1
|
Ambattu LA, Del Rosal B, Conn CE, Yeo LY. High-frequency MHz-order vibration enables cell membrane remodeling and lipid microdomain manipulation. Biophys J 2025; 124:25-39. [PMID: 39415451 PMCID: PMC11739889 DOI: 10.1016/j.bpj.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
We elucidate the mechanism underpinning a recently discovered phenomenon in which cells respond to MHz-order mechanostimuli. Deformations induced along the plasma membrane under these external mechanical cues are observed to decrease the membrane tension, which, in turn, drives transient and reversible remodeling of its lipid structure. In particular, the increase and consequent coalescence of ordered lipid microdomains leads to closer proximity to mechanosensitive ion channels-Piezo1, in particular-that, due to crowding, results in their activation to mobilize influx of calcium (Ca2+) ions into the cell. It is the modulation of this second messenger that is responsible for the downstream signaling and cell fates that ensue. In addition, we show that such spatiotemporal control over the membrane microdomains in cells-without necessitating biochemical factors-facilitates aggregation and association of intrinsically disordered tau proteins in neuroblastoma cells, and their transformation to pathological conditions implicated in neurodegenerative diseases, thereby paving the way for the development of therapeutic intervention strategies.
Collapse
Affiliation(s)
- Lizebona A Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | | | | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Paez-Perez M, Dent MR, Brooks NJ, Kuimova MK. Viscosity-Sensitive Membrane Dyes as Tools To Estimate the Crystalline Structure of Lipid Bilayers. Anal Chem 2023; 95:12006-12014. [PMID: 37526607 PMCID: PMC10433245 DOI: 10.1021/acs.analchem.3c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Lipid membranes are crucial for cellular integrity and regulation, and tight control of their structural and mechanical properties is vital to ensure that they function properly. Fluorescent probes sensitive to the membrane's microenvironment are useful for investigating lipid membrane properties; however, there is currently a lack of quantitative correlation between the exact parameters of lipid organization and a readout from these dyes. Here, we investigate this relationship for "molecular rotors", or microviscosity sensors, by simultaneously measuring their fluorescence lifetime to determine the membrane viscosity, while using X-ray diffraction to determine the membrane's structural properties. Our results reveal a phase-dependent correlation between the membrane's structural parameters and mechanical properties measured by a BODIPY-based molecular rotor, giving excellent predictive power for the structural descriptors of the lipid bilayer. We also demonstrate that differences in membrane thickness between different lipid phases are not a prerequisite for the formation of lipid microdomains and that this requirement can be disrupted by the presence of line-active molecules. Our results underpin the use of membrane-sensitive dyes as reporters of the structure of lipid membranes.
Collapse
Affiliation(s)
- Miguel Paez-Perez
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| | - Michael R. Dent
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| | - Nicholas J. Brooks
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| | - Marina K. Kuimova
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
3
|
Knop JM, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, Fetahaj Z, Ostermeier L, Oliva R, Gault S, Cockell CS, Winter R. Life in Multi-Extreme Environments: Brines, Osmotic and Hydrostatic Pressure─A Physicochemical View. Chem Rev 2023; 123:73-104. [PMID: 36260784 DOI: 10.1021/acs.chemrev.2c00491] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Sanjib Mukherjee
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Simon Kriegler
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Magiliny Manisegaran
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Zamira Fetahaj
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Lena Ostermeier
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Rosario Oliva
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| |
Collapse
|
4
|
Oliva R, Winter R. Harnessing Pressure-Axis Experiments to Explore Volume Fluctuations, Conformational Substates, and Solvation of Biomolecular Systems. J Phys Chem Lett 2022; 13:12099-12115. [PMID: 36546666 DOI: 10.1021/acs.jpclett.2c03186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intrinsic thermodynamic fluctuations within biomolecules are crucial for their function, and flexibility is one of the strategies that evolution has developed to adapt to extreme environments. In this regard, pressure perturbation is an important tool for mechanistically exploring the causes and effects of volume fluctuations in biomolecules and biomolecular assemblies, their role in biomolecular interactions and reactions, and how they are affected by the solvent properties. High hydrostatic pressure is also a key parameter in the context of deep-sea and subsurface biology and the study of the origin and physical limits of life. We discuss the role of pressure-axis experiments in revealing intrinsic structural fluctuations as well as high-energy conformational substates of proteins and other biomolecular systems that are important for their function and provide some illustrative examples. We show that the structural and dynamic information obtained from such pressure-axis studies improves our understanding of biomolecular function, disease, biological evolution, and adaptation.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
| |
Collapse
|
5
|
