• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4600962)   Today's Articles (2189)   Subscriber (49361)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Cornwell Z, Enders JJ, Harrison AW, Murray C. Temperature-Dependent Kinetics of the Reactions of the Criegee Intermediate CH2OO with Hydroxyketones. J Phys Chem A 2024;128:1880-1891. [PMID: 38428028 PMCID: PMC10945482 DOI: 10.1021/acs.jpca.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
2
Nikoobakht B. UV Absorption Spectroscopy of the Conformer-Dependent Reactivity of the Four Carbon Criegee Intermediate of Methyl Vinyl Ketone Oxide: An Ab initio Quantum Dynamics Study. J Phys Chem A 2023;127:10091-10103. [PMID: 38012831 DOI: 10.1021/acs.jpca.3c05323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
3
Poirier CA, Guidry LM, Ratliff JM, Esposito VJ, Marchetti B, Karsili TNV. Modeling the Ground- and Excited-State Unimolecular Decay of the Simplest Fluorinated Criegee Intermediate, HFCOO, Formed from the Ozonolysis of Hydrofluoroolefin Refrigerants. J Phys Chem A 2023;127:6377-6384. [PMID: 37523496 DOI: 10.1021/acs.jpca.3c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
4
Wang G, Liu T, Zou M, Karsili TNV, Lester MI. UV photodissociation dynamics of the acetone oxide Criegee intermediate: experiment and theory. Phys Chem Chem Phys 2023;25:7453-7465. [PMID: 36848133 DOI: 10.1039/d3cp00207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
5
Karsili TNV, Marchetti B, Lester MI, Ashfold MNR. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochem Photobiol 2023;99:4-18. [PMID: 35713380 DOI: 10.1111/php.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023]
6
Antwi E, Ratliff JM, Ashfold MNR, Karsili TNV. Comparing the Excited State Dynamics of CH2OO, the Simplest Criegee Intermediate, Following Vertical versus Adiabatic Excitation. J Phys Chem A 2022;126:6236-6243. [PMID: 36067494 DOI: 10.1021/acs.jpca.2c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Takahashi K. Wave Packet Calculation of Absolute UV Cross Section of Criegee Intermediates. J Phys Chem A 2022;126:6080-6090. [PMID: 36041057 DOI: 10.1021/acs.jpca.2c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
Antwi E, Bush RE, Marchetti B, Karsili TNV. A direct dynamics study of the exotic photochemistry of the simplest Criegee intermediate, CH2OO. Phys Chem Chem Phys 2022;24:16724-16731. [PMID: 35770704 DOI: 10.1039/d2cp01860h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
9
Nikoobakht B. An ab initio quantum dynamics simulation of UV Absorption Spectrum of Methyl Vinyl Ketone Oxide. J Chem Phys 2022;157:014101. [DOI: 10.1063/5.0091948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
10
Nikoobakht B, Köppel H. Correlated quantum treatment of the photodissociation dynamics of formaldehyde oxide CH2OO. Phys Chem Chem Phys 2022;24:12433-12441. [PMID: 35575032 DOI: 10.1039/d2cp01007k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
McCoy JC, Léger SJ, Frey CF, Vansco MF, Marchetti B, Karsili TNV. Modeling the Conformer-Dependent Electronic Absorption Spectra and Photolysis Rates of Methyl Vinyl Ketone Oxide and Methacrolein Oxide. J Phys Chem A 2022;126:485-496. [PMID: 35049299 DOI: 10.1021/acs.jpca.1c08381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Esposito VJ, Werba O, Bush SA, Marchetti B, Karsili TNV. Insights into the Ultrafast Dynamics of CH2 OO and CH3 CHOO Following Excitation to the Bright 1 ππ* State: The Role of Singlet and Triplet States. Photochem Photobiol 2021;98:763-772. [PMID: 34767632 DOI: 10.1111/php.13560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
13
Cornwell ZA, Harrison AW, Murray C. Kinetics of the Reactions of CH2OO with Acetone, α-Diketones, and β-Diketones. J Phys Chem A 2021;125:8557-8571. [PMID: 34554761 DOI: 10.1021/acs.jpca.1c05280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Esposito VJ, Liu T, Wang G, Caracciolo A, Vansco MF, Marchetti B, Karsili TNV, Lester MI. Photodissociation Dynamics of CH2OO on Multiple Potential Energy Surfaces: Experiment and Theory. J Phys Chem A 2021;125:6571-6579. [PMID: 34314179 DOI: 10.1021/acs.jpca.1c03643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
Nikoobakht B, Köppel H. UV absorption spectrum and photodissociation dynamics of CH2OO following excitation to the B1 A′ state. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1958019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
16
McCoy JC, Marchetti B, Thodika M, Karsili TNV. A Simple and Efficient Method for Simulating the Electronic Absorption Spectra of Criegee Intermediates: Benchmarking on CH2OO and CH3CHOO. J Phys Chem A 2021;125:4089-4097. [PMID: 33970629 DOI: 10.1021/acs.jpca.1c01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
17
Surprisingly long lifetime of methacrolein oxide, an isoprene derived Criegee intermediate, under humid conditions. Commun Chem 2021;4:12. [PMID: 36697547 PMCID: PMC9814537 DOI: 10.1038/s42004-021-00451-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]  Open
18
Chen TY, Lee YP. Dynamics of the reaction CH2I + O2 probed via infrared emission of CO, CO2, OH and H2CO. Phys Chem Chem Phys 2020;22:17540-17553. [PMID: 32808958 DOI: 10.1039/d0cp01940b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
19
Chhantyal-Pun R, Khan MAH, Taatjes CA, Percival CJ, Orr-Ewing AJ, Shallcross DE. Criegee intermediates: production, detection and reactivity. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1792104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
20
