin Kim
- Materials Science and Chemical Engineering Department
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|
33
|
Gholami Z, Luo G, Gholami F. The influence of support composition on the activity of Cu:Ce catalysts for selective catalytic reduction of NO by CO in the presence of excess oxygen. NEW J CHEM 2020. [DOI: 10.1039/c9nj04335g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excellent catalytic performance for NO reduction by CO in the presence of 5% O2 over Cu1:Ce3/Al2O3.
Collapse
Affiliation(s)
- Zahra Gholami
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Guohua Luo
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Fatemeh Gholami
- New Technologies – Research Centre
- University of West Bohemia
- Engineering of Special Materials
- Plzeň 301 00
- Czech Republic
| |
Collapse
|
34
|
Simultaneous catalytic oxidation of CO and Hg0 over Au/TiO2 catalysts: Structure and mechanism study. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Wang X, Li X, Mu J, Fan S, Chen X, Wang L, Yin Z, Tadé M, Liu S. Oxygen Vacancy-rich Porous Co 3O 4 Nanosheets toward Boosted NO Reduction by CO and CO Oxidation: Insights into the Structure-Activity Relationship and Performance Enhancement Mechanism. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41988-41999. [PMID: 31622550 DOI: 10.1021/acsami.9b08664] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxygen vacancy-rich porous Co3O4 nanosheets (OV-Co3O4) with diverse surface oxygen vacancy contents were synthesized via facile surface reduction and applied to NO reduction by CO and CO oxidation. The structure-activity relationship between surface oxygen vacancies and catalytic performance was systematically investigated. By combining Raman, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and O2-temperature programmed desorption, it was found that the efficient surface reduction leads to the presence of more surface oxygen vacancies and thus distinctly enhance the surface oxygen amount and mobility of OV-Co3O4. The electron transfer towards Co sites was promoted by surface oxygen vacancies with higher content. Compared with the pristine porous Co3O4 nanosheets, the presence of more surface oxygen vacancies is beneficial for the catalytic performance enhancement for NO reduction by CO and CO oxidation. The OV-Co3O4 obtained in 0.05 mol L-1 NaBH4 solution (Co3O4-0.05) exhibited the best catalytic activity, achieving 100% NO conversion at 175 °C in NO reduction by CO and 100% CO conversion at 100 °C in CO oxidation, respectively. Co3O4-0.05 exhibited outstanding catalytic stability and resistance to high gas hour space velocity in both reactions. Combining in situ DRIFTS results, the enhanced performance of OV-Co3O4 for NO reduction by CO should be attributed to the promoted formation and transformation of dinitrosyl species and -NCO species at lower and higher temperatures. The enhanced performance of OV-Co3O4 for CO oxidation is due to the promotion of oxygen activation ability, surface oxygen mobility, as well as the enhanced CO2 desorption ability. The results indicate that the direct regulation of surface oxygen vacancies could be an efficient way to evidently enhance the catalytic performance for NO reduction by CO and CO oxidation.
Collapse
Affiliation(s)
- Xinyang Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
- Department of Chemical Engineering , Curtin University , GPO Box U1987, Perth , Western Australia 6845 , Australia
| | - Jincheng Mu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xin Chen
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Liang Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Zhifan Yin
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Moses Tadé
- Department of Chemical Engineering , Curtin University , GPO Box U1987, Perth , Western Australia 6845 , Australia
| | - Shaomin Liu
- Department of Chemical Engineering , Curtin University , GPO Box U1987, Perth , Western Australia 6845 , Australia
| |
Collapse
|
36
|
Du X, Yao T, Wei Q, Zhang H, Huang Y. Investigation of Fe−Ni Mixed‐Oxide Catalysts for the Reduction of NO by CO: Physicochemical Properties and Catalytic Performance. Chem Asian J 2019; 14:2966-2978. [DOI: 10.1002/asia.201900782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/02/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Xuexun Du
- Key Laboratory of Specially Functional Polymeric Materials and Related TechnologySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Tian‐Liang Yao
- Shanghai Institute of Space Propulsion Shanghai 201112 P. R. China
| | - Qinglian Wei
- Key Laboratory of Specially Functional Polymeric Materials and Related TechnologySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Hao Zhang
- Key Laboratory of Specially Functional Polymeric Materials and Related TechnologySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yongmin Huang
- Key Laboratory of Specially Functional Polymeric Materials and Related TechnologySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
37
|
Wang X, Li X, Mu J, Fan S, Wang L, Gan G, Qin M, Li J, Li Z, Zhang D. Facile Design of Highly Effective CuCe xCo 1–xO y Catalysts with Diverse Surface/Interface Structures toward NO Reduction by CO at Low Temperatures. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyang Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jincheng Mu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liang Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guoqiang Gan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Meichun Qin
