1
|
Shmakov AS, Shurikov MK, Korchagin DV, Votkina DE, Postnikov PS, Akimov AV, Petunin PV, Tretyakov EV. The Ground State of Multispin Systems Based on Verdazyl and Nitrene Radicals: An EPR and Quantum-Chemical Study. J Phys Chem A 2025; 129:1808-1816. [PMID: 39739569 DOI: 10.1021/acs.jpca.4c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
In this study, low-temperature EPR spectroscopy and quantum-chemical techniques were employed to investigate multispin systems─1,5-diphenyl-3-(3-nitrenophenyl)-6-oxoverdazyl and 1,5-diphenyl-3-(4-nitrenophenyl)-6-oxoverdazyl─that contain a nitrene center at either a meta- or para-position, respectively. Ground states and magnetic zero-field splitting (ZFS) parameters of these multispin systems were determined by experimental and computational methods. The results indicated that the high-spin quartet state is a ground state, and the quartet-doublet energy gap is close to 10 kcal/mol for the para-position of the nitrene group, with ZFS parameters D = 0.292 cm-1 and E/D = 0.002 cm-1. In contrast, for the meta-position, the low-spin doublet state is favored with an energy gap of 1 kcal/mol. The observed difference in the ground states could be qualitatively explained by an analysis of the spin density distribution and by delocalization of the unpaired π-electron of the nitrene center. Overall, this study provides valuable insights into the electronic structures and magnetic parameters of such multispin systems.
Collapse
Affiliation(s)
- Alexandr S Shmakov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Academician Semenov Ave. 1, Chernogolovka 142432, Russian Federation
| | - Matvey K Shurikov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russian Federation
| | - Denis V Korchagin
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Academician Semenov Ave. 1, Chernogolovka 142432, Russian Federation
| | - Darya E Votkina
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russian Federation
| | - Aleksander V Akimov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Academician Semenov Ave. 1, Chernogolovka 142432, Russian Federation
| | - Pavel V Petunin
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russian Federation
| | - Evgeny V Tretyakov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Nath AR, Kumar M, Ali ME. Intramolecular Magnetic Exchange Interaction in Dichalcogenide Substituted Organic Diradical Dications. J Chem Theory Comput 2025. [PMID: 39904514 DOI: 10.1021/acs.jctc.4c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Organic diradical dications, due to reduced intermolecular interactions, exhibit a greater tendency to adopt high spin states in the solid phase compared to their neutral diradical counterparts. This characteristic makes them promising candidates for applications involving organic electronics. We present a theoretical study of a recently synthesized sulfur-based diradical dication, a unique system exhibiting a robust triplet ground state. Using a number of density functional theory (DFT)-based methods (e.g., standard broken-symmetry DFT, constrained DFT, spin-flip TDDFT) and wave function-based multireference CASSCF+NEVPT2 methods, we investigate its magnetic properties and explore the influence of chalcogen substitution on magnetic exchange coupling. An active space scanning method was adopted to overcome the difficulties in choosing the correct active space for multireference calculation. Our findings highlight the critical role of multireference methods in accurately capturing the magnetic behavior of highly π-conjugated systems. The study reveals a surprising variation in magnetic properties among sulfur, selenium, and tellurium-based diradical dications despite being elements of the same group. These results offer valuable insights into the design and tuning of magnetic properties in organic diradical dications.
Collapse
Affiliation(s)
- Abhishek R Nath
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Manish Kumar
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Santiago R, Carvajal MÀ, Poater J, Moreira IDPR, Bromley ST, Deumal M, Ribas-Ariño J. Rational design of organic diradicals with robust high-spin ground state based on antiaromatic linkers. Chem Sci 2024; 16:430-447. [PMID: 39629484 PMCID: PMC11609873 DOI: 10.1039/d4sc05225k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Fully-organic molecules with high-spin ground states are promising building blocks for new lightweight flexible magnetic materials for emerging technological applications (e.g. spintronics). In this study, we explore the potential of diradicals made of two diphenylmethyl-based open-shell cores covalently linked via different types of pentalene and diazapentalene-based antiaromatic couplers (including dibenzopentalenes and acene-inserted derivatives). Accurate electronic structure calculations have been employed to target non-bonding and non-disjoint frontier molecular orbitals that favor high-spin configurations, leading to the identification of diradicals displaying robust triplet ground states. These candidates exhibit singlet-triplet energy gaps that are up to ten times the thermal energy at room temperature. These substantial gaps emerge from strong interactions between the π-systems of the open-shell centers and the antiaromatic coupler. These interactions not only result in high spin states but are also found to lead to an enhanced stability of the diradicals by drastically dampening their inherent antiaromatic character as compared to the bare couplers, and promoting a high degree of spin density delocalization. These findings highlight the potential of pentalene-based diradicals as building blocks for developing new advanced fully organic magnetic materials.
Collapse
Affiliation(s)
- Raul Santiago
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona c/ Martí i Franquès 1-11 08028 Barcelona Spain
| | - M Àngels Carvajal
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona c/ Martí i Franquès 1-11 08028 Barcelona Spain
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona c/ Martí i Franquès 1-11 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Ibério de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona c/ Martí i Franquès 1-11 08028 Barcelona Spain
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona c/ Martí i Franquès 1-11 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Mercè Deumal
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona c/ Martí i Franquès 1-11 08028 Barcelona Spain
| | - Jordi Ribas-Ariño
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona c/ Martí i Franquès 1-11 08028 Barcelona Spain
| |
Collapse
|
4
|
Jiang Q, Wang L, Wei H, Peng Y, Xu G, Li Z, Liu P, Hu Z, Niu W, Chen Y, Tang H, Zeng W, Li G. A Kinetically Stabilized Dianthraceno[2,3-a:3',2'-h]-s-Indacene: Stable Kekulé Diradical Polycyclic Hydrocarbon with Triplet Ground State. Angew Chem Int Ed Engl 2024:e202422994. [PMID: 39665318 DOI: 10.1002/anie.202422994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
High-spin polycyclic hydrocarbons (PHs) hold significant potential in organic spintronics and organic magnets. However, their synthesis is very challenging due to their extremely high reactivity. Herein, we report the successful synthesis and isolation of a kinetically blocked derivative (1) of dianthraceno[2,3-a : 3',2'-h]-s-indacene, which represents a rare persistent triplet diradical of a Kekulé PH. Its triplet ground state was unambiguously confirmed by electron paramagnetic resonance and superconducting quantum interference device measurements. Its structure was also unequivocally confirmed through X-ray crystallographic analysis, and its electronic properties were systematically investigated by both experiments and theoretical calculations. The key design principle is to extend the π-conjugation for achieving the decrease of the bonding interaction and the increase of the exchange interaction between unpaired electrons, which are essential for accessing the stable triplet ground state. Due to kinetic blocking, 1 shows a reasonable stability with a half-life time of 64 h under ambient conditions. It has a narrow HOMO-LUMO energy gap and displays amphoteric redox behavior. Notably, its dication and dianion exhibit a closed-shell ground state and near-infrared absorption, and the structures were identified by X-ray crystallographic analysis. This study will shed new light on the design and synthesis of novel stable PHs with high-spin multiplicity.