Kriegler S, Herzog M, Oliva R, Gault S, Cockell CS, Winter R. Structural responses of model biomembranes to Mars-relevant salts. Phys Chem Chem Phys 2021; 23:14212-14223. [PMID: 34159996 DOI: 10.1039/d1cp02092g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lipid membranes are a key component of contemporary living systems and are thought to have been essential to the origin of life. Most research on membranes has focused on situations restricted to ambient physiological or benchtop conditions. However, the influence of more extreme conditions, such as the deep subsurface on Earth or extraterrestrial environments are less well understood. The deep subsurface environments of Mars, for instance, may harbor high concentrations of chaotropic salts in brines, yet we know little about how these conditions would influence the habitability of such environments for cellular life. Here, we investigated the combined effects of high concentrations of salts, including sodium and magnesium perchlorate and sulfate, and high hydrostatic pressure on the stability and structure of model biomembranes of varying complexity. To this end, a variety of biophysical techniques have been applied, which include calorimetry, fluorescence spectroscopies, small-angle X-ray scattering, dynamic light scattering, and microscopy techniques. We show that the structure and phase behavior of lipid membranes is sensitively dictated by the nature of the salt, in particular its anion and its concentration. We demonstrate that, with the exception of magnesium perchlorate, which can also induce cubic lipid arrangements, long-chain saturated lipid bilayer structures can still persist at high salt concentrations across a range of pressures. The lateral organization of complex heterogeneous raft-like membranes is affected by all salts. For simple, in particular bacterial membrane-type bilayer systems with unsaturated chains, vesicular structures are still stable at Martian brine conditions, also up to the kbar pressure range, demonstrating the potential compatibility of environments containing such ionic and pressure extremes to lipid-encapsulated life.
Collapse
Affiliation(s)
- Simon Kriegler
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| | - Marius Herzog
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| | - Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, Scotland
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, Scotland
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| |
Collapse
|
6
|
Smith AJ, Alcock SG, Davidson LS, Emmins JH, Hiller Bardsley JC, Holloway P, Malfois M, Marshall AR, Pizzey CL, Rogers SE, Shebanova O, Snow T, Sutter JP, Williams EP, Terrill NJ. I22: SAXS/WAXS beamline at Diamond Light Source - an overview of 10 years operation. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:939-947. [PMID: 33950002 PMCID: PMC8127364 DOI: 10.1107/s1600577521002113] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/23/2021] [Indexed: 05/04/2023]
Abstract
Beamline I22 at Diamond Light Source is dedicated to the study of soft-matter systems from both biological and materials science. The beamline can operate in the range 3.7 keV to 22 keV for transmission SAXS and 14 keV to 20 keV for microfocus SAXS with beam sizes of 240 µm × 60 µm [full width half-maximum (FWHM) horizontal (H) × vertical (V)] at the sample for the main beamline, and approximately 10 µm × 10 µm for the dedicated microfocusing platform. There is a versatile sample platform for accommodating a range of facilities and user-developed sample environments. The high brilliance of the insertion device source on I22 allows structural investigation of materials under extreme environments (for example, fluid flow at high pressures and temperatures). I22 provides reliable access to millisecond data acquisition timescales, essential to understanding kinetic processes such as protein folding or structural evolution in polymers and colloids.
Collapse
Affiliation(s)
- A. J. Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. G. Alcock
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - L. S. Davidson
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. H. Emmins
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. C. Hiller Bardsley
- King’s College London, Guy’s Campus, Great Maze Pond, London SE1 1UL, United Kingdom
| | - P. Holloway
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M. Malfois
- ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - A. R. Marshall
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - C. L. Pizzey
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. E. Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - O. Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - T. Snow
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. P. Sutter
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - E. P. Williams
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - N. J. Terrill
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
7
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
8
|
Páez-Pérez M, López-Duarte I, Vyšniauskas A, Brooks NJ, Kuimova MK. Imaging non-classical mechanical responses of lipid membranes using molecular rotors. Chem Sci 2020; 12:2604-2613. [PMID: 34164028 PMCID: PMC8179291 DOI: 10.1039/d0sc05874b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid packing in cellular membranes has a direct effect on membrane tension and microviscosity, and plays a central role in cellular adaptation, homeostasis and disease. According to conventional mechanical descriptions, viscosity and tension are directly interconnected, with increased tension leading to decreased membrane microviscosity. However, the intricate molecular interactions that combine to build the structure and function of a cell membrane suggest a more complex relationship between these parameters. In this work, a viscosity-sensitive fluorophore ('molecular rotor') is used to map changes in microviscosity in model membranes under conditions of osmotic stress. Our results suggest that the relationship between membrane tension and microviscosity is strongly influenced by the bilayer's lipid composition. In particular, we show that the effects of increasing tension are minimised for membranes that exhibit liquid disordered (Ld) - liquid ordered (Lo) phase coexistence; while, surprisingly, membranes in pure gel and Lo phases exhibit a negative compressibility behaviour, i.e. they soften upon compression.
