1
|
Grotjahn R, Furche F. Comment on: "Toward Accurate Two-Photon Absorption Spectrum Simulations: Exploring the Landscape beyond the Generalized Gradient Approximation". J Phys Chem Lett 2024; 15:6237-6240. [PMID: 38867618 DOI: 10.1021/acs.jpclett.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A recent benchmark study of two-photon absorption (2PA) strengths using meta-generalized gradient approximation (MGGA) exchange-correlation functionals by Ahmadzadeh, Li, Rinkevicius, Norman, and Zaleśny (ALRNZ24) [ J. Phys. Chem. Lett. 2024, 15, 969] misrepresents the state of the field in this area. Not only was an assessment of 2PA strengths for the exact same benchmark published previously; ALRNZ24 also uses a gauge-variant form of MGGA response theory which produces erratic behavior for certain benchmark systems. Applications of MGGAs to optical and magnetic response properties should use a gauge-invariant extension of MGGA functionals such as paramagnetic current-dependent MGGAs.
Collapse
Affiliation(s)
- Robin Grotjahn
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
2
|
Schattenberg C, Kaupp M. Implementation and First Evaluation of Strong-Correlation-Corrected Local Hybrid Functionals for the Calculation of NMR Shieldings and Shifts. J Phys Chem A 2024; 128:2253-2271. [PMID: 38456430 PMCID: PMC10961831 DOI: 10.1021/acs.jpca.3c08507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Local hybrid functionals containing strong-correlation factors (scLHs) and range-separated local hybrids (RSLHs) have been integrated into an efficient coupled-perturbed Kohn-Sham implementation for the calculation of nuclear shielding constants. Several scLHs and the ωLH22t RSLH have then been evaluated for the first time for the extended NS372 benchmark set of main-group shieldings and shifts and the TM70 benchmark of 3d transition-metal shifts. The effects of the strong-correlation corrections have been analyzed with respect to the spatial distribution of the sc-factors, which locally diminish exact-exchange admixture at certain regions in a molecule. The scLH22t, scLH23t-mBR, and scLH23t-mBR-P functionals, which contain a "damped" strong-correlation factor to retain the excellent performance of the underlying LH20t functional for weakly correlated situations, tend to make smaller corrections to shieldings and shifts than the "undamped" scLH22ta functional. While the latter functional can also deteriorate agreement with the reference data in certain weakly correlated cases, it provides overall better performance, in particular for systems where static correlation is appreciable. This pertains only to a minority of systems in the NS372 main-group test set but to many more systems in the TM70 transition-metal test set, in particular for high-oxidation-state complexes, e.g., Cr(+VI) complexes and other systems with stretched bonds. Another undamped scLH, the simpler LDA-based scLH21ct-SVWN-m, also tends to provide significant improvements in many cases. The differences between the functionals and species can be rationalized on the basis of one-dimensional plots of the strong-correlation factors, augmented by isosurface plots of the fractional orbital density (FOD). Position-dependent exact-exchange admixture is thus shown to provide substantial flexibility in treating response properties like NMR shifts for both weakly and strongly correlated systems.
Collapse
Affiliation(s)
- Caspar
Jonas Schattenberg
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie
(FMP), Robert-Roessle-Str.