Collapse
Affiliation(s)
- Qing Jiang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Lei Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Haipeng Wei
- PharmaBlock Zhejiang, Hangzhou Bay Shangyu Economic and Technological Development Area, 11 Weiqi Road, Shaoxing, Zhejiang, 312369, China
| | - Yuchen Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Guangyan Xu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Pengfei Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhenni Hu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Weiwei Niu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yifan Chen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Hui Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Wangdong Zeng
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guangwu Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, 16th Floor, Yantian Science & Technology Building, Haishan Street, Yantian District, Shenzhen, 518083, China
| |
Collapse
|
5
|
Vegliante A, Fernández S, Ortiz R, Vilas-Varela M, Baum TY, Friedrich N, Romero-Lara F, Aguirre A, Vaxevani K, Wang D, Garcia Fernandez C, van der Zant HSJ, Frederiksen T, Peña D, Pascual JI. Tuning the Spin Interaction in Nonplanar Organic Diradicals through Mechanical Manipulation. ACS NANO 2024; 18:26514-26521. [PMID: 39304184 PMCID: PMC11448760 DOI: 10.1021/acsnano.4c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Open-shell polycyclic aromatic hydrocarbons (PAHs) represent promising building blocks for carbon-based functional magnetic materials. Their magnetic properties stem from the presence of unpaired electrons localized in radical states of π character. Consequently, these materials are inclined to exhibit spin delocalization, form extended collective states, and respond to the flexibility of the molecular backbones. However, they are also highly reactive, requiring structural strategies to protect the radical states from reacting with the environment. Here, we demonstrate that the open-shell ground state of the diradical 2-OS survives on a Au(111) substrate as a global singlet formed by two unpaired electrons with antiparallel spins coupled through a conformational-dependent interaction. The 2-OS molecule is a "protected" derivative of the Chichibabin's diradical, featuring a nonplanar geometry that destabilizes the closed-shell quinoidal structure. Using scanning tunneling microscopy (STM), we localized the two interacting spins at the molecular edges, and detected an excited triplet state a few millielectronvolts above the singlet ground state. Mean-field Hubbard simulations reveal that the exchange coupling between the two spins strongly depends on the torsional angles between the different molecular moieties, suggesting the possibility of influencing the molecule's magnetic state through structural changes. This was demonstrated here using the STM tip to manipulate the molecular conformation, while simultaneously detecting changes in the spin excitation spectrum. Our work suggests the potential of these PAHs as all-carbon spin-crossover materials.
Collapse
Affiliation(s)
| | - Saleta Fernández
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela 15782 Santiago de Compostela, Spain
| | - Ricardo Ortiz
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Manuel Vilas-Varela
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela 15782 Santiago de Compostela, Spain
| | - Thomas Y. Baum
- Kavli
Institute of Nanoscience, Delft University
of Technology, 2628 Delft, The
Netherlands
| | | | | | - Andrea Aguirre
- Centro
de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 Donostia-San
Sebastián, Spain
| | | | - Dongfei Wang
- CIC
nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
| | | | | | - Thomas Frederiksen
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Diego Peña
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela 15782 Santiago de Compostela, Spain
| | - Jose Ignacio Pascual
- CIC
nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Mehla N, Mukhopadhyaya A, Ali S, Ali ME. Orchestration of ferro- and anti-ferromagnetic ordering in gold nanoclusters. NANOSCALE 2024; 16:13445-13456. [PMID: 38920340 DOI: 10.1039/d4nr00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The unpaired electron in the gold clusters (Aun, n = no. of Au atoms) with an odd number of total electrons is solely responsible for the magnetic properties in the small-sized Au nano-clusters. However, no such unpaired electron is available due to pairing in the even number of atom gold clusters and behaving as a diamagnetic entity similar to bulk gold. In this work, we unveiled the spin-density distribution of odd Aun clusters with n = 1 to 19 that reveals that a single unpaired electron gets distributed non-uniformly among all Au-atoms depending on the cluster size and morphology. The delocalization of the unpaired electron leads to the spin dilution approaching a value of ∼1/n spin moments on each atom for the higher clusters. Interestingly, small odd-numbered gold clusters possess spin-magnetic moments similar to the delocalized spin moments as of organic radicals. Can cooperative magnetic properties be obtained by coupling these individual magnetic gold nanoparticles? In this work, by applying state-of-the-art computational methodologies, we have demonstrated ferromagnetic or anti-ferromagnetic couplings between such magnetic nanoclusters upon designing suitable organic spacers. These findings will open up a new avenue of nanoscale magnetic materials combining organic spacers and odd-electron nano-clusters.
Collapse
Affiliation(s)
- Nisha Mehla
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Aritra Mukhopadhyaya
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Shahjad Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
7
|
Zayakin IA, Petunin PV, Postnikov PS, Dmitriev AA, Gritsan NP, Dorovatovskii P, Korlyukov A, Fedin MV, Bogomyakov AS, Akyeva AY, Novikov RA, Shangin PG, Syroeshkin MA, Burykina JV, Tretyakov EV. Toward New Horizons in Verdazyl-Nitroxide High-Spin Systems: Thermally Robust Tetraradical with Quintet Ground State. J Am Chem Soc 2024; 146:13666-13675. [PMID: 38709144 DOI: 10.1021/jacs.4c04391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but examples reported to date exhibit limited stability and processability. In this work, we designed the first tetraradical based on an oxoverdazyl core and nitronyl nitroxide radicals and successfully synthesized it using a palladium-catalyzed cross-coupling reaction of an oxoverdazyl radical bearing three iodo-phenylene moieties with a gold(I) nitronyl nitroxide-2-ide complex in the presence of a recently developed efficient catalytic system. The molecular and crystal structures of the tetraradical were confirmed by single crystal X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼125 °C in an inert atmosphere; in a toluene solution upon prolonged heating at 90 °C in air, no decomposition was observed. The resulting unique verdazyl-nitroxide conjugate was thoroughly studied using a range of experimental and theoretical techniques, such as SQUID magnetometry of polycrystalline powders, EPR spectroscopy in various matrices, cyclic voltammetry, and high-level quantum chemical calculations. All collected data confirm the high thermal stability of the resulting tetraradical and quintet multiplicity of its ground state, which makes the synthesis of this important paramagnet a new milestone in the field of creating high-spin systems.