Collapse
Affiliation(s)
- Miguel Páez-Pérez
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| | - Ismael López-Duarte
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
- Departamento de Química Orgánica, Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Aurimas Vyšniauskas
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
- Center of Physical Sciences and Technology Saulėtekio av. 3 Vilnius Lithuania
| | - Nicholas J Brooks
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| | - Marina K Kuimova
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| |
Collapse
|
9
|
Yamaguchi T, Ishimatu T. Effects of Cholesterol on Membrane Stability of Human Erythrocytes. Biol Pharm Bull 2020; 43:1604-1608. [PMID: 32999171 DOI: 10.1248/bpb.b20-00435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human erythrocytes contain abundant cholesterol as membrane lipids. Cholesterol contributes to the stability and function of the membrane. Membrane stability of the erythrocyte has been mainly examined under hypotonic conditions, but not under high hydrostatic pressure. So, the effect of cholesterol on the membrane stability of human erythrocyte was examined under a pressure of 200 MPa. As with hypotonic hemolysis, the pressure-induced hemolysis was enhanced by depletion of cholesterol from the intact erythrocyte membrane, whereas suppressed by cholesterol loading to the intact one. Enhancement of such hemolysis was associated with the suppression of fragmentation, whereas the hemolysis was suppressed by the facilitation of vesiculation. Cholesterol induced the tight linkage of the lipid bilayer with cytoskeleton. Taken together, these results suggest that the erythrocyte membrane stability is affected by such tight linkage by cholesterol.
Collapse
Affiliation(s)
- Takeo Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University
| | | |
Collapse
|
10
|
Abstract
Many critical biological events, including biochemical signaling, membrane traffic, and cell motility, originate at membrane surfaces. Each such event requires that members of a specific group of proteins and lipids rapidly assemble together at a specific site on the membrane surface. Understanding the biophysical mechanisms that stabilize these assemblies is critical to decoding and controlling cellular functions. In this article, we review progress toward a quantitative biophysical understanding of the mechanisms that drive membrane heterogeneity and organization. We begin from a physical perspective, reviewing the fundamental principles and key experimental evidence behind each proposed mechanism. We then shift to a biological perspective, presenting key examples of the role of heterogeneity in biology and asking which physical mechanisms may be responsible. We close with an applied perspective, noting that membrane heterogeneity provides a novel therapeutic target that is being exploited by a growing number of studies at the interface of biology, physics, and engineering.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Vernita D Gordon
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
11
|
Petrov AM, Mast N, Li Y, Denker J, Pikuleva IA. Brain sterol flux mediated by cytochrome P450 46A1 affects membrane properties and membrane-dependent processes. Brain Commun 2020; 2. [PMID: 32661514 PMCID: PMC7357967 DOI: 10.1093/braincomms/fcaa043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 46A1 encoded by CYP46A1 catalyzes cholesterol 24-hydroxylation and is a CNS-specific enzyme that controls cholesterol removal and turnover in the brain. Accumulating data suggest that increases in cytochrome P450 46A1 activity in mouse models of common neurodegenerative diseases affect various, apparently unlinked biological processes and pathways. Yet, the underlying reason for these multiple enzyme activity effects is currently unknown. Herein, we tested the hypothesis that cytochrome P450 46A1-mediated sterol flux alters physico-chemical properties of the plasma membranes and thereby membrane-dependent events. We used 9-month old 5XFAD mice (an Alzheimer's disease model) treated for 6 months with the anti-HIV drug efavirenz. These animals have previously been shown to have improved behavioral performance, increased cytochrome P450 46A1 activity in the brain, and increased sterol flux through the plasma membranes. We further examined 9-month old Cyp46a1 -/- mice, which have previously been observed to have cognitive deficits and decreased sterol flux through brain membranes. Synaptosomal fractions from the brain of efavirenz-treated 5XFAD mice had essentially unchanged cholesterol levels as compared to control 5XFAD mice. However