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ji Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zeyu Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Dongke Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
38
|
Ito T, Shimizu Y. Activation energy calculation of NO–CO reaction on rhodium surface by density functional theory. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.07.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Sharma S, Sudarshan K, Sen D, Pujari P. Microenvironment of mesopores of MCM-41 supported CuO catalyst: An investigation using positronium probe. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Ding X, Qiu J, Liang Y, Zhao M, Wang J, Chen Y. New Insights into Excellent Catalytic Performance of the Ce-Modified Catalyst for NO Oxidation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Ueda K, Tsuji M, Ohyama J, Satsuma A. Tandem Base-Metal Oxide Catalyst: Superior NO Reduction Performance to the Rh Catalyst in NO–C3H6–CO–O2. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00526] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kakuya Ueda
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masashi Tsuji
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Junya Ohyama
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura Kyoto 615-8520, Japan
| | - Atsushi Satsuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura Kyoto 615-8520, Japan
| |
Collapse
|
42
|
Zhang Y, Chen H, Pan Y, Zeng X, Jiang X, Long Z, Hou X. Cerium-based UiO-66 metal–organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxygen vacancies. Chem Commun (Camb) 2019; 55:13959-13962. [DOI: 10.1039/c9cc06562h] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For the first time, UiO-66(Ce) was endowed with greatly improved redox photocatalytic activity via Ti incorporation, based on the formation of oxygen vacancies.
Collapse
Affiliation(s)
- Yajun Zhang
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Hanjiao Chen
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Yi Pan
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
- Institute of Chemistry, National Institute of Measurement and Testing Technology
| | - Xiaoliang Zeng
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Xiaofang Jiang
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Zhou Long
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
| | - Xiandeng Hou
- Analytical & Testing Centre
- Sichuan University
- Chengdu 610064
- China
- Department of Chemistry
| |
Collapse
|
43
|
Hou X, Qian J, Li L, Wang F, Li B, He F, Fan M, Tong Z, Dong L, Dong L. Preparation and Investigation of Iron–Cerium Oxide Compounds for NOx Reduction. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xueyan Hou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Junning Qian
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Lulu Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Fan Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Bin Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, P. R. China
| | - Fenglang He
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Minguang Fan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Lihui Dong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Dong
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
44
|
Wu Y, Li G, Chu B, Dong L, Tong Z, He H, Zhang L, Fan M, Li B, Dong L. NO Reduction by CO over Highly Active and Stable Perovskite Oxide Catalysts La0.8Ce0.2M0.25Co0.75O3 (M = Cu, Mn, Fe): Effect of the Role in B Site. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaohui Wu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Guoying Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Bingxian Chu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Lihui Dong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, P. R. China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Haixiang He
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Lingling Zhang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, P. R. China
| | - Minguang Fan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Bin Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Dong
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
45
|
Qian J, Hu Q, Hou X, Qian F, Dong L, Li B. Study of Different Ti/Zr Ratios on the Physicochemical Properties and Catalytic Activities for CuO/Ti–Zr–O Composites. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junning Qian
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Qun Hu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Xueyan Hou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Fangting Qian
- School of Economics and Management, Anhui Agricultural University, Hefei 230000, P. R. China
| | - Lihui Dong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, P. R. China
| | - Bin Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
46
|
Wu Y, Dong L, Li B. Effect of iron on physicochemical properties: Enhanced catalytic performance for novel Fe2O3 modified CuO/Ti0.5Sn0.5O2 in low temperature CO oxidation. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Gholami Z, Luo G. Low-Temperature Selective Catalytic Reduction of NO by CO in the Presence of O2 over Cu:Ce Catalysts Supported by Multiwalled Carbon Nanotubes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zahra Gholami
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guohua Luo
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Zhang X, Wang J, Li Z, Cui Y, Tan B, He G. Effects of Ni modification on NO-CO reaction with MnO
x
-CuO/TiO 2