Collapse
Affiliation(s)
- Igor A Zayakin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation
| | - Pavel V Petunin
- Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | | | - Alexey A Dmitriev
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3, Novosibirsk 630090, Russian Federation
| | - Nina P Gritsan
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3, Novosibirsk 630090, Russian Federation
| | | | - Alexander Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, 28 Vavilov Str., Moscow 119991, Russian Federation
| | - Matvey V Fedin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3a, Novosibirsk 630090, Russian Federation
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3a, Novosibirsk 630090, Russian Federation
| | - Anna Ya Akyeva
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation
| | - Roman A Novikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation
| | - Pavel G Shangin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation
| | - Mikhail A Syroeshkin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation
| | - Julia V Burykina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation
| | - Evgeny V Tretyakov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation
| |
Collapse
|
8
|
Bodzioch A, Obijalska E, Jakubowski R, Celeda M, Gardias A, Trzybiński D, Tokarz P, Szczytko J, Woźniak K, Kaszyński P. Electronic and Magnetic Interactions in 6-Oxoverdazyl Diradicals: Connection through N(1) vs C(3) Revisited. J Org Chem 2024; 89:6306-6321. [PMID: 38626755 PMCID: PMC11077500 DOI: 10.1021/acs.joc.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024]
Abstract
Four isomeric di-6-oxoverdazyl diradicals connected at their N(1) or C(3) positions with either 1,3- or 1,4-phenylene linkers were obtained and characterized by spectroscopic, electrochemical, magnetic, and structural methods. These results were compared to those for the corresponding 6-oxoverdazyl monoradicals. UV-vis spectroscopy demonstrated that only the N(1)-connected para-through-benzene diradical has a distinct spectrum with significant bathochromic and hypsochromic shifts relative to the remaining species. Electrochemical analysis revealed two one-electron reduction processes in all diradiacals, while only the N(1)-connected para-through-benzene diradical exhibits two one-electron oxidation processes separated by 0.10 V. Variable temperature EPR measurements in polystyrene solid solutions gave negative mean exchange interaction energies J for all diradicals, suggesting the dominance of conformers with significant intramolecular antiferromagnetic interactions for the meta-through-benzene isomers. DFT calculations predict a small preference for the triplet state with the ΔES-T of about 0.25 kcal mol-1 for both meta-through-benzene connected diradicals.
Collapse
Affiliation(s)
- Agnieszka Bodzioch
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
| | | | - Rafał Jakubowski
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
| | | | - Anita Gardias
- Institute
of Experimental Physics Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Damian Trzybiński
- Biological
and Chemical Research Centre, University
of Warsaw, 02-089 Warsaw, Poland
| | - Paweł Tokarz
- Faculty of
Chemistry, University of Łódź, 91-403 Łódź, Poland
| | - Jacek Szczytko
- Institute
of Experimental Physics Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Krzysztof Woźniak
- Biological
and Chemical Research Centre, University
of Warsaw, 02-089 Warsaw, Poland
| | - Piotr Kaszyński
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
- Faculty of
Chemistry, University of Łódź, 91-403 Łódź, Poland
- Department
of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
9
|
Guo H, Lovell JB, Shu C, Pink M, Morton M, Rajca S, Rajca A. Chiral π-Conjugated Double Helical Aminyl Diradical with the Triplet Ground State. J Am Chem Soc 2024; 146:9422-9433. [PMID: 38501228 DOI: 10.1021/jacs.4c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We report a neutral high-spin diradical of chiral C2-symmetric bis[5]diazahelicene with ΔEST ≈ 0.4 kcal mol-1, as determined by EPR spectroscopy/SQUID magnetometry. The diradical is the most persistent among all high-spin aminyl radicals reported to date by a factor of 20, with a half-life of up to 6 days in 2-MeTHF at room temperature. Its triplet ground state and excellent persistence may be associated with the unique spin density distribution within the dihydrophenazine moiety, which characterizes two effective 3-electron C-N bonds analogous to the N-O bond of a nitroxide radical. The enantiomerically enriched (ee ≥ 94%) (MM)- and (PP)-enantiomers of the precursors to the diradicals are obtained by either preparative chiral supercritical fluid chromatography or resolution via functionalization with the chiral auxiliary of the C2-symmetric racemic tetraamine. The barrier for the racemization of the solid tetraamine is ΔG‡ = 43 ± 0.01 kcal mol-1 in the 483-523 K range. The experimentally estimated lower limit of the barrier for the racemization of a diradical, ΔG‡ ≥ 26 kcal mol-1 in 2-MeTHF at 293 K, is comparable to the DFT-determined barrier of ΔG‡ = 31 kcal mol-1 in the gas phase at 298 K. While the enantiomerically pure tetraamine displays strong chiroptical properties, with anisotropy factor |g| = |Δε|/ε = 0.036 at 376 nm, |g| ≈ 0.005 at 548 nm of the high-spin diradical is comparable to that recently reported triplet ground-state diradical dication. Notably, the radical anion intermediate in the generation of diradical exhibits a large SOMO-HOMO inversion, SHI = 35 kcal mol-1.
Collapse
Affiliation(s)
- Haoxin Guo
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Joshua B Lovell
- Teledyne ISCO, 4700 Superior Street, Lincoln, Nebraska 68504-1328, United States
| | - Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Martha Morton
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
10
|
Tretyakov EV, Zayakin IA, Dmitriev AA, Fedin MV, Romanenko GV, Bogomyakov AS, Akyeva AY, Syroeshkin MA, Yoshioka N, Gritsan NP. A Nitronyl Nitroxide-Substituted Benzotriazinyl Tetraradical. Chemistry 2024; 30:e202303456. [PMID: 37988241 DOI: 10.1002/chem.202303456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but those synthesized to date possess limited stability and processability. In this work, we have designed a tetraradical based on the Blatter's radical and nitronyl nitroxide radical moieties and successfully synthesized it by using the palladium-catalyzed cross-coupling reaction of a triiodo-derivative of the 1,2,4-benzotriazinyl radical with gold(I) nitronyl nitroxide-2-ide complex in the presence of a newly developed efficient catalytic system. The molecular and crystal structure of the tetraradical was confirmed by X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼150 °C under an inert atmosphere and exhibits reversible redox waves at -0.54 and 0.45 V versus Ag/AgCl. The magnetic properties of the tetraradical were characterized by SQUID magnetometry of polycrystalline powders and EPR spectroscopy in various matrices. The collected data, analyzed by using high-level quantum chemical calculations, confirmed that the tetraradical has a triplet ground state and a nearby excited quintet state. The unique high stability of the prepared triazinyl-nitronylnitroxide tetraradical is a new milestone in the field of creating high-spin systems.
