1
|
Bramastya Apriliyanto Y, Lombardi A, Mancini L, Pirani F, Faginas-Lago N. Revisiting Numerical Solutions of Weakly Bound Noble Gases' Vibrational Energy Levels Modeled by the Improved Lennard-Jones Potential. Chemphyschem 2024; 25:e202400223. [PMID: 38923256 DOI: 10.1002/cphc.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
We revisit the numerical solutions of vibrational eigenstates of weakly bound homonuclear and heteronuclear noble gas pairs by applying a Fortran program based on the Numerov method. The harmonic, Lennard-Jones (LJ), Morse, Tang-Toennies (TT), and Improved Lennard-Jones (ILJ) potential models have been implemented to represent the potential energy curves (PECs). The obtained vibrational energies spectrum was tested on the experimental data and accurate ab initio calculations at CCSD(T)/CBS level. The vibrational eigenvalues and eigenfunctions can be reproduced accurately within the ILJ potential model. Moreover, considering the calculated lifetime of van der Waals (vdW) complexes, the implementation of ILJ rather than standard LJ potential model has a significant impact on the systems dynamics by providing more representative atomic trajectories when the function is incorporated in force fields for molecular dynamics (MD) simulations. Overall, the ILJ function is the best suited potential model for the representation of vibrational motions and the determination of vibrational energy levels of weakly bound systems, both at equilibrium and non-equilibrium conditions.
Collapse
Affiliation(s)
- Yusuf Bramastya Apriliyanto
- Department of Chemistry, Indonesia Defense University, Kampus Unhan Komplek IPSC Sentul, 16810, Bogor, Indonesia
| | - Andrea Lombardi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
- Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, Perugia, 06123, Italy
| | - Luca Mancini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Noelia Faginas-Lago
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
- Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, Perugia, 06123, Italy
| |
Collapse
|
2
|
Khabibrakhmanov A, Fedorov DV, Tkatchenko A. Universal Pairwise Interatomic van der Waals Potentials Based on Quantum Drude Oscillators. J Chem Theory Comput 2023; 19:7895-7907. [PMID: 37875419 PMCID: PMC10653113 DOI: 10.1021/acs.jctc.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Repulsive short-range and attractive long-range van der Waals (vdW) forces play an appreciable role in the behavior of extended molecular systems. When using empirical force fields, the most popular computational methods applied to such systems, vdW forces are typically described by Lennard-Jones-like potentials, which unfortunately have a limited predictive power. Here, we present a universal parameterization of a quantum-mechanical vdW potential, which requires only two free-atom properties─the static dipole polarizability α1 and the dipole-dipole C6 dispersion coefficient. This is achieved by deriving the functional form of the potential from the quantum Drude oscillator (QDO) model, employing scaling laws for the equilibrium distance and the binding energy, and applying the microscopic law of corresponding states. The vdW-QDO potential is shown to be accurate for vdW binding energy curves, as demonstrated by comparing to the ab initio binding curves of 21 noble-gas dimers. The functional form of the vdW-QDO potential has the correct asymptotic behavior at both zero and infinite distances. In addition, it is shown that the damped vdW-QDO potential can accurately describe vdW interactions in dimers consisting of group II elements. Finally, we demonstrate the applicability of the atom-in-molecule vdW-QDO model for predicting accurate dispersion energies for molecular systems. The present work makes an important step toward constructing universal vdW potentials, which could benefit (bio)molecular computational studies.
Collapse
Affiliation(s)
- Almaz Khabibrakhmanov
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| | - Dmitry V. Fedorov
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| |
Collapse
|
3
|
Echeverría J, Alvarez S. The borderless world of chemical bonding across the van der Waals crust and the valence region. Chem Sci 2023; 14:11647-11688. [PMID: 37920358 PMCID: PMC10619631 DOI: 10.1039/d3sc02238b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/01/2023] [Indexed: 11/04/2023] Open
Abstract
The definition of the van der Waals crust as the spherical section between the atomic radius and the van der Waals radius of an element is discussed and a survey of the application of the penetration index between two interacting atoms in a wide variety of covalent, polar, coordinative or noncovalent bonding situations is presented. It is shown that this newly defined parameter permits the comparison of bonding between pairs of atoms in structural and computational studies independently of the atom sizes.