catalysts. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaopeng Zhang
- School of Petroleum and Chemical Engineering; State Key Laboratory of Fine Chemicals; Dalian University of Technology; Panjin 124221 Liaoning China
| | - Jinxin Wang
- School of Petroleum and Chemical Engineering; State Key Laboratory of Fine Chemicals; Dalian University of Technology; Panjin 124221 Liaoning China
| | - Zhuofeng Li
- School of Petroleum and Chemical Engineering; State Key Laboratory of Fine Chemicals; Dalian University of Technology; Panjin 124221 Liaoning China
| | - Yuezong Cui
- School of Petroleum and Chemical Engineering; State Key Laboratory of Fine Chemicals; Dalian University of Technology; Panjin 124221 Liaoning China
| | - Bojian Tan
- School of Petroleum and Chemical Engineering; State Key Laboratory of Fine Chemicals; Dalian University of Technology; Panjin 124221 Liaoning China
| | - Gaohong He
- School of Petroleum and Chemical Engineering; State Key Laboratory of Fine Chemicals; Dalian University of Technology; Panjin 124221 Liaoning China
| |
Collapse
|
49
|
Zedan AF, Mohamed AT, El-Shall MS, AlQaradawi SY, AlJaber AS. Tailoring the reducibility and catalytic activity of CuO nanoparticles for low temperature CO oxidation. RSC Adv 2018; 8:19499-19511. [PMID: 35540972 PMCID: PMC9080671 DOI: 10.1039/c8ra03623c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 11/25/2022] Open
Abstract
Copper oxide (CuO) nanoparticles have received considerable interest as active and inexpensive catalysts for various gas-solid reactions. The CuO reducibility and surface reactivity are of crucial importance for the high catalytic activity. Herein, we demonstrate that the reducibility and stability of CuO nanoparticles can be controlled and tailored for the high catalytic activity of CO oxidation. The synthesized CuO nanoparticles possessed enhanced reducibility in CO atmosphere at lower reduction temperature of 126 °C compared to 284 °C for that of reference CuO particles. Moreover, the CuO catalysts with tailored reducibility demonstrated a reaction rate of 35 μmol s-1 g-1 and an apparent activation energy of 75 kJ mol-1. Furthermore, the tailored catalysts exhibited excellent long-term stability for CO oxidation for up to 48 h on stream. These readily-reducible CuO nanoparticles could serve as efficient, inexpensive and durable catalysts for CO oxidation at low temperatures.
Collapse
Affiliation(s)
- Abdallah F Zedan
- Department of Chemistry and Earth Sciences, Qatar University Doha 2713 Qatar
- National Institute of Laser Enhanced Science, Cairo University Giza 12613 Egypt
| | - Assem T Mohamed
- Department of Chemistry and Earth Sciences, Qatar University Doha 2713 Qatar
| | - M Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University Richmond VA 23284 USA
| | - Siham Y AlQaradawi
- Department of Chemistry and Earth Sciences, Qatar University Doha 2713 Qatar
| | - Amina S AlJaber
- Department of Chemistry and Earth Sciences, Qatar University Doha 2713 Qatar
| |
Collapse
|
50
|
Zhu H, Chen Y, Wang Z, Liu W, Wang L. Catalytic oxidation of CO over mesoporous copper-doped ceria catalysts via a facile CTAB-assisted synthesis. RSC Adv 2018; 8:14888-14897. [PMID: 35541330 PMCID: PMC9079958 DOI: 10.1039/c8ra02327a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 11/21/2022] Open
Abstract
Nanosized copper-doped ceria CuCe catalysts with a large surface area and well-developed mesoporosity were synthesized by a surfactant-assisted co-precipitation method. The prepared catalysts with different Cu doping concentrations were characterized by XRD, DLS analysis, TEM, BET, Raman, H2-TPR and in situ DRIFTS techniques. The influence of Cu content on their catalytic performance for CO oxidation was also studied. The XRD results indicate that at a lower content, the Cu partially incorporates into the CeO2 lattice to form a CuCe solid solution, whereas a higher Cu doping causes the formation of bulk CuO. Copper doping favors an increase in the surface area of the CuCe catalysts and the formation of oxygen vacancies, thereby improving the redox properties. The CuCe samples exhibit higher catalytic performance compared to bare CeO2 and CuO catalysts. This is ascribed to the synergistic interaction between copper oxide and ceria. In particular, the Cu0.1Ce catalyst shows the highest catalytic performance (T 50 = 59 °C), as well as excellent stability. The in situ DRIFTS results show that CO adsorbed on surface Cu+ (Cu+-CO species) can easily react with the active oxygen, while stronger adsorption of carbonate-like species causes catalyst deactivation during the reaction.
Collapse
Affiliation(s)
- Hongjian Zhu
- School of Resources and Environment, Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong, University of Jinan 336 Nanxinzhuangxi Road Jinan 250022 PR China
| | - Yingying Chen
- School of Resources and Environment, Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong, University of Jinan 336 Nanxinzhuangxi Road Jinan 250022 PR China
| | - Zhongpeng Wang
- School of Resources and Environment, Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong, University of Jinan 336 Nanxinzhuangxi Road Jinan 250022 PR China
| | - Wei Liu
- School of Resources and Environment, Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong, University of Jinan 336 Nanxinzhuangxi Road Jinan 250022 PR China
| | - Liguo Wang
- School of Resources and Environment, Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong, University of Jinan 336 Nanxinzhuangxi Road Jinan 250022 PR China
| |
Collapse
|