Collapse
Affiliation(s)
- Evgeny V Tretyakov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, 119991, Moscow, Russian Federation
| | - Igor A Zayakin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, 119991, Moscow, Russian Federation
| | - Alexey A Dmitriev
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3, 630090, Novosibirsk, Russian Federation
| | - Matvey V Fedin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russian Federation
| | - Galina V Romanenko
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russian Federation
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russian Federation
| | - Anna Ya Akyeva
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, 119991, Moscow, Russian Federation
| | - Mikhail A Syroeshkin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, 119991, Moscow, Russian Federation
| | - Naoki Yoshioka
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Kanagawa, Japan
| | - Nina P Gritsan
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3, 630090, Novosibirsk, Russian Federation
| |
Collapse
|
11
|
Tuo DH, Ao YF, Wang QQ, Wang DX. Chiral Benzene Triimide (BTI) Radical Anions for Probing the Interplay of Unpaired Electron Spin and Chirality. Chemistry 2024; 30:e202302954. [PMID: 37903731 DOI: 10.1002/chem.202302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Herein a series of chiral BTI radical anions bearing different chiral substituents were efficiently prepared by chemical reduction. X-ray crystallography revealed finely-tuned packing and helix assemblies of the radicals by the size of chiral substituents in crystalline state. In accordance with the crystalline-state packing, the powder ESR spectra indicate that 4 a- ⋅CoCp2 + and 4 c- ⋅CoCp2 + π-dimers exhibit thermally excited triplet states arising from strong spin-spin interactions, while discrete 4 b- ⋅CoCp2 + shows a broad doublet-state signal reflecting weak spin-spin interactions. The interplay between the unpaired electron spin and chiral substituents was studied by UV-Vis-NIR spectra, electronic circular dichroism (ECD) and TD DFT calculations. Different NIR absorptions of the radicals attributing to isolated SOMO→LUMO+1 (~889 nm) transitions were recorded. The emergence of Cotton effects (CEs) at the NIR region for 4 c- ⋅CoCp2 + radical enantiomers suggest the interplay between chirality and unpaired electron spin. The origin of the different circularly polarized light absorptions regarding SOMO derived transitions (around 880 nm) was attributed to chiral substitutes regulated electric and magnetic transition dipole moments of the unpaired electron participated transition.
Collapse
Affiliation(s)
- De-Hui Tuo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Hieulle J, Garcia Fernandez C, Friedrich N, Vegliante A, Sanz S, Sánchez-Portal D, Haley MM, Casado J, Frederiksen T, Pascual JI. From Solution to Surface: Persistence of the Diradical Character of a Diindenoanthracene Derivative on a Metallic Substrate. J Phys Chem Lett 2023; 14:11506-11512. [PMID: 38088859 DOI: 10.1021/acs.jpclett.3c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Organic diradicals are envisioned as elementary building blocks for designing a new generation of spintronic devices and have been used in constructing prototypical field effect transistors and nonlinear optical devices. Open-shell systems, however, are also reactive, thus requiring design strategies to "protect" their radical character from the environment, especially when they are embedded in solid-state devices. Here, we report the persistence on a metallic surface of the diradical character of a diindeno[b,i]anthracene (DIAn) core protected by bulky end-groups. Our scanning tunneling spectroscopy measurements on single-molecules detected singlet-triplet excitations that were absent for DIAn species packed in assembled structures. Density functional theory simulations unravel that the molecular geometry on the metal substrate can crucially modify the value of the singlet-triplet gap via the delocalization of the radical sites. The persistence of the diradical character over metallic substrates is a promising finding for integrating radical-based materials into functional devices.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Sanz
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Daniel Sánchez-Portal
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales MPC (CSIC/UPV-EHU), 20018 Donostia-San Sebastián, Spain
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 229071 Malaga, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - José Ignacio Pascual
- CIC nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
13
|
Pomikło D, Kaszyński P. Blatter Diradicals with a Spin Coupler at the N(1) Position. Chemistry 2023; 29:e202301069. [PMID: 37593967 DOI: 10.1002/chem.202301069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Abstract
Reactions of a benzo[e][1,2,4]triazine with dilithiobenzenes lead to di-Blatter diradicals connected at the N(1) positions via a spin coupling unit, 1,4-phenylene or 1,3-phenylene. Electrochemical analysis in MeCN revealed four one-electron redox processes separated by 0.1-0.3 V in both diradicals. Variable temperature EPR measurements in polystyrene (PS) solid solutions gave the singlet-triplet energy gaps ΔES-T =2 J of -3.02(11) and -0.16(1) kcal mol-1 for 1,4-phenylene and 1,3-phenylene derivatives, respectively. The latter negative value was attributed to conformational properties of the diradical in the PS solid solution. Results suggest a simple and efficient access to a family of stable Blatter diradicals with a controllable S-T gap through a judicious choice of the arylene coupling unit. DFT calculations indicate that the triplet state is stabilized by (het)arylenes with low LUMO.
Collapse
Affiliation(s)
- Dominika Pomikło
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Piotr Kaszyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
- Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN-37132, USA
| |
Collapse
|
14
|
Shu C, Yang Z, Rajca A. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem Rev 2023; 123:11954-12003. [PMID: 37831948 DOI: 10.1021/acs.chemrev.3c00406] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stable radicals and thermally robust high-spin di- and triradicals have emerged as important organic materials due to their promising applications in diverse fields. New fundamental properties, such as SOMO/HOMO inversion of orbital energies, are explored for the design of new stable radicals, including highly luminescent ones with good photostability. A relation with the singlet-triplet energy gap in the corresponding diradicals is proposed. Thermally robust high-spin di- and triradicals, with energy gaps that are comparable to or greater than a thermal energy at room temperature, are more challenging to synthesize but more rewarding. We summarize a number of high-spin di- and triradicals, based on nitronyl nitroxides that provide a relation between the experimental pairwise exchange coupling constant J/k in the high-spin species vs experimental hyperfine coupling constants in the corresponding monoradicals. This relation allows us to identify outliers, which may correspond to radicals where J/k is not measured with sufficient accuracy. Double helical high-spin diradicals, in which spin density is delocalized over the chiral π-system, have been barely explored, with the sole example of such high-spin diradical possessing alternant π-system with Kekulé resonance form. Finally, we discuss a high-spin diradical with electrical conductivity and derivatives of triangulene diradicals.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
15
|
Li L, Prindle CR, Shi W, Nuckolls C, Venkataraman L. Radical Single-Molecule Junctions. J Am Chem Soc 2023; 145:18182-18204. [PMID: 37555594 DOI: 10.1021/jacs.3c04487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Radicals are unique molecular systems for applications in electronic devices due to their open-shell electronic structures. Radicals can function as good electrical conductors and switches in molecular circuits while also holding great promise in the field of molecular spintronics. However, it is both challenging to create stable, persistent radicals and to understand their properties in molecular junctions. The goal of this Perspective is to address this dual challenge by providing design principles for the synthesis of stable radicals relevant to molecular junctions, as well as offering current insight into the electronic properties of radicals in single-molecule devices. By exploring both the chemical and physical properties of established radical systems, we will facilitate increased exploration and development of radical-based molecular systems.