10, 13125 Berlin, Germany
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
3
|
Schattenberg C, Wodyński A, Åström H, Sundholm D, Kaupp M, Lehtola S. Revisiting Gauge-Independent Kinetic Energy Densities in Meta-GGAs and Local Hybrid Calculations of Magnetizabilities. J Phys Chem A 2023; 127:10896-10907. [PMID: 38100678 PMCID: PMC10758120 DOI: 10.1021/acs.jpca.3c06244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
In a recent study [J. Chem. Theory Comput. 2021, 17, 1457-1468], some of us examined the accuracy of magnetizabilities calculated with density functionals representing the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA (mGGA), as well as global hybrid (GH) and range-separated (RS) hybrid functionals by assessment against accurate reference values obtained with coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)]. Our study was later extended to local hybrid (LH) functionals by Holzer et al. [J. Chem. Theory Comput. 2021, 17, 2928-2947]; in this work, we examine a larger selection of LH functionals, also including range-separated LH (RSLH) functionals and strong-correlation LH (scLH) functionals. Holzer et al. also studied the importance of the physically correct handling of the magnetic gauge dependence of the kinetic energy density (τ) in mGGA calculations by comparing the Maximoff-Scuseria formulation of τ used in our aforementioned study to the more physical current-density extension derived by Dobson. In this work, we also revisit this comparison with a larger selection of mGGA functionals. We find that the newly tested LH, RSLH, and scLH functionals outperform all of the functionals considered in the previous studies. The various LH functionals afford the seven lowest mean absolute errors while also showing remarkably small standard deviations and mean errors. Most strikingly, the best two functionals are scLHs that also perform remarkably well in cases with significant multiconfigurational character, such as the ozone molecule, which is traditionally excluded from statistical error evaluations due to its large errors with common density functionals.
Collapse
Affiliation(s)
- Caspar
J. Schattenberg
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Hugo Åström
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Dage Sundholm
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Susi Lehtola
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
5
|
Grotjahn R, Furche F, Kaupp M. Importance of imposing gauge invariance in time-dependent density functional theory calculations with meta-generalized gradient approximations. J Chem Phys 2022; 157:111102. [PMID: 36137777 DOI: 10.1063/5.0113083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has been known for more than a decade that the gauge variance of the kinetic energy density τ leads to additional terms in the magnetic orbital rotation Hessian used in linear-response time-dependent density functional theory (TDDFT), affecting excitation energies obtained with τ-dependent exchange-correlation functionals. While previous investigations found that a correction scheme based on the paramagnetic current density has a small effect on benchmark results, we report more pronounced effects here, in particular, for the popular M06-2X functional and for some other meta-generalized gradient approximations (mGGAs). In the first part of this communication, this is shown by a reassessment of a set of five Ni(II) complexes for which a previous benchmark study that did not impose gauge invariance has found surprisingly large errors for excitation energies obtained with M06-2X. These errors are more than halved by restoring gauge invariance. The variable importance of imposing gauge invariance for different mGGA-based functionals can be rationalized by the derivative of the mGGA exchange energy integrand with respect to τ. In the second part, a large set of valence excitations in small main-group molecules is analyzed. For M06-2X, several selected n → π* and π→π⊥ * excitations are heavily gauge-dependent with average changes of -0.17 and -0.28 eV, respectively, while π→π‖ * excitations are marginally affected (-0.04 eV). Similar patterns, but of the opposite signs, are found for SCAN0. The results suggest that reevaluation of previous gauge variant TDDFT results based on M06-2X and other mGGA functionals is warranted.
Collapse
Affiliation(s)
- Robin Grotjahn
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
6
|
Franzke YJ, Holzer C. Communication: Impact of the current density on paramagnetic NMR properties. J Chem Phys 2022; 157:031102. [DOI: 10.1063/5.0103898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Meta-generalized gradient approximations (meta-GGAs) and local hybrid functionals generally depend on the kinetic energy density τ. For magnetic properties, this necessitates generalizations to ensure gauge invariance. In most implementations, τ is generalized by incorporating the external magnetic field. However, this introduces artifacts in the response of the density matrix and does not satisfy the iso-orbital constraint. Here, we extend previous approaches based on the current density to paramagnetic NMR shieldings and EPR g-tensors. The impact is assessed for main-group compounds and transition-metal complexes considering 25 density functional approximations. It is shown that the current density leads to substantial improvements-especially for the popular Minnesota and SCAN functional families. Thus, we strongly recommend to use the current density generalized τ in paramagnetic NMR and EPR calculations with meta-GGAs.