with efavirenz treatment in these mice, there were changes in the membrane properties (increased cholesterol accessibility, ordering, osmotic resistance, and thickness) as well as total glutamate content and ability to release glutamate in response to mild stimulation. Similarly, the cholesterol content in synaptosomal fractions from the brain of Cyp46a1 -/- mice was essentially the same as in wild type mice but knockout of Cyp46a1 was associated with changes in membrane properties and glutamate content and its exocytotic release. Changes in Cyp46a1 -/- mice were in the opposite direction to those observed in efavirenz-treated vs control 5XFAD mice. Incubation of synaptosomal fractions with the inhibitors of glycogen synthase kinase 3, cyclin-dependent kinase 5, protein phosphatase 1/2A or calcineurin, and protein phosphatase 2B revealed that increased sterol flux in efavirenz-treated vs control 5XFAD mice affected the ability of all four enzymes to modulate glutamate release. In contrast, in Cyp46a1 -/- vs wild type mice, decreased sterol flux altered the ability of only cyclin-dependent kinase 5 and protein phosphatase 2B to regulate the glutamate release. Collectively, our results support cytochrome P450 46A1-mediated sterol flux as an important contributor to the fundamental properties of the membranes, protein phosphorylation, and synaptic transmission Also, our data provide an explanation of how one enzyme, cytochrome P450 46A1, can affect multiple pathways and processes and serve as a common potential target for several neurodegenerative disorders.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Young Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - John Denker
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
12
|
Fox LJ, Matthews L, Stockdale H, Pichai S, Snow T, Richardson RM, Briscoe WH. Structural changes in lipid mesophases due to intercalation of dendritic polymer nanoparticles: Swollen lamellae, suppressed curvature, and augmented structural disorder. Acta Biomater 2020; 104:198-209. [PMID: 31904557 DOI: 10.1016/j.actbio.2019.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
Understanding interactions between nanoparticles and model membranes is relevant to functional nano-composites and the fundamentals of nanotoxicity. In this study, the effect of polyamidoamine (PAMAM) dendrimers as model nanoparticles (NP) on the mesophase behaviour of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) has been investigated using high-pressure small-angle X-ray scattering (HP-SAXS). The pressure-temperature (p-T) diagrams for POPE mesophases in excess water were obtained in the absence and presence of G2 and G4 polyamidoamine (PAMAM) dendrimers (29 Å and 45 Å in diameter, respectively) at varying NP-lipid number ratio (ν = 0.0002-0.02) over the pressure range p = 1-3000 bar and temperature range T = 20-80 °C. The p-T phase diagram of POPE exhibited the Lβ, Lα and HII phases. Complete analysis of the phase diagrams, including the relative area pervaded by different phases, phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), the pressure-dependence of d-spacing (Δd/Δp), and the structural ordering in the mesophase as gauged by the Scherrer coherence length (L) permitted insights into the size- and concentration-dependent interactions between the dendrimers and the model membrane system. The addition of dendrimers changed the phase transition pressure and temperature and resulted in the emergence of highly swollen lamellar phases, dubbed Lβ-den and Lα-den. G4 PAMAM dendrimers at the highest concentration ν = 0.02 suppressed the formation of the HII phase within the temperature range studied, whereas the addition of G2 PAMAM dendrimers at the same concentration promoted an extended mixed lamellar region in which Lα and Lβ phases coexisted. STATEMENT OF SIGNIFICANCE: Using high pressure small angle X-ray scattering in the pressure range 1-3000 bar and temperature range 20-60 °C, we have studied interactions between PAMAM dendrimers (as model nanoparticles) and POPE lipid mesophases (as model membranes). We report the pressure-temperature phase diagrams for the dendrimer-lipid mesophases for the first time. We find that the dendrimers alter the phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), and the structural order in the mesophase. We interpret these unprecedented results in terms of the fluidity of the lipid membranes and the interactions between the dendrimers and the membranes. Our findings are of fundamental relevance to the field of nanotoxicity and functional nanomaterials that integrate nanoparticles and organized lipid structures.