Collapse
Affiliation(s)
- Liang Li
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Claudia R Prindle
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wanzhuo Shi
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Naskar S, Mujica V, Herrmann C. Chiral-Induced Spin Selectivity and Non-equilibrium Spin Accumulation in Molecules and Interfaces: A First-Principles Study. J Phys Chem Lett 2023; 14:694-701. [PMID: 36638217 DOI: 10.1021/acs.jpclett.2c03747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrons moving through chiral molecules are selected according to their spin orientation and the helicity of the molecule, an effect known as chiral-induced spin selectivity (CISS). The underlying physical mechanism is not yet completely understood. To help elucidate this mechanism, a non-equilibrium Green's function method, combined with a Landauer approach and density functional theory, is applied to carbon helices contacted by gold electrodes, resulting in spin polarization of transmitted electrons. Spin polarization is also observed in the non-equilibrium electronic structure of the junctions. While this spin polarization is small, its sign changes with the direction of the current and with the handedness of the molecule. While these calculations were performed with a pure exchange-correlation functional, previous studies suggest that computationally more expensive hybrid functionals may lead to considerably larger spin polarization in the electronic structure. Thus, non-equilibrium spin polarization could be a key component in understanding the CISS mechanism.
Collapse
Affiliation(s)
- Sumit Naskar
- Department of Chemistry, University of Hamburg, Harbor Building 610, Luruper Chaussee 149, 22761Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Vladimiro Mujica
- School of Molecular Sciences, Arizona State University, Tempe, Arizona85287, United States
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center, Manuel de Lardizabal Pasealekua 3, 20018Donostia, Euskadi, Spain
| | - Carmen Herrmann
- Department of Chemistry, University of Hamburg, Harbor Building 610, Luruper Chaussee 149, 22761Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761Hamburg, Germany
| |
Collapse
|
17
|
Biswas A, Mitra SP, Bhowmick R, Adak D, Chattopadhyaya M, Sen S. Spintronic Action of Cn-C6H6-Fe-C6H6-C13-n; n=6: how crucial are d electrons? J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Zhang H, Pink M, Wang Y, Rajca S, Rajca A. High-Spin S = 3/2 Ground-State Aminyl Triradicals: Toward High-Spin Oligo-Aza Nanographenes. J Am Chem Soc 2022; 144:19576-19591. [PMID: 36251959 PMCID: PMC10438970 DOI: 10.1021/jacs.2c09241] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report high-spin aminyl triradicals with near-planar triphenylene backbones. Near-planarity of the fused aminyl radicals and the 2,6,10-triphenylene ferromagnetic coupling unit (FCU), magnetically equivalent to three fused 3,4'-biphenyl FCUs, assures an effective 2pπ-2pπ overlap within the cross-conjugated π-system, leading to an S = 3/2 (quartet) ground state that is well separated from low-spin excited doublet states. Thermal populations of the low-spin (S = 1/2) excited states are detectable both by SQUID magnetometry and electron paramagnetic resonance (EPR) spectroscopy, providing doublet-quartet energy gaps, ΔEDQ, corresponding to >85% population of the quartet ground states at room temperature. Notably, EPR-based determination of ΔEDQ relies on direct detection of the quartet ground state and doublet excited states. The ΔEDQ values are 1.0-1.1 kcal mol-1, with the more sterically shielded triradical having the larger value. The half-life of the more sterically shielded triradical in 2-methyltetrahydrofuran (2-MeTHF) is about 6 h at room temperature. The less sterically shielded triradical in 2-MeTHF decomposes at 158 K with a half-life of about 4 h, while at 195 K, the half-life is still about 2 h. The dominant products of the decay of triradicals are the corresponding triamines, suggesting hydrogen atom abstraction from the solvent as the primary mechanism. This study expands the frontier of the open-shell PAHs/nanographenes, of which the unique electronic, nonlinear optical, and magnetic properties could be useful in the development of novel organic electronics, photonics, and spintronics.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States
| | - Ying Wang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| |
Collapse
|
19
|
Kasemthaveechok S, Abella L, Crassous J, Autschbach J, Favereau L. Organic radicals with inversion of SOMO and HOMO energies and potential applications in optoelectronics. Chem Sci 2022; 13:9833-9847. [PMID: 36128246 PMCID: PMC9430691 DOI: 10.1039/d2sc02480b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Organic radicals possessing an electronic configuration in which the energy of the singly occupied molecular orbital (SOMO) is below the highest doubly occupied molecular orbital (HOMO) level have recently attracted significant interest, both theoretically and experimentally. The peculiar orbital energetics of these SOMO-HOMO inversion (SHI) organic radicals set their electronic properties apart from the more common situation where the SOMO is the highest occupied orbital of the system. This review gives a general perspective on SHI, with key fundamental aspects regarding the electronic and structural factors that govern this particular electronic configuration in organic radicals. Selected examples of reported compounds with SHI are highlighted to establish molecular guidelines for designing this type of radical, and to showcase the potential of SHI radicals in organic spintronics as well as for the development of more stable luminescent radicals for OLED applications.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York Buffalo New York 14260 USA
| | | | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo New York 14260 USA
| | | |
Collapse
|
20
|
Role of d-orbital electrons in tuning multifunctional spintronic action in pi-stacked Cn-C6H6-Fe-C6H6-C13-n. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Li YF, Zhao P, Xu Z, Chen G. Effect of linkage mode on the spin-polarized transport of a TPV radical-based molecular device. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Kasemthaveechok S, Abella L, Jean M, Cordier M, Vanthuyne N, Guizouarn T, Cador O, Autschbach J, Crassous J, Favereau L. Carbazole Isomerism in Helical Radical Cations: Spin Delocalization and SOMO-HOMO Level Inversion in the Diradical State. J Am Chem Soc 2022; 144:7253-7263. [PMID: 35413200 DOI: 10.1021/jacs.2c00331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new molecular design to afford persistent chiral organic open-shell systems with configurational stability and an inversion in energy of the singly occupied molecular orbital (SOMO) and the highest doubly occupied molecular orbital (HOMO) for both mono- and diradical states. The unpaired electron delocalization within the designed extended helical π-conjugated systems is a crucial factor to reach chemical stabilities, which is not obtained using the classical steric protection approach. The unique features of the obtained helical monoradicals allow an exploration of the chiral intramolecular electron transfer (IET) process in solvents of different polarity by means of optical and chiroptical spectroscopies, resulting in an unprecedented electronic circular dichroism (ECD) sign inversion for the radical transitions. We also characterized the corresponding helical diradicals, which show near-infrared electronic circular dichroism at wavelengths up to 1100 nm and an antiferromagnetic coupling between the spins, with an estimated singlet-triplet gap (ΔEST) of about -1.2 kcal mol-1. The study also revealed an intriguing double SOMO-HOMO inversion (SHI) electronic configuration for these diradicals, providing new insight regarding the peculiar energetic ordering of radical orbitals and the impact on the corresponding (chiral) optoelectronic properties.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Marion Jean
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | | | - Olivier Cador
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | | | | |
Collapse
|
23
|
Tan Y, Hsu SN, Tahir H, Dou L, Savoie BM, Boudouris BW. Electronic and Spintronic Open-Shell Macromolecules, Quo Vadis? J Am Chem Soc 2022; 144:626-647. [PMID: 34982552 DOI: 10.1021/jacs.1c09815] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Open-shell macromolecules (i.e., polymers containing radical sites either along their backbones or at the pendant sites of repeat units) have attracted significant attention owing to their intriguing chemical and physical (e.g., redox, optoelectronic, and magnetic) properties, and they have been proposed and/or implemented in a wide range of potential applications (e.g., energy storage devices, electronic systems, and spintronic modules). These successes span multiple disciplines that range from advanced macromolecular chemistry through nanoscale structural characterization and on to next-generation solid-state physics and the associated devices. In turn, this has allowed different scientific communities to expand the palette of radical-containing polymers relatively quickly. However, critical gaps remain on many fronts, especially regarding the elucidation of key structure-property-function relationships that govern the underlying electrochemical, optoelectronic, and spin phenomena in these materials systems. Here, we highlight vital developments in the history of open-shell macromolecules to explain the current state of the art in the field. Moreover, we provide a critical review of the successes and bring forward open opportunities that, if solved, could propel this class of materials in a meaningful manner. Finally, we provide an outlook to address where it seems most likely that open-shell macromolecules will go in the coming years. Our considered view is that the future of radical-containing polymers is extremely bright and the addition of talented researchers with diverse skills to the field will allow these materials and their end-use devices to have a positive impact on the global science and technology enterprise in a relatively rapid manner.
