1
|
Song Q, Cheng Z, Kariuki M, Hall SCL, Hill SK, Rho JY, Perrier S. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chem Rev 2021; 121:13936-13995. [PMID: 33938738 PMCID: PMC8824434 DOI: 10.1021/acs.chemrev.0c01291] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/19/2023]
Abstract
This Review focuses on the establishment and development of self-assemblies governed by the supramolecular interactions between cyclic peptides. The Review first describes the type of cyclic peptides able to assemble into tubular structures to form supramolecular cyclic peptide nanotubes. A range of cyclic peptides have been identified to have such properties, including α-peptides, β-peptides, α,γ-peptides, and peptides based on δ- and ε-amino acids. The Review covers the design and functionalization of these cyclic peptides and expands to a recent advance in the design and application of these materials through their conjugation to polymer chains to generate cyclic peptide-polymer conjugates nanostructures. The Review, then, concentrates on the challenges in characterizing these systems and presents an overview of the various analytical and characterization techniques used to date. This overview concludes with a critical survey of the various applications of the nanomaterials obtained from supramolecular cyclic peptide nanotubes, with a focus on biological and medical applications, ranging from ion channels and membrane insertion to antibacterial materials, anticancer drug delivery, gene delivery, and antiviral applications.
Collapse
Affiliation(s)
- Qiao Song
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Zihe Cheng
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Maria Kariuki
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Sophie K. Hill
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Julia Y. Rho
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick Medical
School, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Blanco-González A, Calvelo M, Garrido PF, Amorín M, Granja JR, Piñeiro Á, Garcia-Fandino R. Transmembrane Self-Assembled Cyclic Peptide Nanotubes Based on α-Residues and Cyclic δ-Amino Acids: A Computational Study. Front Chem 2021; 9:704160. [PMID: 34386480 PMCID: PMC8353252 DOI: 10.3389/fchem.2021.704160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
Self-assembling cyclic peptide nanotubes have been shown to function as synthetic, integral transmembrane channels. The combination of natural and nonnatural aminoacids in the sequence of cyclic peptides enables the control not only of their outer surface but also of the inner cavity behavior and properties, affecting, for instance, their permeability to different molecules including water and ions. Here, a thorough computational study on a new class of self-assembling peptide motifs, in which δ-aminocycloalkanecarboxylic acids are alternated with natural α-amino acids, is presented. The presence of synthetic δ-residues creates hydrophobic regions in these α,δ-SCPNs, which makes them especially attractive for their potential implementation in the design of new drug or diagnostic agent carrier systems. Using molecular dynamics simulations, the behavior of water molecules, different ions (Li+, Na+, K+, Cs+, and Ca2+), and their correspondent counter Cl- anions is extensively investigated in the nanoconfined environment. The structure and dynamics are mutually combined in a diving immersion inside these transmembrane channels to discover a fascinating submarine nanoworld where star-shaped water channels guide the passage of cations and anions therethrough.