Collapse
Affiliation(s)
- Jorge Echeverría
- Instituto de Síntesis Química y Catalisis Homogénea (ISQCH) and Departmento de Química Inorgánica, Facultad de Ciencias, Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Santiago Alvarez
- Department de Química Inorgànica i Orgànica, Secció de Química Inorgànica, e Institut de Química Teòrica i Computacional, Universitat de Barcelona Martí i Franquès 1-11 08028 -Barcelona Spain
| |
Collapse
|
4
|
Shirkov L, Sladek V. Ab initio relativistic potential energy surface with analytical long-range part of benzene-Rn complex and its application to intermolecular vibrations. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Knecht S, Repisky M, Jensen HJA, Saue T. Exact two-component Hamiltonians for relativistic quantum chemistry: Two-electron picture-change corrections made simple. J Chem Phys 2022; 157:114106. [PMID: 36137811 DOI: 10.1063/5.0095112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on self-consistent field (SCF) atomic mean-field (amf) quantities, we present two simple yet computationally efficient and numerically accurate matrix-algebraic approaches to correct both scalar-relativistic and spin-orbit two-electron picture-change effects (PCEs) arising within an exact two-component (X2C) Hamiltonian framework. Both approaches, dubbed amfX2C and e(xtended)amfX2C, allow us to uniquely tailor PCE corrections to mean-field models, viz. Hartree-Fock or Kohn-Sham DFT, in the latter case also avoiding the need for a point-wise calculation of exchange-correlation PCE corrections. We assess the numerical performance of these PCE correction models on spinor energies of group 18 (closed-shell) and group 16 (open-shell) diatomic molecules, achieving a consistent ≈10-5 Hartree accuracy compared to reference four-component data. Additional tests include SCF calculations of molecular properties such as absolute contact density and contact density shifts in copernicium fluoride compounds (CnFn, n = 2,4,6), as well as equation-of-motion coupled-cluster calculations of x-ray core-ionization energies of 5d- and 6d-containing molecules, where we observe an excellent agreement with reference data. To conclude, we are confident that our (e)amfX2C PCE correction models constitute a fundamental milestone toward a universal and reliable relativistic two-component quantum-chemical approach, maintaining the accuracy of the parent four-component one at a fraction of its computational cost.
Collapse
Affiliation(s)
- Stefan Knecht
- Algorithmiq Ltd, Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques (CNRS UMR 5626), Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| |
Collapse
|
6
|
Florez E, Smits O, Mewes JM, Jerabek P, Schwerdtfeger P. From the gas phase to the solid state: The chemical bonding in the superheavy element flerovium. J Chem Phys 2022; 157:064304. [DOI: 10.1063/5.0097642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As early as 1975, Pitzer suggested that copernicium, flerovium and oganesson are volatile substances behaving noble-gas like because of their closed-shell configurations and accompanying relativistic effects. It is, however, precarious to predict the chemical bonding and physical behavior of a solid by knowledge of the atomic or molecular properties only. Copernicium and oganesson have been analyzed very recently by our group. Both are predicted to be semi-conductors and volatile substances with rather low melting and boiling points, which may justify a comparison with the noble gas elements. Here we study closed-shell flerovium in detail to predict solid-state properties including the melting point from a decomposition of the total energy into many-body forces derived from relativistic coupled-cluster and from density functional theory. The convergence of such a decomposition for flerovium is critically analyzed, and the problem of using density functional theory is highlighted. We predict that flerovium is in many ways not behaving like a typical noble gas element despite its closed-shell 7$p_{1/2}^2$ configuration and resulting weak interactions. Unlike for the noble gases, the many-body expansion in terms of the interaction energy is not converging smoothly. This makes the accurate prediction of phase transitions very difficult. Nevertheless, a first prediction by Monte-Carlo simulation estimates the melting point at $284\pm 50$ K. Furthermore, calculations for the electronic band gap suggests that flerovium is a semi-conductor similar to copernicium
Collapse
Affiliation(s)
- Edison Florez
- New Zealand Institute for Advanced Study, New Zealand
| | - Odile Smits
- New Zealand Institute for Advanced Study, New Zealand