Collapse
Affiliation(s)
- Yannick J. Franzke
- Fachbereich Chemie, Philipps-Universität Marburg Fachbereich Chemie, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruher Institut für Technologie Fakultät für Physik, Germany
| |
Collapse
|
7
|
Lemmens L, De Vriendt X, Bultinck P, Acke G. Analyzing the Behavior of Spin Phases in External Magnetic Fields by Means of Spin-Constrained States. J Chem Theory Comput 2022; 18:3364-3376. [PMID: 35611406 DOI: 10.1021/acs.jctc.1c00953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During molecular dissociation in the presence of an external uniform magnetic field, electrons flip their spin antiparallel to the magnetic field because of the stabilizing influence of the spin Zeeman operator. Although generalized Hartree-Fock descriptions furnish the optimal mean-field energetic description of such bond-breaking processes, they are allowed to break Ŝz symmetry, leading to intricate and unexpected spin phases and phase transitions. In this work, we show that the behavior of these molecular spin phases can be interpreted in terms of spin phase diagrams constructed by constraining states to target expectation values of projected spin. The underlying constrained states offer a complete electronic characterization of the spin phases and spin phase transitions, as they can be analyzed using standard quantum chemical tools. Because the constrained states effectively span the entire phase space, they could provide an excellent starting point for post-Hartree-Fock methods aimed at gaining more electron correlation or regaining spin symmetry.
Collapse
Affiliation(s)
- Laurent Lemmens
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| | - Xeno De Vriendt
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| | - Guillaume Acke
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| |
Collapse
|
8
|
Poidevin C, Stoychev GL, Riplinger C, Auer AA. High Level Electronic Structure Calculation of Molecular Solid-State NMR Shielding Constants. J Chem Theory Comput 2022; 18:2408-2417. [PMID: 35353527 PMCID: PMC9009078 DOI: 10.1021/acs.jctc.1c01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 11/29/2022]
Abstract
In this work, we present a quantum mechanics/molecular mechanics (QM/MM) approach for the computation of solid-state nuclear magnetic resonance (SS-NMR) shielding constants (SCs) for molecular crystals. Besides applying standard-DFT functionals like GGAs (PBE), meta-GGAs (TPSS), and hybrids (B3LYP), we apply a double-hybrid (DSD-PBEP86) functional as well as MP2, using the domain-based local pair natural orbital (DLPNO) formalism, to calculate the NMR SCs of six amino acid crystals. All the electronic structure methods used exhibit good correlation of the NMR shieldings with respect to experimental chemical shifts for both 1H and 13C. We also find that local electronic structure is much more important than the long-range electrostatic effects for these systems, implying that cluster approaches using all-electron/Gaussian basis set methods might offer great potential for predictive computations of solid-state NMR parameters for organic solids.
Collapse
Affiliation(s)
- Corentin Poidevin
- Institut
des Sciences Chimiques de Rennes, Av. Général Leclerc, 357000 Rennes, France
| | - Georgi L. Stoychev
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | | | - Alexander A. Auer
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Schattenberg CJ, Lehmann M, Bühl M, Kaupp M. Systematic Evaluation of Modern Density Functional Methods for the Computation of NMR Shifts of 3d Transition-Metal Nuclei. J Chem Theory Comput 2021; 18:273-292. [PMID: 34968062 DOI: 10.1021/acs.jctc.1c00964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide range of density functionals from all rungs of Jacob's ladder have been evaluated systematically for a set of experimental 3d transition-metal NMR shifts of 70 complexes encompassing 12 × 49Ti, 10 × 51V, 10 × 53Cr, 11 × 55Mn, 9 × 57Fe, 9 × 59Co, and 9 × 61Ni shift values, as well as a diverse range of electronic structure characteristics. The overall 39 functionals evaluated include one LDA, eight GGAs, seven meta-GGAs (including their current-density-functional─CDFT─versions), nine global hybrids, four range-separated hybrids, eight local hybrids, and two double hybrids, and we also include Hartree-Fock and MP2 calculations. While recent evaluations of the same functionals for a very large coupled-cluster-based benchmark of main-group shieldings and shifts achieved in some cases aggregate percentage mean absolute errors clearly below 2%, the best results for the present 3d-nuclei set are in the range between 4 and 5%. Strikingly, the overall best-performing functionals are the recently implemented CDFT versions of two meta-GGAs, namely cM06-L (4.0%) and cVSXC (4.3%), followed by cLH14t-calPBE (4.9%), B3LYP (5.0%), and cLH07t-SVWN (5.1%), i.e., the previously best-performing global hybrid and two local hybrids. A number of further functionals achieve aggregate deviations in the range 5-6%. Range-separated hybrids offer no particular advantage over global hybrids. Due to the overall poor performance of Hartree-Fock theory for all systems except the titanium complexes, MP2 and double-hybrid functionals are unsuitable for these 3d-nucleus shifts and provide large errors. Global hybrid functionals with larger EXX admixtures, such as BHLYP or M06-2X, also perform poorly, and some other highly parametrized global hybrids also are unsuitable. For many functionals depending on local kinetic energy τ, their CDFT variants perform much better than their "non-CDFT" versions. This holds notably also for the above-mentioned M06-L and VSXC, while the effect is small for τ-dependent local hybrids and can even be somewhat detrimental to the agreement with experiment for a few other cases. The separation between well-performing and more poorly performing functionals is mainly determined by their results for the most critical nuclei 55Mn, 57Fe, and 59Co. Here either moderate exact-exchange admixtures or CDFT versions of meta-GGAs are beneficial for the accuracy. The overall deviations of the better-performing global or local hybrids are then typically dominated by the 53Cr shifts, where triplet instabilities appear to disfavor exact-exchange admixture. Further detailed analyses help to pinpoint specific nuclei and specific types of complexes that are challenges for a given functional.
Collapse
Affiliation(s)
- Caspar Jonas Schattenberg
- Institut für Chemie, Theoretische Chemie/Quantenchemie Sekretariat C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Morten Lehmann
- Institut für Chemie, Theoretische Chemie/Quantenchemie Sekretariat C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Michael Bühl
- School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St Andrews KY16 9ST, Fife, U.K
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie Sekretariat C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| |
Collapse
|
10
|
Schattenberg CJ, Kaupp M. Extended Benchmark Set of Main-Group Nuclear Shielding Constants and NMR Chemical Shifts and Its Use to Evaluate Modern DFT Methods. J Chem Theory Comput 2021; 17:7602-7621. [PMID: 34797677 DOI: 10.1021/acs.jctc.1c00919] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An extended theoretical benchmark set, NS372, for light main-group nuclear shieldings and NMR shifts has been constructed based on high-level GIAO-CCSD(T)/pcSseg-3//CCSD(T)/cc-pVQZ reference data. After removal of the large static-correlation cases O3, F3-, and BH from the statistical evaluations for the 17O, 19F, and 11B subsets, the benchmark comprises overall 372 shielding values in 117 molecules with a wide range of electronic-structure situations, containing 124 1H, 14 11B, 93 13C, 43 15N, 31 17O, 47 19F, 14 31P, and 6 33S shielding constants. The CCSD(T)/pcSseg-3 data are shown to be close to the basis-set and method limit and thus provide an excellent benchmark to evaluate more approximate methods, such as density functional approaches. This dataset has been used to evaluate Hartree-Fock (HF) and MP2, and a wide range of exchange-correlation functionals from local density approximation (LDA) to generalized gradient approximations (GGAs) and meta-GGAs (focusing on their current-density functional implementations), as well as global hybrid, range-separated hybrid, local hybrid, and double-hybrid functionals. Starting with absolute shielding constants, the DSD-PBEP86 double hybrid is confirmed to provide the highest accuracy, with an aggregate relative mean absolute error (rel. MAE) of only 0.9%, followed by MP2 (1.1%). MP2 and double hybrids only show larger errors for a few systems with the largest static-correlation effects. The double-hybrid B2GP-PLYP, the two local hybrids cLH12ct-SsirPW92 and cLH12ct-SsifPW92, and the current-density functional meta-GGA cB97M-V follow closely behind (all 1.5%), as do some further functionals, cLH20t and cMN15-L (both 1.6%), as well as B2PLYP and KT3 (both 2.0%). Functionals on the lower rungs of the usual ladder offer the advantage of lower computational cost and access to larger molecules. Closer examination also reveals the best-performing methods for individual nuclei in the test set. Different ways of treating τ-dependent functionals are evaluated. When moving from absolute shielding constants to chemical shifts, some of the methods can benefit from systematic error compensation, and the overall error range somewhat narrows. Further methods now achieve the 2% threshold of relative MAEs, including functionals based on TPSS (TPSSh, cmPSTS).