Collapse
Affiliation(s)
- Alexandre Blanco-González
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, Spain
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Martín Calvelo
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, Spain
| | - Pablo F. Garrido
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Amorín
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, Spain
| | - Juan R. Granja
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandino
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Calvelo M, Lynch CI, Granja JR, Sansom MSP, Garcia-Fandiño R. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. ACS NANO 2021; 15:7053-7064. [PMID: 33739081 PMCID: PMC8485350 DOI: 10.1021/acsnano.1c00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 05/23/2023]
Abstract
Self-assembling cyclic peptide nanotubes can form nanopores when they are inserted in lipid bilayers, acting as ion and/or water permeable channels. In order to improve the versatility of these systems, it is possible to specifically design cyclic peptides with a combination of natural and non-natural amino acids, enabling the control of the nature of the inner cavity of the channels. Here, the behavior of two types of self-assembling peptide motifs, alternating α-amino acids with γ- or δ-aminocycloalkanecarboxylic acids, is studied via molecular dynamics (MD) simulations. The behavior of water molecules in nanopores is expected to affect the properties of these channels and therefore merits detailed examination. A number of water models commonly used in MD simulations have been validated by how well they reproduce bulk water properties. However, it is less clear how these water models behave in the nanoconfined condition inside a channel. The behavior of four different water models-TIP3P, TIP4P, TIP4P/2005, and OPC-are evaluated in MD simulations of self-assembled cyclic peptide nanotubes of distinct composition and diameter. The dynamic behavior of the water molecules and ions in these designed artificial channels depends subtly on the water model used. TIP3P water molecules move faster than those of TIP4P, TIP4P/2005, and OPC. This demeanor is clearly observed in the filling of the nanotube, in water diffusion within the pore, and in the number and stability of hydrogen bonds of the peptides with water. It was also shown that the water model influences the simulated ion flux through the nanotubes, with TIP3P producing the greatest ion flux. Additionally, the two more recent models, TIP4P/2005 and OPC, which are known to reproduce the experimental self-diffusion coefficient of bulk water quite well, exhibit very similar results under the nanoconfined conditions studied here. Because none of these models have been parametrized specifically for waters confined in peptide nanotubes, this study provides a point of reference for further validation.
Collapse
Affiliation(s)
- Martin Calvelo
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Charlotte I. Lynch
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Juan R. Granja
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Rebeca Garcia-Fandiño
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
4
|
Lynch C, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020; 120:10298-10335. [PMID: 32841020 PMCID: PMC7517714 DOI: 10.1021/acs.chemrev.9b00830] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/18/2022]
Abstract
This Review explores the dynamic behavior of water within nanopores and biological channels in lipid bilayer membranes. We focus on molecular simulation studies, alongside selected structural and other experimental investigations. Structures of biological nanopores and channels are reviewed, emphasizing those high-resolution crystal structures, which reveal water molecules within the transmembrane pores, which can be used to aid the interpretation of simulation studies. Different levels of molecular simulations of water within nanopores are described, with a focus on molecular dynamics (MD). In particular, models of water for MD simulations are discussed in detail to provide an evaluation of their use in simulations of water in nanopores. Simulation studies of the behavior of water in idealized models of nanopores have revealed aspects of the organization and dynamics of nanoconfined water, including wetting/dewetting in narrow hydrophobic nanopores. A survey of simulation studies in a range of nonbiological nanopores is presented, including carbon nanotubes, synthetic nanopores, model peptide nanopores, track-etched nanopores in polymer membranes, and hydroxylated and functionalized nanoporous silica. These reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favor water flow whereas narrower hydrophobic pores may show dewetting. Simulation studies over the past decade of the behavior of water in a range of biological nanopores are described, including porins and β-barrel protein nanopores, aquaporins and related polar solute pores, and a number of different classes of ion channels. Water is shown to play a key role in proton transport in biological channels and in hydrophobic gating of ion channels. An overall picture emerges, whereby the behavior of water in a nanopore may be predicted as a function of its hydrophobicity and radius. This informs our understanding of the functions of diverse channel structures and will aid the design of novel nanopores. Thus, our current level of understanding allows for the design of a nanopore which promotes wetting over dewetting or vice versa. However, to design a novel nanopore, which enables fast, selective, and gated flow of water de novo would remain challenging, suggesting a need for further detailed simulations alongside experimental evaluation of more complex nanopore systems.