Collapse
|
13
|
Lehofer B, Golub M, Kornmueller K, Kriechbaum M, Martinez N, Nagy G, Kohlbrecher J, Amenitsch H, Peters J, Prassl R. High Hydrostatic Pressure Induces a Lipid Phase Transition and Molecular Rearrangements in Low-Density Lipoprotein Nanoparticles. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2018; 35:1800149. [PMID: 30283212 PMCID: PMC6166783 DOI: 10.1002/ppsc.201800149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Low-density lipoproteins (LDL) are natural lipid transporter in human plasma whose chemically modified forms contribute to the progression of atherosclerosis and cardiovascular diseases accounting for a vast majority of deaths in westernized civilizations. For the development of new treatment strategies, it is important to have a detailed picture of LDL nanoparticles on a molecular basis. Through the combination of X-ray and neutron small-angle scattering (SAS) techniques with high hydrostatic pressure (HHP) this study describes structural features of normolipidemic, triglyceride-rich and oxidized forms of LDL. Due to the different scattering contrasts for X-rays and neutrons, information on the effects of HHP on the internal structure determined by lipid rearrangements and changes in particle shape becomes accessible. Independent pressure and temperature variations provoke a phase transition in the lipid core domain. With increasing pressure an inter-related anisotropic deformation and flattening of the particle are induced. All LDL nanoparticles maintain their structural integrity even at 3000 bar and show a reversible response toward pressure variations. The present work depicts the complementarity of pressure and temperature as independent thermodynamic parameters and introduces HHP as a tool to study molecular assembling and interaction processes in distinct lipoprotein particles in a nondestructive manner.
Collapse
Affiliation(s)
- Bernhard Lehofer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Maksym Golub
- Institut Laue-Langevin, 71 avenue des Martyrs, 38044 Grenoble, France; Univ. Grenoble Alpes, CNRS + CEA, IBS, 38000 Grenoble, France
| | - Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Nicolas Martinez
- Institut Laue-Langevin, 71 avenue des Martyrs, 38044 Grenoble, France; Univ. Grenoble Alpes, CNRS + CEA, IBS, 38000 Grenoble, France
| | - Gergely Nagy
- Paul Scherrer Institut, 5232 Villigen, Switzerland; Wigner Research Centre for Physics, 1121 Budapest, Hungary; European Spallation Source ERIC, 22363 Lund, Sweden
| | | | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Judith Peters
- Institut Laue-Langevin, 71 avenue des Martyrs, 38044 Grenoble, France; Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| |
Collapse
|
14
|
Brooker HR, Gyamfi IA, Wieckowska A, Brooks NJ, Mulvihill DP, Geeves MA. A novel live-cell imaging system reveals a reversible hydrostatic pressure impact on cell-cycle progression. J Cell Sci 2018; 131:jcs.212167. [PMID: 29930079 PMCID: PMC6104828 DOI: 10.1242/jcs.212167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Life is dependent upon the ability of a cell to rapidly respond to changes in the environment. Small perturbations in local environments change the ability of molecules to interact and, hence, communicate. Hydrostatic pressure provides a rapid non-invasive, fully reversible method for modulating affinities between molecules both in vivo and in vitro. We have developed a simple fluorescence imaging chamber that allows intracellular protein dynamics and molecular events to be followed at pressures <200 bar in living cells. By using yeast, we investigated the impact of hydrostatic pressure upon cell growth and cell-cycle progression. While 100 bar has no effect upon viability, it induces a delay in chromosome segregation, resulting in the accumulation of long undivided cells that are also bent, consistent with disruption of the cytoskeletons. This delay is independent of stress signalling and induces synchronisation of cell-cycle progression. Equivalent effects were observed in Candida albicans, with pressure inducing a reversible cell-cycle delay and hyphal growth. We present a simple novel non-invasive fluorescence microscopy-based approach to transiently impact molecular dynamics in order to visualise, dissect and study signalling pathways and cellular processes in living cells. Summary: Development of a simple fluorescence imaging chamber allowing observation of intracellular protein dynamics and molecular events in living cells at pressure up to 200 bar.
Collapse
Affiliation(s)
- Holly R Brooker
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Irene A Gyamfi
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | | | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
15
|
Schmid F. Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:509-528. [PMID: 27823927 DOI: 10.1016/j.bbamem.2016.10.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022]
Abstract
This article summarizes a variety of physical mechanisms proposed in the literature, which can generate micro- and nanodomains in multicomponent lipid bilayers and biomembranes. It mainly focusses on lipid-driven mechanisms that do not involve direct protein-protein interactions. Specifically, it considers (i) equilibrium mechanisms based on lipid-lipid phase separation such as critical cluster formation close to critical points, and multiple domain formation in curved geometries, (ii) equilibrium mechanisms that stabilize two-dimensional microemulsions, such as the effect of linactants and the effect of curvature-composition coupling in bilayers and monolayers, and (iii) non-equilibrium mechanisms induced by the interaction of a biomembrane with the cellular environment, such as membrane recycling and the pinning effects of the cytoplasm. Theoretical predictions are discussed together with simulations and experiments. The presentation is guided by the theory of phase transitions and critical phenomena, and the appendix summarizes the mathematical background in a concise way within the framework of the Ginzburg-Landau theory. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Friederike Schmid
- Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany
| |
Collapse
|