Collapse
Affiliation(s)
- Caspar Jonas Schattenberg
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
11
|
Glasbrenner M, Graf D, Ochsenfeld C. Benchmarking the Accuracy of the Direct Random Phase Approximation and σ-Functionals for NMR Shieldings. J Chem Theory Comput 2021; 18:192-205. [PMID: 34898213 DOI: 10.1021/acs.jctc.1c00866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for computing NMR shieldings with the direct random phase approximation (RPA) and the closely related σ-functionals [Trushin, E.; Thierbach, A.; Görling, A. Toward chemical accuracy at low computational cost: density functional theory with σ-functionals for the correlation energy. J. Chem. Phys. 2021, 154, 014104] is presented, which is based on a finite-difference approach. The accuracy is evaluated in benchmark calculations using high-quality coupled cluster values as a reference. Our results show that the accuracy of the computed NMR shieldings using direct RPA is strongly dependent on the density functional theory reference orbitals and improves with increasing amounts of exact Hartree-Fock exchange in the functional. NMR shieldings computed with direct RPA using a Hartree-Fock reference are significantly more accurate than MP2 shieldings and comparable to CCSD shieldings. Also, the basis set convergence is analyzed and it is shown that at least triple-zeta basis sets are required for reliable results.
Collapse
Affiliation(s)
- Michael Glasbrenner
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| | - Daniel Graf
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany.,Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
12
|
Sundholm D, Dimitrova M, Berger RJF. Current density and molecular magnetic properties. Chem Commun (Camb) 2021; 57:12362-12378. [PMID: 34726205 DOI: 10.1039/d1cc03350f] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give an overview of the molecular response to an external magnetic field perturbing quantum mechanical systems. We present state-of-the-art methods for calculating magnetically-induced current-density susceptibilities. We discuss the essence and properties of current-density susceptibilities and how molecular magnetic properties can be calculated from them. We also review the theory of spin-current densities, how relativity affects current densities and magnetic properties. An overview of the magnetic ring-current criterion for aromaticity is given, which has implications on theoretical and experimental research. The recently reported theory of antiaromaticity and how molecular symmetry affects the magnetic response are discussed and applied to closed-shell paramagnetic molecules. The topology of magnetically induced current densities and its consequences for molecular magnetic properties are also presented with twisted and toroidal molecules as examples.
Collapse
Affiliation(s)
- Dage Sundholm
- Department of Chemistry, Faculty of Science, FI-00014 University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Finland.
| | - Maria Dimitrova
- Department of Chemistry, Faculty of Science, FI-00014 University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Finland. .,Chemistry of Materials, Paris-Lodron University of Salzburg, Jakob-Haringerstr. 2A, A-5020 Salzburg, Austria
| | - Raphael J F Berger
- Chemistry of Materials, Paris-Lodron University of Salzburg, Jakob-Haringerstr. 2A, A-5020 Salzburg, Austria
| |
Collapse
|
13
|
Lehtola S, Dimitrova M, Fliegl H, Sundholm D. Correction to "Benchmarking Magnetizabilities with Recent Density Functionals". J Chem Theory Comput 2021; 17:4629-4631. [PMID: 34129325 PMCID: PMC8504800 DOI: 10.1021/acs.jctc.1c00466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Schattenberg CJ, Kaupp M. Implementation and Validation of Local Hybrid Functionals with Calibrated Exchange-Energy Densities for Nuclear Shielding Constants. J Phys Chem A 2021; 125:2697-2707. [PMID: 33730855 DOI: 10.1021/acs.jpca.1c01135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recently reported coupled-perturbed Kohn-Sham implementation to compute nuclear shielding constants with gauge-including atomic orbitals and local hybrid functionals has been extended to cover higher derivatives of the density in the local mixing function (LMF) of the local hybrid as well as the calibration function (CF) needed to deal with the ambiguity of exchange-energy densities. This allowed the first evaluation of state-of-the-art local hybrids with "calibrated" exchange-energy densities for nuclear shieldings. Compared to previously evaluated simpler local hybrids without a CF, appreciable improvements are found for proton shieldings. Furthermore, the recent LH20t functional is still competitive with the outstanding performance of the uncalibrated LH12ct-SsirSVWN and LH12ct-SsifSVWN LHs for heavier nuclei, suggesting that LH20t is possibly the most robust choice of any rung-four functional for computing the nuclear shieldings of main-group nuclei so far. Interestingly, the presence of a CF in the functional significantly reduces the number of artifacts introduced by the widely used Maximoff-Scuseria framework to treat the local kinetic energy τ. The latter occurs in so-called t-LMFs used in many of the present local hybrids. In any case, the use of Dobson's current-density functional framework is also recommended with more advanced calibrated τ-dependent local hybrid functionals.
Collapse
Affiliation(s)
- Caspar Jonas Schattenberg
- Theoretische Chemie/Quantenchemie, Institut für Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Theoretische Chemie/Quantenchemie, Institut für Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
15
|
Schattenberg CJ, Kaupp M. Effect of the Current Dependence of Tau-Dependent Exchange-Correlation Functionals on Nuclear Shielding Calculations. J Chem Theory Comput 2021; 17:1469-1479. [DOI: 10.1021/acs.jctc.0c01223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caspar Jonas Schattenberg
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
16
|
Kvaal S, Laestadius A, Tellgren E, Helgaker T. Lower Semicontinuity of the Universal Functional in Paramagnetic Current-Density Functional Theory. J Phys Chem Lett 2021; 12:1421-1425. [PMID: 33522817 PMCID: PMC7883387 DOI: 10.1021/acs.jpclett.0c03422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
A cornerstone of current-density functional theory (CDFT) in its paramagnetic formulation is proven. After a brief outline of the mathematical structure of CDFT, the lower semicontinuity and expectation-valuedness of the CDFT constrained-search functional is proven, meaning that there is always a minimizing density matrix in the CDFT constrained-search universal density functional. These results place the mathematical framework of CDFT on the same footing as that of standard DFT.
Collapse
|
17
|
Sethio D, Raggi G, Lindh R, Erdélyi M. Halogen Bond of Halonium Ions: Benchmarking DFT Methods for the Description of NMR Chemical Shifts. J Chem Theory Comput 2020; 16:7690-7701. [PMID: 33136388 PMCID: PMC7726912 DOI: 10.1021/acs.jctc.0c00860] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Because of their anisotropic electron distribution and electron deficiency, halonium ions are unusually strong halogen-bond donors that form strong and directional three-center, four-electron halogen bonds. These halogen bonds have received considerable attention owing to their applicability in supramolecular and synthetic chemistry and have been intensely studied using spectroscopic and crystallographic techniques over the past decade. Their computational treatment faces different challenges to those of conventional weak and neutral halogen bonds. Literature studies have used a variety of wave functions and DFT functionals for prediction of their geometries and NMR chemical shifts, however, without any systematic evaluation of the accuracy of these methods being available. In order to provide guidance for future studies, we present the assessment of the accuracy of 12 common DFT functionals along with the Hartree-Fock (HF) and the second-order Møller-Plesset perturbation theory (MP2) methods, selected from an initial set of 36 prescreened functionals, for the prediction of 1H, 13C, and 15N NMR chemical shifts of [N-X-N]+ halogen-bond complexes, where X = F, Cl, Br, and I. Using a benchmark set of 14 complexes, providing 170 high-quality experimental chemical shifts, we show that the choice of the DFT functional is more important than that of the basis set. The M06 functional in combination with the aug-cc-pVTZ basis set is demonstrated to provide the overall most accurate NMR chemical shifts, whereas LC-ωPBE, ωB97X-D, LC-TPSS, CAM-B3LYP, and B3LYP to show acceptable performance. Our results are expected to provide a guideline to facilitate future developments and applications of the [N-X-N]+ halogen bond.