| | - Jan-Michael Mewes
- University of Bonn Institute of Physical and Theoretical Chemistry, Germany
| | | | - Peter Schwerdtfeger
- Center for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, New Zealand
| |
Collapse
|
7
|
Tkatchenko A, Fedorov DV, Gori M. Fine-Structure Constant Connects Electronic Polarizability and Geometric van-der-Waals Radius of Atoms. J Phys Chem Lett 2021; 12:9488-9492. [PMID: 34559533 DOI: 10.1021/acs.jpclett.1c02461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fine-structure constant (FSC) measures the coupling strength between photons and charged particles and is more strongly associated with quantum electrodynamics than with atomic and molecular physics. Here we present an elementary derivation that accurately predicts the electronic polarizability of atoms A from their geometric van-der-Waals (vdW) radius RvdW and the FSC α through the compact formula A = (4πε0/a04) × α4/3RvdW7, where ε0 is the permittivity of free space and a0 is the Bohr radius. The validity of this formula is empirically confirmed by estimating the value of α from nonrelativistic quantum calculations of atomic polarizabilities and atomic vdW radii obtained from both theory and experiment. Our heuristic derivation based on empirical data extends the influence of FSC from quantum electrodynamics and specific materials properties such as the visual transparency of graphene to atomic electronic properties throughout the periodic table of elements.
Collapse
Affiliation(s)
- Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Dmitry V Fedorov
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Matteo Gori
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
8
|
Pernal K, Hapka M. Range‐separated multiconfigurational density functional theory methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Michał Hapka
- Lodz University of Technology Institute of Physics Lodz Poland
- Faculty of Chemistry University of Warsaw Warsaw Poland
| |
Collapse
|
9
|
Schwerdtfeger P, Burrows A, Smits OR. The Lennard-Jones Potential Revisited: Analytical Expressions for Vibrational Effects in Cubic and Hexagonal Close-Packed Lattices. J Phys Chem A 2021; 125:3037-3057. [PMID: 33787272 DOI: 10.1021/acs.jpca.1c00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Analytical formulas are derived for the zero-point vibrational energy and anharmonicity corrections of the cohesive energy and the mode Grüneisen parameter within the Einstein model for the cubic lattices (sc, bcc, and fcc) and for the hexagonal close-packed structure. This extends the work done by Lennard-Jones and Ingham in 1924, Corner in 1939, and Wallace in 1965. The formulas are based on the description of two-body energy contributions by an inverse power expansion (extended Lennard-Jones potential). These make use of three-dimensional lattice sums, which can be transformed to fast converging series and accurately determined by various expansion techniques. We apply these new lattice sum expressions to the rare gas solids and discuss associated critical points. The derived formulas give qualitative but nevertheless deep insight into vibrational effects in solids from the lightest (helium) to the heaviest rare gas element (oganesson), both presenting special cases because of strong quantum effects for the former and strong relativistic effects for the latter.
Collapse
Affiliation(s)
- Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag 102904, Auckland 0745, New Zealand
| | - Antony Burrows
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag 102904, Auckland 0745, New Zealand
| | - Odile R Smits
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag 102904, Auckland 0745, New Zealand
| |
Collapse
|
10
|
Sheng X, Toennies JP, Tang KT. Conformal Analytical Potential for All the Rare Gas Dimers over the Full Range of Internuclear Distances. PHYSICAL REVIEW LETTERS 2020; 125:253402. [PMID: 33416396 DOI: 10.1103/physrevlett.125.253402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
An analytical model for the potential between two rare gas atoms at distances between R=0 to R→∞ is assumed to be conformal with the previously published potential for He_{2} [J. Chem. Phys. 142, 131102 (2015)JCPSA60021-960610.1063/1.4916740]. The potential curves of the rare gas dimers all have the same shape and only depend on the well parameters D_{e} and R_{e}. The potentials and the vibrational levels for the 11 homonuclear and heteronuclear dimers for which recent ab initio calculations are available agree, within several percent, with the ab initio results. For the other rare gas dimers, the new potential provides the first realistic estimates for the potentials.