Collapse
Affiliation(s)
- Charlotte
I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
5
|
Calvelo M, Lamas A, Guerra A, Amorín M, Garcia-Fandino R, Granja JR. Parallel Versus Antiparallel β-Sheet Structure in Cyclic Peptide Hybrids Containing γ- or δ-Cyclic Amino Acids. Chemistry 2020; 26:5846-5858. [PMID: 31999874 DOI: 10.1002/chem.201905554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/07/2022]
Abstract
Cyclic peptides with disc-shaped structures have emerged as potent building blocks for the preparation of new biomaterials in fields ranging from biological to material science. In this work, we analyze in depth the self-assembling properties of a new type of cyclic peptides based on the alternation of α-residues and cyclic δ-amino acids (α,δ-CPs). To examine the preferred stacking properties adopted by cyclic peptides bearing this type of amino acids, we carried out a synergistic in vitro/in silico approximation by using simple dimeric models and then extended to nanotubes. Although these new cyclic peptides (α,δ-CPs) can interact either in a parallel or antiparallel fashion, our results confirm that although the parallel β-sheet is more stable, it can be switched to the antiparallel stacking by choosing residues that can establish favorable cross-strand interactions. Moreover, the subsequent comparison by using the same methodology but applied to α,γ-CPs models, up to the moment assumed as antiparallel-like d,l-α-CPs, led to unforeseen conclusions that put into question preliminary conjectures about these systems. Surprisingly, they tend to adopt a parallel β-sheet directed by the skeleton interactions. These results imply a change of paradigm with respect to cyclic peptide designs that should be considered for dimers and nanotubes.
Collapse
Affiliation(s)
- Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Lamas
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Arcadio Guerra
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandino
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Calvelo M, Granja JR, Garcia-Fandino R. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control. Phys Chem Chem Phys 2019; 21:20750-20756. [PMID: 31513191 DOI: 10.1039/c9cp02327e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
"Intelligent" materials based on synthetic small molecules that become functional only under specific conditions provide new opportunities for developing regulated systems aimed at a large number of applications. For instance, biologically active supramolecular entities that are sensitive to environmental conditions, such as the presence of bacterial membranes, are extremely interesting in biomedicine. In this work, we have designed and investigated, using molecular dynamics simulations, a doubly modulable nanotube formed by the self-assembly of cyclic peptides sensitive to both the presence of a lipid membrane and the pH of the aqueous media. The cyclic peptides were designed to self-assemble into peptide nanotubes in the presence of a lipid bilayer and at low pH values. Under these conditions, the residual side chains point outside the cyclic peptides, being exposed to the lipid bilayer, and the inner groups (carboxylic acids) are protonated, thus allowing the permeation of water and preventing that of ions. Higher pH values are expected to create carboxylate groups at the lumen of the peptides, leading to the disassembly of the nanotube, the attraction and translocation of ions towards the hydrophobic core of the bilayer, and eventually killing the target malignant cells. Our results suggest that by introducing a second switch in a membrane sensitive system, it is possible to modulate its interaction with the lipid bilayer. This opens the door to new strategies for the preparation of antimicrobial peptides that interact at the membrane level.
Collapse
Affiliation(s)
- Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Rebeca Garcia-Fandino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Garcia-Fandiño R, Piñeiro Á, Trick JL, Sansom MSP. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study. ACS NANO 2016; 10:3693-3701. [PMID: 26943498 DOI: 10.1021/acsnano.6b00202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A macromolecular nanopore inserted into a membrane may perturb the dynamic organization of the surrounding lipid bilayer. To better understand the nature of such perturbations, we have undertaken a systematic molecular dynamics simulation study of lipid bilayer structure and dynamics around three different classes of nanopore: a carbon nanotube, three related cyclic peptide nanotubes differing in the nature of their external surfaces, and a model of a β-barrel nanopore protein. Periodic spatial distributions of several lipid properties as a function of distance from the nanopore were observed. This was especially clear for the carbon nanotube system, for which the density of lipids, the bilayer thickness, the projection of lipid head-to-tail vectors onto the membrane plane, and lipid lateral diffusion coefficients exhibited undulatory behavior as a function of the distance from the surface of the channel. Overall, the differences in lipid behavior as a function of the nanopore structure reveal local adaptation of the bilayer structure and dynamics to different embedded nanopore structures. Both the local structure and dynamic behavior of lipids around membrane-embedded nanopores are sensitive to the geometry and nature of the outer surface of the macromolecule/molecular assembly forming the pore.
Collapse
Affiliation(s)
- Rebeca Garcia-Fandiño
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela , 15782 Santiago de Compostela, Spain
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ángel Piñeiro
- Soft Matter & Molecular Biophysics Group, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Jemma L Trick
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|