Collapse
Affiliation(s)
- Daniel Sethio
- Department of Chemistry—BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Gerardo Raggi
- Department of Chemistry—BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry—BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Máté Erdélyi
- Department of Chemistry—BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| |
Collapse
|
18
|
Dittmer A, Stoychev GL, Maganas D, Auer AA, Neese F. Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2. J Chem Theory Comput 2020; 16:6950-6967. [PMID: 32966067 PMCID: PMC7659039 DOI: 10.1021/acs.jctc.0c00067] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In
this work, we explore the accuracy of post-Hartree–Fock
(HF) methods and double-hybrid density functional theory (DFT) for
the computation of solid-state NMR chemical shifts. We apply an embedded
cluster approach and investigate the convergence with cluster size
and embedding for a series of inorganic solids with long-range electrostatic
interactions. In a systematic study, we discuss the cluster design,
the embedding procedure, and basis set convergence using gauge-including
atomic orbital (GIAO) NMR calculations at the DFT and MP2 levels of
theory. We demonstrate that the accuracy obtained for the prediction
of NMR chemical shifts, which can be achieved for molecular systems,
can be carried over to solid systems. An appropriate embedded cluster
approach allows one to apply methods beyond standard DFT even for
systems for which long-range electrostatic effects are important. We find that an embedded
cluster should include at least one sphere of explicit neighbors around
the nuclei of interest, given that a sufficiently large point charge
and boundary effective potential embedding is applied. Using the pcSseg-3
basis set and GIAOs for the computation of nuclear shielding constants,
accuracies of 1.6 ppm for 7Li, 1.5 ppm for 23Na, and 5.1 ppm for 39K as well as 9.3 ppm for 19F, 6.5 ppm for 35Cl, 7.4 ppm for 79Br, and
7.5 ppm for 25Mg as well as 3.8 ppm for 67Zn
can be achieved with MP2. Comparing various DFT functionals with HF
and MP2, we report the superior quality of results for methods that
include post-HF correlation like MP2 and double-hybrid DFT.