Mir ZS, Lewis TR, Onel L, Blitz MA, Seakins PW, Stone D. CH2OO Criegee intermediate UV absorption cross-sections and kinetics of CH2OO + CH2OO and CH2OO + I as a function of pressure. Phys Chem Chem Phys 2020;22:9448-9459. [DOI: 10.1039/d0cp00988a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
21
Vansco MF, Marchetti B, Trongsiriwat N, Bhagde T, Wang G, Walsh PJ, Klippenstein SJ, Lester MI. Synthesis, Electronic Spectroscopy, and Photochemistry of Methacrolein Oxide: A Four-Carbon Unsaturated Criegee Intermediate from Isoprene Ozonolysis. J Am Chem Soc 2019;141:15058-15069. [PMID: 31446755 DOI: 10.1021/jacs.9b05193] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
22
Qiu J, Tonokura K. Detection of the simplest Criegee intermediate CH2OO in the ν4 band using a continuous wave quantum cascade laser and its kinetics with SO2 and NO2. Chem Phys Lett 2019. [DOI: 10.1016/j.cpletx.2019.100019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
23
Chang YP, Li YL, Liu ML, Ou TC, Lin JJM. Absolute Infrared Absorption Cross Section of the Simplest Criegee Intermediate Near 1285.7 cm-1. J Phys Chem A 2018;122:8874-8881. [PMID: 30351942 DOI: 10.1021/acs.jpca.8b06759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
24
Stone D, Au K, Sime S, Medeiros DJ, Blitz M, Seakins PW, Decker Z, Sheps L. Unimolecular decomposition kinetics of the stabilised Criegee intermediates CH2OO and CD2OO. Phys Chem Chem Phys 2018;20:24940-24954. [PMID: 30238099 DOI: 10.1039/c8cp05332d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Yin C, Takahashi K. How big is the substituent dependence of the solar photolysis rate of Criegee intermediates? Phys Chem Chem Phys 2018;20:16247-16255. [DOI: 10.1039/c8cp02015a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
26
Luo PL, Endo Y, Lee YP. High-resolution vibration–rotational spectra and rotational perturbation of the OO-stretching (ν6) band of CH2OO between 879.5 and 932.0 cm−1. Phys Chem Chem Phys 2018;20:25806-25811. [DOI: 10.1039/c8cp04780d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
27
Sršeň Š, Hollas D, Slavíček P. UV absorption of Criegee intermediates: quantitative cross sections from high-level ab initio theory. Phys Chem Chem Phys 2018;20:6421-6430. [DOI: 10.1039/c8cp00199e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
Tadayon SV, Foreman ES, Murray C. Kinetics of the Reactions between the Criegee Intermediate CH2OO and Alcohols. J Phys Chem A 2017;122:258-268. [DOI: 10.1021/acs.jpca.7b09773] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
29
Kapnas KM, Toulson BW, Foreman ES, Block SA, Hill JG, Murray C. UV photodissociation dynamics of CHI2Cl and its role as a photolytic precursor for a chlorinated Criegee intermediate. Phys Chem Chem Phys 2017;19:31039-31053. [PMID: 29160321 DOI: 10.1039/c7cp06532a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Trabelsi T, Kumar M, Francisco JS. Substituent effects on the spectroscopic properties of Criegee intermediates. J Chem Phys 2017;147:164303. [DOI: 10.1063/1.4998170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
31
Vansco MF, Li H, Lester MI. Prompt release of O 1D products upon UV excitation of CH2OO Criegee intermediates. J Chem Phys 2017;147:013907. [DOI: 10.1063/1.4977987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
32
Chang YP, Merer AJ, Chang HH, Jhang LJ, Chao W, Lin JJM. High resolution quantum cascade laser spectroscopy of the simplest Criegee intermediate, CH2OO, between 1273 cm−1 and 1290 cm−1. J Chem Phys 2017;146:244302. [DOI: 10.1063/1.4986536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
33
Taatjes CA. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides. Annu Rev Phys Chem 2017;68:183-207. [DOI: 10.1146/annurev-physchem-052516-050739] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
34
Ting AWL, Lin JJM. UV Spectrum of the Simplest Deuterated Criegee Intermediate CD2 OO. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
35
Decker ZCJ, Au K, Vereecken L, Sheps L. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH2OO and isoprene. Phys Chem Chem Phys 2017;19:8541-8551. [DOI: 10.1039/c6cp08602k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
36
Liu Y, Liu F, Liu S, Dai D, Dong W, Yang X. A kinetic study of the CH2OO Criegee intermediate reaction with SO2, (H2O)2, CH2I2 and I atoms using OH laser induced fluorescence. Phys Chem Chem Phys 2017;19:20786-20794. [DOI: 10.1039/c7cp04336h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
37
Finlayson-Pitts BJ. Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discuss 2017;200:11-58. [DOI: 10.1039/c7fd00161d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
38
Foreman ES, Kapnas KM, Murray C. Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3: Kinetics and Atmospheric Implications. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
39
Foreman ES, Kapnas KM, Murray C. Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3: Kinetics and Atmospheric Implications. Angew Chem Int Ed Engl 2016;55:10419-22. [DOI: 10.1002/anie.201604662] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Indexed: 11/06/2022]
40
Absolute UV absorption cross sections of dimethyl substituted Criegee intermediate (CH 3 ) 2 COO. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.04.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
41
Kalinowski J, Foreman ES, Kapnas KM, Murray C, Räsänen M, Benny Gerber R. Dynamics and spectroscopy of CH2OO excited electronic states. Phys Chem Chem Phys 2016;18:10941-6. [DOI: 10.1039/c6cp00807k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA