1
|
The Oxygen Reduction Activity of Nitrogen-doped Graphene. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2022. [DOI: 10.2478/pjct-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Graphite nitrogen, pyridine nitrogen and pyrrole nitrogen are the main nitrogen types in nitrogen-doped graphene materials. In order to investigate the mechanism of the oxygen reduction activity of nitrogen-doped graphene, several models of nitrogen-doped graphene with different nitrogen contents and different nitrogen types are developed. The nitrogen content is varied from 1.3 at% to 7.8 at%, and the adsorption energy is calculated according to the established models, then the band gaps are analyzed through the optimization results, so as to compare the magnitude of the conductivity. Finally, the oxygen reduction activity of graphite nitrogen-doped graphene (GNG) is found to be better than pyridine nitrogen-doped graphene (PDNG) and pyrrole nitrogen-doped graphene (PLNG) when the nitrogen content is lower than 2.6 at%, and the oxygen reduction activity of PDNG is the best when the nitrogen content was higher than 2.6 at%.
Collapse
|
2
|
Wang Y, Wang R, Li Y. Atomically dispersed transition metal-N4 doped graphene as a Li O nucleation site in nonaqueous lithium-oxygen batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Hidayat Y, Rahmawati F, Nugrahaningtyas KD, Althof Abiyyi A, Erlangga MZ, Pujiastuti N. Exploring the electronic properties of N-doped graphene on graphitic and pyridinic models and its interaction with K+ ions using the DFTB method. Aust J Chem 2022. [DOI: 10.1071/ch21264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Zheng T, Ren YR, Han X, Zhang J. Design Principles of Nitrogen-doped Graphene Nanoribbons as Highly Effective Bifunctional Catalysts for Li - O2 Batteries. Phys Chem Chem Phys 2022; 24:22589-22598. [DOI: 10.1039/d2cp03001b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Li-O2 batteries are promising candidates in fields demanding high capacities like electric vehicles due to their superior theoretical energy density in contrast to lithium-ion batteries. However, oxygen reduction reaction (ORR)...
Collapse
|
5
|
Ramasubramanian B, Reddy MV, Zaghib K, Armand M, Ramakrishna S. Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2476. [PMID: 34684917 PMCID: PMC8538702 DOI: 10.3390/nano11102476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Metal-ion batteries are capable of delivering high energy density with a longer lifespan. However, they are subject to several issues limiting their utilization. One critical impediment is the budding and extension of solid protuberances on the anodic surface, which hinders the cell functionalities. These protuberances expand continuously during the cyclic processes, extending through the separator sheath and leading to electrical shorting. The progression of a protrusion relies on a number of in situ and ex situ factors that can be evaluated theoretically through modeling or via laboratory experimentation. However, it is essential to identify the dynamics and mechanism of protrusion outgrowth. This review article explores recent advances in alleviating metal dendrites in battery systems, specifically alkali metals. In detail, we address the challenges associated with battery breakdown, including the underlying mechanism of dendrite generation and swelling. We discuss the feasible solutions to mitigate the dendrites, as well as their pros and cons, highlighting future research directions. It is of great importance to analyze dendrite suppression within a pragmatic framework with synergy in order to discover a unique solution to ensure the viability of present (Li) and future-generation batteries (Na and K) for commercial use.