Collapse
Affiliation(s)
- Xiaowei Sheng
- Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China
| | - J Peter Toennies
- Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 17, D-37077, Göttingen, Germany
| | - K T Tang
- Department of Physics, Pacific Lutheran University, Tacoma, Washington 98447, USA
| |
Collapse
|
11
|
Paquier J, Giner E, Toulouse J. Relativistic short-range exchange energy functionals beyond the local-density approximation. J Chem Phys 2020; 152:214106. [DOI: 10.1063/5.0004926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julien Paquier
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université and CNRS, F-75005 Paris, France
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université and CNRS, F-75005 Paris, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université and CNRS, F-75005 Paris, France
- Institut Universitaire de France, F-75005 Paris, France
| |
Collapse
|
12
|
Saue T, Bast R, Gomes ASP, Jensen HJA, Visscher L, Aucar IA, Di Remigio R, Dyall KG, Eliav E, Fasshauer E, Fleig T, Halbert L, Hedegård ED, Helmich-Paris B, Iliaš M, Jacob CR, Knecht S, Laerdahl JK, Vidal ML, Nayak MK, Olejniczak M, Olsen JMH, Pernpointner M, Senjean B, Shee A, Sunaga A, van Stralen JNP. The DIRAC code for relativistic molecular calculations. J Chem Phys 2020; 152:204104. [PMID: 32486677 DOI: 10.1063/5.0004844] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.
Collapse
Affiliation(s)
- Trond Saue
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Radovan Bast
- Department of Information Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Ignacio Agustín Aucar
- Instituto de Modelado e Innovación Tecnológica, CONICET, and Departamento de Física-Facultad de Ciencias Exactas y Naturales, UNNE, Avda. Libertad 5460, W3404AAS Corrientes, Argentina
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kenneth G Dyall
- Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229, USA
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Elke Fasshauer
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Timo Fleig
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Loïc Halbert
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Erik Donovan Hedegård
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
| | - Christoph R Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Stefan Knecht
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Marta L Vidal
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Małgorzata Olejniczak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | | - Bruno Senjean
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ayaki Sunaga
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo 192-0397, Japan
| | - Joost N P van Stralen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Oswald S, Suhm MA. Soft experimental constraints for soft interactions: a spectroscopic benchmark data set for weak and strong hydrogen bonds. Phys Chem Chem Phys 2019; 21:18799-18810. [PMID: 31453998 DOI: 10.1039/c9cp03651b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An experimental benchmark data base on rotational constants, vibrational properties and energy differences for weakly and more strongly hydrogen-bonded complexes and their constituents from the spectroscopic literature is assembled. It is characterized in detail and finally contracted to a more compact, discriminatory set (ENCH-51, for Experimental Non-Covalent Harmonic with 51 entries). The meeting points between theory and experiment consist of equilibrium rotational constants and harmonic frequencies and energies, which are back-corrected from experimental observables and are very easily accessible by quantum chemical calculations. The relative performance of B3LYP-D3, PBE0-D3 and M06-2X density functional theory predictions with a quadruple-zeta basis set is used to illustrate systematic errors, error compensation and selective performance for structural, vibrational and energetical observables. The current focus is on perspectives and different benchmarking methodologies, rather than on a specific theoretical method or a specific class of compounds. Extension of the data base in chemical, observable and quantum chemical method space is encouraged.