Collapse
Affiliation(s)
- Ying Tan
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Sheng-Ning Hsu
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Hamas Tahir
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, United States
| | - Brett M Savoie
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Bryan W Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States.,Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Cui H, Hu ZB, Chen C, Ruan H, Fang Y, Zhang L, Zhao Y, Tan G, Song Y, Wang X. A high-spin diradical dianion and its bridged chemically switchable single-molecule magnet. Chem Sci 2021; 12:9998-10004. [PMID: 34377394 PMCID: PMC8317668 DOI: 10.1039/d1sc01932e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Triplet diradicals have attracted tremendous attention due to their promising application in organic spintronics, organic magnets and spin filters. However, very few examples of triplet diradicals with singlet–triplet energy gaps (ΔEST) over 0.59 kcal mol−1 (298 K) have been reported to date. In this work, we first proved that the dianion of 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone (2,7-tBu2-PTO) was a triplet ground state diradical in the magnesium complex 1 with a singlet–triplet energy gap ΔEST = 0.94 kcal mol−1 (473 K). This is a rare example of stable diradicals with singlet–triplet energy gaps exceeding the thermal energy at room temperature (298 K). Moreover, the iron analog 2 containing the 2,7-tBu2-PTO diradical dianion was isolated, which was the first single-molecule magnet bridged by a diradical dianion. When 2 was doubly reduced to the dianion salt 2K2, single-molecule magnetism was switched off, highlighting the importance of diradicals in single-molecule magnetism. We report a triplet diradical dianion in magnesium complex with ΔEST = 0.94 kcal mol−1 (473 K). Its iron analog is the first single-molecule magnet bridged by a diradical dianion, and the SMM property is switched off through two-electron reduction.![]()
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China .,Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing 210095 China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Li Zhang
- Center of Materials Science and Engineering, Guangxi University of Science and Technology Liuzhou 545006 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
25
|
Shu C, Pink M, Junghoefer T, Nadler E, Rajca S, Casu MB, Rajca A. Synthesis and Thin Films of Thermally Robust Quartet ( S = 3/2) Ground State Triradical. J Am Chem Soc 2021; 143:5508-5518. [PMID: 33787241 DOI: 10.1021/jacs.1c01305] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-spin (S = 3/2) organic triradicals may offer enhanced properties with respect to several emerging technologies, but those synthesized to date typically exhibit small doublet quartet energy gaps and/or possess limited thermal stability and processability. We report a quartet ground state triradical 3, synthesized by a Pd(0)-catalyzed radical-radical cross-coupling reaction, which possesses two doublet-quartet energy gaps, ΔEDQ ≈ 0.2-0.3 kcal mol-1 and ΔEDQ2 ≈ 1.2-1.8 kcal mol-1. The triradical has a 70+% population of the quartet ground state at room temperature and good thermal stability with onset of decomposition at >160 °C under an inert atmosphere. Magnetic properties of 3 are characterized by SQUID magnetometry in polystyrene glass and by quantitative EPR spectroscopy. Triradical 3 is evaporated under ultrahigh vacuum to form thin films of intact triradicals on silicon substrate, as confirmed by high-resolution X-ray photoelectron spectroscopy. AFM and SEM images of the ∼1 nm thick films indicate that the triradical molecules form islands on the substrate. The films are stable under ultrahigh vacuum for at least 17 h but show onset of decomposition after 4 h at ambient conditions. The drop-cast films are less prone to degradation in air and have a longer lifetime.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Elke Nadler
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Maria Benedetta Casu
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
26
|
Wang ZY, Dai YZ, Ding L, Dong BW, Jiang SD, Wang JY, Pei J. A Stable Triplet-Ground-State Conjugated Diradical Based on a Diindenopyrazine Skeleton. Angew Chem Int Ed Engl 2021; 60:4594-4598. [PMID: 33241615 DOI: 10.1002/anie.202012989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Indexed: 01/24/2023]
Abstract
High-spin conjugated radicals have great potential in magnetic materials and organic spintronics. However, to obtain high-spin conjugated radicals is still quite challenging due to their poor stability. We report the successful synthesis and isolation of a stable triplet conjugated diradical, 10,12-diaryldiindeno[1,2-b:2',1'-e]pyrazine (m-DIP). With the m-xylylene analogue skeleton containing electron-deficient sp2 -nitrogen atoms, m-DIP displays significant aromatic character within its pyrazine ring and its spin density mainly delocalizes on the meta-pyrazine unit, making it a triplet ground state conjugated diradical. Our work provides an effective "spin density tuning" strategy for stable high-spin conjugated radicals.