Collapse
Affiliation(s)
| | - M. V. Reddy
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Institute of Research Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada
| | - Karim Zaghib
- Department of Mining and Materials Engineering, McGill University, Wong Building, 3610 University Street, Montreal, QC H3A OC5, Canada;
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies, Basque Research and Technology Alliance, Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
6
|
Cheviri M, Lakshmipathi S. Nitrogen-Doped Buckybowls as Potential Scaffold Material for Lithium-Sulfur Battery: A DFT Study. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00678-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Priyadarsini A, Mallik BS. Comparative first principles-based molecular dynamics study of catalytic mechanism and reaction energetics of water oxidation reaction on 2D-surface. J Comput Chem 2021; 42:1138-1149. [PMID: 33851446 DOI: 10.1002/jcc.26528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023]
Abstract
The study of the water-splitting process, which can proceed in 2e- as well as 4e- pathway, reveals that the process is entirely an uphill process, and the third step, that is, the oxooxo bond formation is the rate-determining step. The kinetic barrier of the oxygen evolution reaction (OER) on the 2D material catalysts in the presence of explicit solvents is scarcely studied. Here, we investigate the dynamics of the OER on the undoped graphene and the activation energy barrier of each step using first principles molecular dynamics simulations. Here we provide a detailed analysis of the kinetics of all the 4e- transfer steps of OER on the graphene surface. We also compare the accuracy of one of the density functional theory (DFT) functionals and density functional based tight binding (DFTB) method in explaining the OER steps. The comparative study reveals that DFTB can be used for performing metadynamics simulations quipped with much less computational cost than DFT functionals. By both Perdew-Burke-Ernzerhof and DFTB methods, the third step is revealed to be the rate-determining step with an energy barrier of 21.19 ± 0.51 and 20.23 ± 0.20 kcal mol-1 , respectively. DFTB gives an impression of being successful in predicting the energy barriers of OER in 4e- transfer pathway and comparable to the DFT method, and we would like to extend the use of DFTB for further studies with a sizable and complex system.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
8
|
Cui H, Guo Y, Zhou Z. Three-Dimensional Graphene-Based Macrostructures for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005255. [PMID: 33733582 DOI: 10.1002/smll.202005255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/09/2020] [Indexed: 05/14/2023]
Abstract
Electrochemical energy storage and conversion is an effective strategy to relieve the increasing energy and environment crisis. The sluggish reaction kinetics in the related devices is one of the major obstacles for them to realize practical applications. More efforts should be devoted to searching for high-efficiency electrocatalysts and enhancing the electrocatalytic performance. 3D graphene macrostructures (3D GMs) are one kind of porous crystalline materials with 3D structures at both micro- and macro-scale. The unique structure can achieve large accessible surface area, expose many active sites, promote fast mass/electron transport, and provide wide room for further functional modification. All these features make them promising candidates for electrocatalysis. In this review, the authors focus on the latest progress of 3D GMs for electrocatalysis. First, the preparation methods of 3D GMs are introduced followed by the strategies for functional modifications. Then, their electrocatalytic performances are discussed in detail including monofunctional and bifunctional electrocatalysis. The electrocatalytic processes involve oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and carbon dioxide reduction reaction. Finally, the challenges and perspectives are presented to offer a guideline for the exploration of excellent 3D GM-based electrocatalysts.
Collapse
Affiliation(s)
- Huijuan Cui
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, P. R. China
| | - Yibo Guo
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, P. R. China
| | - Zhen Zhou
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, P. R. China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
9
|
Zhang H, Yang D, Lau A, Ma T, Lin H, Jia B. Hybridized Graphene for Supercapacitors: Beyond the Limitation of Pure Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007311. [PMID: 33634597 DOI: 10.1002/smll.202007311] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Graphene-based supercapacitors have been attracting growing attention due to the predicted intrinsic high surface area, high electron mobility, and many other excellent properties of pristine graphene. However, experimentally, the state-of-the-art graphene electrodes face limitations such as low surface area, low electrical conductivity, and low capacitance, which greatly limit their electrochemical performances for supercapacitor applications. To tackle these issues, hybridizing graphene with other species (e.g., atom, cluster, nanostructure, etc.) to enlarge the surface area, enhance the electrical conductivity, and improve capacitance behaviors are strongly desired. In this review, different hybridization principles (spacers hybridization, conductors hybridization, heteroatoms doping, and pseudocapacitance hybridization) are discussed to provide fundamental guidance for hybridization approaches to solve these challenges. Recent progress in hybridized graphene for supercapacitors guided by the above principles are thereafter summarized, pushing the performance of hybridized graphene electrodes beyond the limitation of pure graphene materials. In addition, the current challenges of energy storage using hybridized graphene and their future directions are discussed.
Collapse
Affiliation(s)
- Huihui Zhang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Dan Yang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Alan Lau
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Han Lin
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
10
|
Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S. Defect Engineering on Electrode Materials for Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905923. [PMID: 31930593 DOI: 10.1002/adma.201905923] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Indexed: 05/21/2023]
Abstract
The reasonable design of electrode materials for rechargeable batteries plays an important role in promoting the development of renewable energy technology. With the in-depth understanding of the mechanisms underlying electrode reactions and the rapid development of advanced technology, the performance of batteries has significantly been optimized through the introduction of defect engineering on electrode materials. A large number of coordination unsaturated sites can be exposed by defect construction in electrode materials, which play a crucial role in electrochemical reactions. Herein, recent advances regarding defect engineering in electrode materials for rechargeable batteries are systematically summarized, with a special focus on the application of metal-ion batteries, lithium-sulfur batteries, and metal-air batteries. The defects can not only effectively promote ion diffusion and charge transfer but also provide more storage/adsorption/active sites for guest ions and intermediate species, thus improving the performance of batteries. Moreover, the existing challenges and future development prospects are forecast, and the electrode materials are further optimized through defect engineering to promote the development of the battery industry.
Collapse
Affiliation(s)
- Yiqiong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410082, P. R. China
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Ru Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Yanyong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
11
|
Benti NE, Tiruye GA, Mekonnen YS. Boron and pyridinic nitrogen-doped graphene as potential catalysts for rechargeable non-aqueous sodium–air batteries. RSC Adv 2020; 10:21387-21398. [PMID: 35518781 PMCID: PMC9054368 DOI: 10.1039/d0ra03126g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 11/25/2022] Open
Abstract
In this work, we performed density functional theory (DFT) analysis of nitrogen (N)- and boron (B)-doped graphene, and N,B-co-doped graphene as potential catalysts for rechargeable non-aqueous sodium–air batteries. Four steps of an NaO2 growth and depletion mechanism model were implemented to study the effects of B- and N-doped and co-doped graphene on the reaction pathways, overpotentials, and equilibrium potentials. The DFT results revealed that two-boron- and three-nitrogen (pyridinic)-doped graphene exhibited plausible reaction pathways at the lowest overpotentials, especially during the charging process (approximately 200 mV), thus, significantly improving the oxygen reduction and oxidation reactions of pristine graphene. In addition, pyridinic nitrogen-doped graphene meaningfully increased the equilibrium potential by approximately 0.30 eV compared to the other graphene-based materials considered in this study. This detailed DFT study provides valuable data that can be used for the successful development of low-cost and efficient graphene-based catalysts for sodium–air battery systems operating with non-aqueous electrolyte. We performed density functional theory analysis of heteroatom doped graphene as potential catalysts for rechargeable non-aqueous sodium–air batteries. Pyridinic nitrogen and boron doped graphene exhibited too low overpotential reaction pathways.![]()
Collapse
Affiliation(s)
- Natei Ermias Benti
- Center for Environmental Science
- College of Natural and Computational Sciences
- Addis Ababa University
- Addis Ababa
- Ethiopia
| | - Girum Ayalneh Tiruye
- Materials Science Program/Department of Chemistry
- College of Natural and Computational Sciences
- Addis Ababa University
- Addis Ababa
- Ethiopia
| | - Yedilfana Setarge Mekonnen
- Center for Environmental Science
- College of Natural and Computational Sciences
- Addis Ababa University
- Addis Ababa
- Ethiopia
| |
Collapse
|
12
|
Khan K, Tareen AK, Aslam M, Zhang Y, Wang R, Ouyang Z, Gou Z, Zhang H. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. NANOSCALE 2019; 11:21622-21678. [PMID: 31702753 DOI: 10.1039/c9nr05919a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) materials have a wide platform in research and expanding nano- and atomic-level applications. This study is motivated by the well-established 2D catalysts, which demonstrate high efficiency, selectivity and sustainability exceeding that of classical noble metal catalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and/or hydrogen evolution reaction (HER). Nowadays, the hydrogen evolution reaction (HER) in water electrolysis is crucial for the cost-efficient production of a pure hydrogen fuel. We will also discuss another important point related to electrochemical carbon dioxide and nitrogen reduction (ECR and N2RR) in detail. In this review, we mainly focused on the recent progress in the fuel cell technology based on 2D materials, including graphene, transition metal dichalcogenides, black phosphorus, MXenes, metal-organic frameworks, and metal oxide nanosheets. First, the basic attributes of the 2D materials were described, and their fuel cell mechanisms were also summarized. Finally, some effective methods for enhancing the performance of the fuel cells based on 2D materials were also discussed, and the opportunities and challenges of 2D material-based fuel cells at the commercial level were also provided. This review can provide new avenues for 2D materials with properties suitable for fuel cell technology development and related fields.
Collapse
Affiliation(s)
- Karim Khan
- Advanced electromagnetic function laboratory, Dongguan University of Technology (DGUT), Dongguan, Guangdong Province, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Riyaz M, Goel N. Single‐Atom Catalysis Using Chromium Embedded in Divacant Graphene for Conversion of Dinitrogen to Ammonia. Chemphyschem 2019; 20:1954-1959. [DOI: 10.1002/cphc.201900519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/31/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Mohd Riyaz
- Theoretical & Computational Chemistry group Department of Chemistry & Centre for Advanced studies in ChemistryPanjab University Chandigarh- 160014 India
| | - Neetu Goel
- Theoretical & Computational Chemistry group Department of Chemistry & Centre for Advanced studies in ChemistryPanjab University Chandigarh- 160014 India
| |
Collapse
|
14
|
Yang Y, Wang Y, Yao M, Wang X, Huang H. First-principles study of rocksalt early transition-metal carbides as potential catalysts for Li-O 2 batteries. Phys Chem Chem Phys 2018; 20:30231-30238. [PMID: 30500014 DOI: 10.1039/c8cp06745g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of early transition-metal carbides (TMCs) in the NaCl structure have been constructed to compare the catalytic activity in Li-O2 batteries by first-principles calculations. The reasonable interfacial models of LixO2 (x = 4, 2, and 1) molecules adsorbed on early TMCs surfaces were used to simulate oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes. Taking overpotentials as a merit parameter of catalytic activity, more relationships between material properties relative to the adsorption/desorption behavior of active molecules and catalytic activity are constructed for early TMCs. The equilibrium and charging potentials used to calculate the OER overpotentials of early TMCs are inversely proportional to the adsorption energies of (Li2O)2 and LiO2, respectively. The ORR overpotentials are inversely proportional to the adsorption energies of (Li2O)2 and LiO2 for early TMCs, but the relationship between OER overpotentials and the adsorption energies of reactive intermediates is unclear. Additionally, the overpotentials of early TMCs for ORR and OER are proportional to the desorption energies of Li+ and O2, respectively. In general, both the adsorption energy of (Li2O)2/LiO2 and desorption energy of Li+/O2 are effective characterization parameters of catalytic activity. By providing the comprehensive valuable parameters on electrochemical performance to compare the catalytic activity of early TMCs and establishing more correlations between material properties relative to the adsorption/desorption behavior of active molecules with their catalytic activity, our investigation is helpful for knowing more about the catalytic process and beneficial to screen and design novel highly active catalysts for Li-O2 batteries.
Collapse
Affiliation(s)
- Yingying Yang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China.
| | | | | | | | | |
Collapse
|
15
|
A Review of Carbon-Composited Materials as Air-Electrode Bifunctional Electrocatalysts for Metal–Air Batteries. ELECTROCHEM ENERGY R 2018. [DOI: 10.1007/s41918-018-0002-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Metal–air batteries (MABs), particularly rechargeable MABs, have gained renewed interests as a potential energy storage/conversion solution due to their high specific energy, low cost, and safety. The development of MABs has, however, been considerably hampered by its relatively low rate capability and its lack of efficient and stable air catalysts in which the former stems mainly from the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) and the latter stems from the corrosion/oxidation of carbon materials in the presence of oxygen and high electrode potentials. In this review, various carbon-composited bifunctional electrocatalysts are reviewed to summarize progresses in the enhancement of ORR/OER and durability induced by the synergistic effects between carbon and other component(s). Catalyst mechanisms of the reaction processes and associated performance enhancements as well as technical challenges hindering commercialization are also analyzed. To facilitate further research and development, several research directions for overcoming these challenges are also proposed.
Collapse
|
16
|
Zhang P, Zhao Y, Zhang X. Functional and stability orientation synthesis of materials and structures in aprotic Li–O2batteries. Chem Soc Rev 2018; 47:2921-3004. [DOI: 10.1039/c8cs00009c] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review presents the recent advances made in the functional and stability orientation synthesis of materials/structures for Li–O2batteries.
Collapse
Affiliation(s)
- Peng Zhang
- Key Lab for Special Functional Materials of Ministry of Education
- Collaborative Innovation Center of Nano Functional Materials and Applications
- Henan University
- Kaifeng
- P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education
- Collaborative Innovation Center of Nano Functional Materials and Applications
- Henan University
- Kaifeng
- P. R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
17
|
Wang Y, Qiu W, Song E, Gu F, Zheng Z, Zhao X, Zhao Y, Liu J, Zhang W. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx119] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Energy storage technologies, such as fuel cells, ammonia production and lithium–air batteries, are important strategies for addressing the global challenge of energy crisis and environmental pollution. Taking overpotential as a direct criterion, we illustrate in theory and experiment that the adsorption energies of charged species such as Li++e− and H++e− are a central parameter to describe catalytic activities related to electricity-in/electricity-out efficiencies. The essence of catalytic activity is revealed to relate with electronic coupling between catalysts and charged species. Based on adsorption energy, some activity descriptors such as d-band center, eg-electron number and charge-transfer capacity are further defined by electronic properties of catalysts that directly affect interaction between catalysts and charged species. The present review is helpful for understanding the catalytic mechanisms of these electrocatalytic reactions and developing accurate catalytic descriptors, which can be employed to screen high-activity catalysts in future high-throughput calculations and experiments.
Collapse
Affiliation(s)
- Youwei Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Erhong Song
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Feng Gu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhihui Zheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaolin Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yingqin Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Wenqing Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
18
|
Polyimide-coated carbon electrodes combined with redox mediators for superior Li-O 2 cells with excellent cycling performance and decreased overpotential. Sci Rep 2017; 7:42617. [PMID: 28198419 PMCID: PMC5309741 DOI: 10.1038/srep42617] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
We report an air electrode employing polyimide-coated carbon nanotubes (CNTs) combined with a redox mediator for Li-O2 cells with enhanced electrochemical performance. The polyimide coating on the carbon surface suppresses unwanted side reactions, which decreases the amount of accumulated reaction products on the surface of the air electrode during cycling. The redox mediators lower the overpotential of the Li-O2 cells because they can easily transfer electrons from the electrode to the reaction products. The low overpotential can also decrease the side reactions that activate at a high potential range. Specifically, the CsI redox mediator effectively interrupted dendrite growth on the Li anode during cycling due to the shielding effect of its Cs+ ions and acted as a redox mediator due to its I− ions. LiNO3 also facilitates the decrease in side reactions and the stabilization of the Li anode. The synergic effect of the polyimide coating and the electrolyte containing the LiNO3/CsI redox mediator leads to a low overpotential and excellent cycling performance (over 250 cycles with a capacity of 1,500 mAh·gelectrode−1).
Collapse
|
19
|
Wang B, Zhao N, Wang Y, Zhang W, Lu W, Guo X, Liu J. Electrolyte-controlled discharge product distribution of Na–O2 batteries: a combined computational and experimental study. Phys Chem Chem Phys 2017; 19:2940-2949. [DOI: 10.1039/c6cp07537a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuning the composition of discharge products is an important strategy to reduce charge potential, suppress side reactions, and improve the reversibility of metal–oxygen batteries.
Collapse
Affiliation(s)
- Beizhou Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ning Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Youwei Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Wenqing Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Wencong Lu
- Department of Chemistry, College of Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Xiangxin Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
20
|
Ji Y, Dong H, Yang M, Hou T, Li Y. Monolayer germanium monochalcogenides (GeS/GeSe) as cathode catalysts in nonaqueous Li–O2batteries. Phys Chem Chem Phys 2017; 19:20457-20462. [DOI: 10.1039/c7cp04044j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibility of using 2D-GeSe/GeS as a cathode catalyst for nonaqueous Li–O2batteries is computationally confirmed.