Collapse
Affiliation(s)
- Sönke Oswald
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
| | - Martin A Suhm
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
| |
Collapse
|
14
|
Jerabek P, Smits OR, Mewes JM, Peterson KA, Schwerdtfeger P. Solid Oganesson via a Many-Body Interaction Expansion Based on Relativistic Coupled-Cluster Theory and from Plane-Wave Relativistic Density Functional Theory. J Phys Chem A 2019; 123:4201-4211. [DOI: 10.1021/acs.jpca.9b01947] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul Jerabek
- Department for Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung (KOFO), Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Odile R. Smits
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand
| | - Jan-Michael Mewes
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand
| |
Collapse
|
15
|
Hellmann R, Jäger B, Bich E. State-of-the-art ab initio potential energy curve for the xenon atom pair and related spectroscopic and thermophysical properties. J Chem Phys 2018; 147:034304. [PMID: 28734299 DOI: 10.1063/1.4994267] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new ab initio interatomic potential energy curve for two ground-state xenon atoms is presented. It is based on supermolecular calculations at the coupled-cluster level with single, double, and perturbative triple excitations [CCSD(T)] employing basis sets up to sextuple-zeta quality, which were developed as part of this work. In addition, corrections were determined for higher coupled-cluster levels up to CCSDTQ as well as for scalar and spin-orbit relativistic effects at the CCSD(T) level. A physically motivated analytical function was fitted to the calculated interaction energies and used to compute the vibrational spectrum of the dimer, the second virial coefficient, and the dilute gas transport properties. The agreement with the best available experimental data for the investigated properties is excellent; the new potential function is superior not only to previous ab initio potentials but also to the most popular empirical ones.
Collapse
Affiliation(s)
- Robert Hellmann
- Institut für Chemie, Universität Rostock, 18059 Rostock, Germany
| | - Benjamin Jäger
- Institut für Chemie, Universität Rostock, 18059 Rostock, Germany
| | - Eckard Bich
- Institut für Chemie, Universität Rostock, 18059 Rostock, Germany
| |
Collapse
|
16
|
Jerabek P, Schuetrumpf B, Schwerdtfeger P, Nazarewicz W. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit. PHYSICAL REVIEW LETTERS 2018; 120:053001. [PMID: 29481184 DOI: 10.1103/physrevlett.120.053001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/02/2017] [Indexed: 06/08/2023]
Abstract
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (∼10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Collapse
Affiliation(s)
- Paul Jerabek
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand
| | - Bastian Schuetrumpf
- NSCL/FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand
- Centre for Advanced Study (CAS) at the Norwegian Academy of Science and Letters, Drammensveien 78, NO-0271 Oslo, Norway
| | - Witold Nazarewicz
- Department of Physics and Astronomy and FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
17
|
Jerabek P, Smits O, Pahl E, Schwerdtfeger P. A relativistic coupled-cluster interaction potential and rovibrational constants for the xenon dimer. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1359347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Paul Jerabek
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Odile Smits
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Elke Pahl
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
18
|
Sheng X, Qian S, Hu F. Van der Waals potential and vibrational energy levels of the ground state radon dimer. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Tu Z, Chen A, Xia C, Li Z, Yang M, Wang C, Wang W. Theoretical investigation of the spectroscopic constants for the ground-state diatomic species Cu 2 , Ag 2 , and Au 2. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Holzer C, Klopper W. Quasi-relativistic two-component computations of intermolecular dispersion energies. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1317861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christof Holzer
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Wim Klopper
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
21
|
Schwerdtfeger P. Toward an accurate description of solid-state properties of superheavy elements. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201613107004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Tu ZY, Wang WL, Li RZ, Xia CJ, Li LB. Coupled cluster study of spectroscopic constants of ground states of heavy rare gas dimers with spin–orbit interaction. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Jäger B, Hellmann R, Bich E, Vogel E. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas. J Chem Phys 2016; 144:114304. [DOI: 10.1063/1.4943959] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Benjamin Jäger
- Institut für Chemie, Universität Rostock, D-18059 Rostock, Germany
| | - Robert Hellmann
- Institut für Chemie, Universität Rostock, D-18059 Rostock, Germany
| | - Eckard Bich
- Institut für Chemie, Universität Rostock, D-18059 Rostock, Germany
| | - Eckhard Vogel
- Institut für Chemie, Universität Rostock, D-18059 Rostock, Germany
| |
Collapse
|