Collapse
Affiliation(s)
- Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ya-Zhong Dai
- Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Li Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bo-Wei Dong
- Beijing National Laboratory for Molecular Science (BNLMS), Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shang-Da Jiang
- Beijing National Laboratory for Molecular Science (BNLMS), Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
27
|
Wang Z, Dai Y, Ding L, Dong B, Jiang S, Wang J, Pei J. A Stable Triplet‐Ground‐State Conjugated Diradical Based on a Diindenopyrazine Skeleton. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zi‐Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ya‐Zhong Dai
- Beijing National Laboratory for Molecular Sciences (BNLMS) The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Li Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS) The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Bo‐Wei Dong
- Beijing National Laboratory for Molecular Science (BNLMS) Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Shang‐Da Jiang
- Beijing National Laboratory for Molecular Science (BNLMS) Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS) The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
28
|
Kasemthaveechok S, Abella L, Jean M, Cordier M, Roisnel T, Vanthuyne N, Guizouarn T, Cador O, Autschbach J, Crassous J, Favereau L. Axially and Helically Chiral Cationic Radical Bicarbazoles: SOMO-HOMO Level Inversion and Chirality Impact on the Stability of Mono- and Diradical Cations. J Am Chem Soc 2020; 142:20409-20418. [PMID: 33201694 DOI: 10.1021/jacs.0c08948] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report persistent chiral organic mono- and diradical cations based on bicarbazole molecular design with an unprecedented stability dependence on the type of chirality, namely, axial versus helical. An unusual chemical stability was observed for sterically unprotected axial bicarbazole radical in comparison with monocarbazole and helical bicarbazole ones. Such results were experimentally and theoretically investigated, revealing an inversion in energy of the singly occupied molecular orbital (SOMO) and the highest (doubly) occupied molecular orbital (HOMO) in both axial and helical bicarbazole monoradicals along with a subtle difference of electronic coupling between the two carbazole units, which is modulated by their relative dihedral angle and related to the type of chirality. Such findings allowed us to explore in depth the SOMO-HOMO inversion (SHI) in chiral radical molecular systems and provide new insights regarding its impact on the stability of organic radicals. Finally, these specific electronic properties allowed us to prepare a persistent, intrinsically chiral, diradical which notably displayed near-infrared electronic circular dichroism responses up to 1100 nm and almost degenerate singlet-triplet ground states with weak antiferromagnetic interactions evaluated by magnetometry experiments.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Marion Jean
- Aix Marseille University, CNRS Centrale Marseille, iSm2, Marseille 13284, France
| | - Marie Cordier
- Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Thierry Roisnel
- Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, Marseille 13284, France
| | | | - Olivier Cador
- Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Jeanne Crassous
- Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | | |
Collapse
|
29
|
Rausch R, Röhr MIS, Schmidt D, Krummenacher I, Braunschweig H, Würthner F. Tuning phenoxyl-substituted diketopyrrolopyrroles from quinoidal to biradical ground states through (hetero-)aromatic linkers. Chem Sci 2020; 12:793-802. [PMID: 34163813 PMCID: PMC8179021 DOI: 10.1039/d0sc05475e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Strongly fluorescent halochromic 2,6-di-tert-butyl-phenol-functionalised phenyl-, thienyl- and furyl-substituted diketopyrrolopyrrole (DPP) dyes were deprotonated and oxidised to give either phenylene-linked DPP1˙˙ biradical (y 0 = 0.75) with a singlet open shell ground state and a thermally populated triplet state (ΔE ST = 19 meV; 1.8 kJ mol-1; 0.43 kcal mol-1) or thienylene/furylene-linked DPP2q and DPP3q compounds with closed shell quinoidal ground states. Accordingly, we identified the aromaticity of the conjugated (hetero-)aromatic bridge to be key for modulating the electronic character of these biradicaloid compounds and achieved a spin crossover from closed shell quinones DPP2q and DPP3q to open shell biradical DPP1˙˙ as confirmed by optical and magnetic spectroscopic studies (UV/vis/NIR, NMR, EPR) as well as computational investigations (spin-flip TD-DFT calculations in combination with CASSCF(4,4) and harmonic oscillator model of aromaticity (HOMA) analysis). Spectroelectrochemical studies and comproportionation experiments further prove the reversible formation of mixed-valent radical anions for the DPP2q and DPP3q quinoidal compounds with absorption bands edging into the NIR spectral region.
Collapse
Affiliation(s)
- Rodger Rausch
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - David Schmidt
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Ivo Krummenacher
- Universität Würzburg, Institut für Anorganische Chemie, Institute for Sustainable Chemistry and Catalysis with Boron Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Universität Würzburg, Institut für Anorganische Chemie, Institute for Sustainable Chemistry and Catalysis with Boron Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
30
|
Votkina DE, Petunin PV, Zhivetyeva SI, Bagryanskaya IY, Uvarov MN, Kazantsev MS, Trusova ME, Tretyakov EV, Postnikov PS. Preparation of Multi-Spin Systems: A Case Study of Tolane-Bridged Verdazyl-Based Hetero-Diradicals. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Darya E. Votkina
- Research School of Chemistry & Applied Biomedical Sciences; Tomsk Polytechnic University; 30 Lenin Avenue 634050 Tomsk Russia
| | - Pavel V. Petunin
- Research School of Chemistry & Applied Biomedical Sciences; Tomsk Polytechnic University; 30 Lenin Avenue 634050 Tomsk Russia
- Siberian State Medical University; 2 Moskovskiy trakt 634050 Tomsk Russia
| | - Svetlana I. Zhivetyeva
- N. N. Vorozhtsov Institute of Organic Chemistry; Siberian Branch of Russian Academy of Sciences (SB RAS); 9 Ac. Lavrentiev Avenue 630090 Novosibirsk Russia
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Institute of Organic Chemistry; Siberian Branch of Russian Academy of Sciences (SB RAS); 9 Ac. Lavrentiev Avenue 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogova Str. 630090 Novosibirsk Russia
| | - Mikhail N. Uvarov
- Novosibirsk State University; 2 Pirogova Str. 630090 Novosibirsk Russia
- SB RAS; V.V. Voevodsky Institute of Chemical Kinetics and Combustion; 3 Institutskaya Str. 630090 Novosibirsk Russia
| | - Maxim S. Kazantsev
- N. N. Vorozhtsov Institute of Organic Chemistry; Siberian Branch of Russian Academy of Sciences (SB RAS); 9 Ac. Lavrentiev Avenue 630090 Novosibirsk Russia
| | - Marina E. Trusova
- Research School of Chemistry & Applied Biomedical Sciences; Tomsk Polytechnic University; 30 Lenin Avenue 634050 Tomsk Russia
| | - Evgeny V. Tretyakov
- N. N. Vorozhtsov Institute of Organic Chemistry; Siberian Branch of Russian Academy of Sciences (SB RAS); 9 Ac. Lavrentiev Avenue 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogova Str. 630090 Novosibirsk Russia
| | - Pavel S. Postnikov
- Research School of Chemistry & Applied Biomedical Sciences; Tomsk Polytechnic University; 30 Lenin Avenue 634050 Tomsk Russia
| |
Collapse
|
31
|
Herrmann C. Electronic Communication as a Transferable Property of Molecular Bridges? J Phys Chem A 2019; 123:10205-10223. [PMID: 31380640 DOI: 10.1021/acs.jpca.9b05618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electronic communication through molecular bridges is important for different types of experiments, such as single-molecule conductance, electron transfer, superexchange spin coupling, and intramolecular singlet fission. In many instances, the chemical structure of the bridge determines how the two parts it is connecting communicate, and does so in ways that are transferable between these different manifestations (for example, high conductance often correlates with strong antiferromagnetic spin coupling, and low conductance due to destructive quantum interference correlates with ferromagnetic coupling). Defining electronic communication as a transferable property of the bridge can help transfer knowledge between these different areas of research. Examples and limits of such transferability are discussed here, along with some possible directions for future research, such as employing spin-coupled and mixed-valence systems as structurally well-controlled proxies for understanding molecular conductance and for validating first-principles theoretical methodologies, building conceptual understanding for the growing experimental work on intramolecular singlet fission, and developing measures for the transferability of electronic communication as a bridge property.