Collapse
Affiliation(s)
- Anneke Dittmer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Georgi L Stoychev
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Prokopiou G, Autschbach J, Kronik L. Assessment of the Performance of Optimally Tuned Range‐Separated Hybrid Functionals for Nuclear Magnetic Shielding Calculations. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Georgia Prokopiou
- Department of Materials and InterfacesWeizmann Institute of ScienceRehovot 76100 Israel
| | - Jochen Autschbach
- Department of ChemistryState University of New York at BuffaloBuffalo NY 14260‐3000 USA
| | - Leeor Kronik
- Department of Materials and InterfacesWeizmann Institute of ScienceRehovot 76100 Israel
| |
Collapse
|
20
|
Schattenberg CJ, Reiter K, Weigend F, Kaupp M. An Efficient Coupled-Perturbed Kohn–Sham Implementation of NMR Chemical Shift Computations with Local Hybrid Functionals and Gauge-Including Atomic Orbitals. J Chem Theory Comput 2020; 16:931-943. [DOI: 10.1021/acs.jctc.9b00944] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caspar Jonas Schattenberg
- Technische Universität Berlin, Institut für Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Kevin Reiter
- Karlsruher Institut für Technologie (KIT), Institut für Nanotechnologie, Postfach 3640, D-76021 Karlsruhe, Germany
| | - Florian Weigend
- Karlsruher Institut für Technologie (KIT), Institut für Nanotechnologie, Postfach 3640, D-76021 Karlsruhe, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
21
|
Krivdin LB. Computational protocols for calculating 13C NMR chemical shifts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:103-156. [PMID: 31481156 DOI: 10.1016/j.pnmrs.2019.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
The most recent results dealing with the computation of 13C NMR chemical shifts in chemistry (small molecules, saturated, unsaturated and aromatic compounds, heterocycles, functional derivatives, coordination complexes, carbocations, and natural products) are reviewed, paying special attention to theoretical background and accuracy, the latter involving solvent effects, vibrational corrections, and relativistic effects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
22
|
Stoychev GL, Auer AA, Neese F. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory. J Chem Theory Comput 2018; 14:4756-4771. [DOI: 10.1021/acs.jctc.8b00624] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgi L. Stoychev
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Alexander A. Auer
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
23
|
Stoychev GL, Auer AA, Izsák R, Neese F. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. J Chem Theory Comput 2018; 14:619-637. [DOI: 10.1021/acs.jctc.7b01006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Georgi L. Stoychev
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A. Auer
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
24
|
Reiter K, Mack F, Weigend F. Calculation of Magnetic Shielding Constants with meta-GGA Functionals Employing the Multipole-Accelerated Resolution of the Identity: Implementation and Assessment of Accuracy and Efficiency. J Chem Theory Comput 2017; 14:191-197. [DOI: 10.1021/acs.jctc.7b01115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin Reiter
- Institut
für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fabian Mack
- Institut
für Physikalische Chemie, Abteilung für Theoretische
Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Institut
für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institut
für Physikalische Chemie, Abteilung für Theoretische
Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
25
|
Reimann S, Borgoo A, Tellgren EI, Teale AM, Helgaker T. Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection. J Chem Theory Comput 2017; 13:4089-4100. [PMID: 28768100 DOI: 10.1021/acs.jctc.7b00295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.
Collapse
Affiliation(s)
- Sarah Reimann
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo , P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Alex Borgoo
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo , P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Erik I Tellgren
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo , P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Andrew M Teale
- School of Chemistry, University of Nottingham, University Park , Nottingham NG7 2RD, U.K
| | - Trygve Helgaker
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo , P.O. Box 1033, Blindern, Oslo N-0315, Norway
| |
Collapse
|
26
|
Irons TJP, Zemen J, Teale AM. Efficient Calculation of Molecular Integrals over London Atomic Orbitals. J Chem Theory Comput 2017; 13:3636-3649. [DOI: 10.1021/acs.jctc.7b00540] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tom J. P. Irons
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Jan Zemen
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Andrew M. Teale
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
27
|
Furness JW, Ekström U, Helgaker T, Teale AM. Electron localisation function in current-density-functional theory. Mol Phys 2016. [DOI: 10.1080/00268976.2015.1133859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Ulf Ekström
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, Oslo, Norway
| | - Trygve Helgaker
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, Oslo, Norway
| | - Andrew M. Teale
- School of Chemistry, University of Nottingham, Nottingham, UK
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Furness JW, Verbeke J, Tellgren EI, Stopkowicz S, Ekström U, Helgaker T, Teale AM. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals. J Chem Theory Comput 2015; 11:4169-81. [DOI: 10.1021/acs.jctc.5b00535] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James W. Furness
- School
of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Joachim Verbeke
- School
of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Erik I. Tellgren
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315, Oslo, Norway
| | - Stella Stopkowicz
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315, Oslo, Norway
| | - Ulf Ekström
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315, Oslo, Norway
| | - Trygve Helgaker
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315, Oslo, Norway
| | - Andrew M. Teale
- School
of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|