Collapse
Affiliation(s)
- Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Huilong Dong
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Mingye Yang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| |
Collapse
|
21
|
Oakes L, Muralidharan N, Cohn AP, Pint CL. Catalyst morphology matters for lithium-oxygen battery cathodes. NANOTECHNOLOGY 2016; 27:495404. [PMID: 27831936 DOI: 10.1088/0957-4484/27/49/495404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effectiveness of using catalyst nanoparticles to reduce the overpotential and energy efficiency of lithium-oxygen (or lithium-air) batteries (LOBs) is usually attributed to the inherent catalytic properties of individual nanoparticles. Here, we demonstrate that the morphology of the catalyst layer is equally important in maintaining integrity of the catalyst coating during product formation in LOBs. We demonstrate this by comparing the performance of smooth, conformal coated Mn2O3 catalyst nanoparticles prepared by electric field-assisted deposition, and more irregular coatings using conventional film assembly techniques both on three-dimensional mesh substrates. Smooth coatings lead to an improved overpotential of 50 mV during oxygen reduction and 130 mV during oxygen evolution in addition to a nearly 2X improvement in durability compared to the more irregular films. In situ electrochemical impedance spectroscopy combined with imaging studies elucidates a mechanism of morphology-directed deactivation of catalyst layers during charging and discharging that must be overcome at practical electrode scales to achieve cell-level performance targets in LOBs.
Collapse
Affiliation(s)
- Landon Oakes
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA. Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
22
|
Wu F, Xing Y, Li L, Qian J, Qu W, Wen J, Miller D, Ye Y, Chen R, Amine K, Lu J. Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li-O2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23635-23645. [PMID: 27549204 DOI: 10.1021/acsami.6b05403] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To improve the electrochemical performance of the high energy Li-O2 batteries, it is important to design and construct a suitable and effective oxygen-breathing cathode. Herein, a three-dimensional (3D) porous boron-doped reduction graphite oxide (B-rGO) material with a hierarchical structure has been prepared by a facile freeze-drying method. In this design, boric acid as the boron source helps to form the 3D porous structure, owing to its cross-linking and pore-forming function. This architecture facilitates the rapid oxygen diffusion and electrolyte penetration in the electrode. Meanwhile, the boron-oxygen functional groups linking to the carbon surface or edge serve as additional reaction sites to activate the ORR process. It is vital that boron atoms have been doped into the carbon lattices to greatly activate the electrons in the carbon π system, which is beneficial for fast charge under large current densities. Density functional theory calculation demonstrates that B-rGO exhibits much stronger interactions with Li5O6 clusters, so that B-rGO more effectively activates Li-O bonds to decompose Li2O2 during charge than rGO does. With B-rGO as a catalytic substrate, the Li-O2 battery achieves a high discharge capacity and excellent rate capability. Moreover, catalysts could be added into the B-rGO substrate to further lower the overpotential and enhance the cycling performance in future.
Collapse
Affiliation(s)
- Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology , Beijing 100081, PR China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, PR China
| | - Yi Xing
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology , Beijing 100081, PR China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology , Beijing 100081, PR China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, PR China
| | - Ji Qian
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology , Beijing 100081, PR China
| | - Wenjie Qu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology , Beijing 100081, PR China
| | - Jianguo Wen
- Electron Microscopy Center, Material Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Dean Miller
- Electron Microscopy Center, Material Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Yusheng Ye
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology , Beijing 100081, PR China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology , Beijing 100081, PR China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, PR China
| | - Khalil Amine
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Jun Lu
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
23
|
PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes. Sci Rep 2016; 6:19962. [PMID: 26813852 PMCID: PMC4728483 DOI: 10.1038/srep19962] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
We propose PEDOT:PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PEDOT:PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PEDOT:PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PEDOT:PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PEDOT:PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PEDOT:PSS. This implies that PEDOT:PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance.
Collapse
|
24
|
Chitravathi S, Kumar S, Munichandraiah N. NiFe-layered double hydroxides: a bifunctional O2 electrode catalyst for non-aqueous Li–O2 batteries. RSC Adv 2016. [DOI: 10.1039/c6ra19054e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An improved Li–O2 battery that exhibited a lower voltage gap and better cycle performance using NiFe-LDH. This result, although preliminary opens-up the possibilities of using LDHs as a promising catalyst for Li–O2 battery systems.
Collapse
Affiliation(s)
- S. Chitravathi
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Surender Kumar
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - N. Munichandraiah
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| |
Collapse
|
25
|
Zhu J, Wang F, Wang B, Wang Y, Liu J, Zhang W, Wen Z. Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O2 Battery. J Am Chem Soc 2015; 137:13572-9. [DOI: 10.1021/jacs.5b07792] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | - Wenqing Zhang
- Materilas
Genome Institute, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | | |
Collapse
|