Collapse
Affiliation(s)
- Carmen Herrmann
- Department of Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , Hamburg 20146 , Germany
| |
Collapse
|
32
|
Sadhukhan T, Beckett D, Thapa B, Raghavachari K. Coupling Constants, High Spin, and Broken Symmetry States of Organic Radicals: an Assessment of the Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2019; 15:5998-6009. [DOI: 10.1021/acs.jctc.9b00563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tumpa Sadhukhan
- Department of Chemistry, Indiana University, Bloomington, 47405 Indiana, United States
| | - Daniel Beckett
- Department of Chemistry, Indiana University, Bloomington, 47405 Indiana, United States
| | - Bishnu Thapa
- Department of Chemistry, Indiana University, Bloomington, 47405 Indiana, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, 47405 Indiana, United States
| |
Collapse
|
33
|
Shu C, Zhang H, Olankitwanit A, Rajca S, Rajca A. High-Spin Diradical Dication of Chiral π-Conjugated Double Helical Molecule. J Am Chem Soc 2019; 141:17287-17294. [PMID: 31596077 DOI: 10.1021/jacs.9b08711] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report an air-stable diradical dication of chiral D2-symmetric conjoined bis[5]diazahelicene with an unprecedented high-spin (triplet) ground state, singlet triplet energy gap, ΔEST = 0.3 kcal mol-1. The diradical dication possesses closed-shell (Kekulé) resonance forms with 16 π-electron perimeters. The diradical dication is monomeric in dibutyl phthalate (DBP) matrix at low temperatures, and it has a half-life of more than 2 weeks at ambient conditions in the presence of excess oxidant. A barrier of ∼35 kcal mol-1 has been experimentally determined for inversion of configuration in the neutral conjoined bis[5]diazahelicene, while the inversion barriers in its radical cation and diradical dication were predicted by the DFT computations to be within a few kcal mol-1 of that in the neutral species. Chiral HPLC resolution provides the chiral D2-symmetric conjoined bis[5]diazahelicene, enriched in (P,P)- or (M,M)-enantiomers. The enantiomerically enriched triplet diradical dication is configurationally stable for 48 h at room temperature, thus providing the lower limit for inversion barrier of configuration of 27 kcal mol-1. The enantiomers of conjoined bis[5]diazahelicene and its diradical dication show strong chirooptical properties that are comparable to [6]helicene or carbon-sulfur [7]helicene, as determined by the anisotropy factors, |g| = |Δε|/ε = 0.007 at 348 nm (neutral) and |g| = 0.005 at 385 nm (diradical dication). DFT computations of the radical cation suggest that SOMO and HOMO energy levels are near-degenerate.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Hui Zhang
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Arnon Olankitwanit
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Suchada Rajca
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Andrzej Rajca
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| |
Collapse
|
34
|
Souri M, Mohammadi K. Theoretical investigation of the defect position effect on the NLO properties of N and B doped graphenes. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Rausch R, Schmidt D, Bialas D, Krummenacher I, Braunschweig H, Würthner F. Stable Organic (Bi)Radicals by Delocalization of Spin Density into the Electron-Poor Chromophore Core of Isoindigo. Chemistry 2018; 24:3420-3424. [DOI: 10.1002/chem.201706002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Rodger Rausch
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry; Universität Würzburg; Theodor-Boveri-Weg 97074 Würzburg Germany
| | - David Schmidt
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry; Universität Würzburg; Theodor-Boveri-Weg 97074 Würzburg Germany
| | - David Bialas
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry; Universität Würzburg; Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry; Universität Würzburg; Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
36
|
Souri M, Kazemi T. Substitution effect in 2-spiropropane-1,3-diyl derivatives: A DFT and CASSCF study. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Barone V, Cacelli I, Ferretti A. The role of the multiconfigurational character of nitronyl-nitroxide in the singlet–triplet energy gap of its diradicals. Phys Chem Chem Phys 2018; 20:18547-18555. [DOI: 10.1039/c8cp02165a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CAS(2,2) reference may not be sufficient for the computation of singlet–triplet energy gap by DDCI.
Collapse
Affiliation(s)
| | - Ivo Cacelli
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- Pisa
- Italy
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR)
| | - Alessandro Ferretti
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR)
- Area della Ricerca
- I-56124 Pisa
- Italy
| |
Collapse
|
38
|
Barone V, Cacelli I, Ferretti A, Prampolini G. Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates. J Chem Phys 2017; 146:104103. [DOI: 10.1063/1.4977598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Palii A, Aldoshin S, Tsukerblat B, Clemente-Juan JM, Gaita-Ariño A, Coronado E. Electric field controllable magnetic coupling of localized spins mediated by itinerant electrons: a toy model. Phys Chem Chem Phys 2017; 19:26098-26106. [DOI: 10.1039/c7cp03872k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this paper, we propose a toy model to describe the magnetic coupling between the localized spins mediated by the itinerant electron in partially delocalized mixed-valence (MV) systems.
Collapse
Affiliation(s)
- Andrew Palii
- Institute of Problems of Chemical Physics
- Chernogolovka
- Russia
- Institute of Applied Physics
- Academy of Sciences of Moldova
| | - Sergey Aldoshin
- Institute of Problems of Chemical Physics
- Chernogolovka
- Russia
| | - Boris Tsukerblat
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer-Sheva 84105
- Israel
| | | | | | - Eugenio Coronado
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| |
Collapse
|
40
|
Ito A, Kurata R, Noma Y, Hirao Y, Tanaka K. Radical Cation of an Oligoarylamine Having a Nitroxide Radical Substituent: A Coexistent Molecular System of Localized and Delocalized Spins. J Org Chem 2016; 81:11416-11420. [PMID: 27802049 DOI: 10.1021/acs.joc.6b02037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A trimer derivative of oligotriarylamine bearing a nitroxide radical substituent as a localized spin center {N,N-bis[4-(di-4-anisylamino)phenyl]-N-[3-tert-butyl-5-(N-tert-butyl-N-oxylamino)phenyl]amine (1)} was characterized by electrochemical, spectroelectrochemical, and electron paramagnetic resonance spectroscopic measurements. The first and second oxidations of 1 occurred from the triamine moiety, leaving the nitroxide radical moiety intact. The delocalized polaronic state in the triamine moiety was generated by one-electron oxidation of 1, indicating the coexistence of localized and delocalized spins on 1+, where an intramolecular antiferromagnetic interaction was detected.
Collapse
Affiliation(s)
- Akihiro Ito
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryohei Kurata
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yusuke Noma
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasukazu Hirao
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuyoshi Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
41
|
Gallagher NM, Bauer JJ, Pink M, Rajca S, Rajca A. High-Spin Organic Diradical with Robust Stability. J Am Chem Soc 2016; 138:9377-80. [DOI: 10.1021/jacs.6b05080] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nolan M. Gallagher
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Jackson J. Bauer
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Maren Pink
- IUMSC,
Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Suchada Rajca
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
42
|
Close relation between quantum interference in molecular conductance and diradical existence. Proc Natl Acad Sci U S A 2016; 113:E413-9. [PMID: 26755578 DOI: 10.1073/pnas.1518206113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green's function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon.
Collapse
|