1
|
Talewar SK, Pardo LC, Headen TF, Halukeerthi SO, Chikani B, Rosu-Finsen A, Salzmann CG. Hydrophobic hydration of the hydrocarbon adamantane in amorphous ice. Faraday Discuss 2024; 249:69-83. [PMID: 37794776 PMCID: PMC10845010 DOI: 10.1039/d3fd00102d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 10/06/2023]
Abstract
Hydrophobic molecules are by definition difficult to hydrate. Previous studies in the area of hydrophobic hydration have therefore often relied on using amphiphilic molecules where the hydrophilic part of a molecule enabled the solubility in liquid water. Here, we show that the hydrophobic adamantane (C10H16) molecule can be fully hydrated through vapour codeposition with water onto a cryogenic substrate at 80 K resulting in the matrix isolation of adamantane in amorphous ice. Using neutron diffraction in combination with the isotopic substitution method and the empirical potential structure refinement technique, we find that the first hydration shell of adamantane is well structured consisting of a hydrogen-bonded cage of 28 water molecules that is also found in cubic structure II clathrate hydrates. The four hexagonal faces of the 51264 cage are situated above the four methine (CH) groups of adamantane whereas the methylene (CH2) groups are positioned below the edges of two adjoining pentagonal faces. The oxygen atoms of the 28 water molecules can be categorised on the basis of symmetry equivalences as twelve A, twelve B and four C oxygens. The water molecules of the first hydration shell display orientations consistent with those expected for a clathrate-hydrate-type cage, but also unfavourable ones with respect to the hydrogen bonding between the water molecules. Annealing the samples at 140 K, which is just below the crystallisation temperature of the matrix, removes the unfavourable orientations and leads to a slight increase in the structural order of the first hydration shell. The very closest water molecules display a tendency for their dipole moments to point towards the adamantane which is attributed to steric effects. Other than this, no significant polarisation effects are observed which is consistent with weak interactions between adamantane and the amorphous ice matrix. FT-IR spectroscopy shows that the incorporation of adamantane into amorphous ice leads to a weakening of the hydrogen bonds. In summary, the matrix-isolation of the highly symmetric adamantane in amorphous ice provides an interesting test case for hydrophobic hydration. Studying the structure and spectroscopic properties of water at the interface with hydrophobic hydrocarbons is also relevant for astrophysical environments, such as comets or the interstellar medium, where amorphous ice and hydrocarbons have been shown to coexist in large quantities.
Collapse
Affiliation(s)
- Sukhpreet K Talewar
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Luis Carlos Pardo
- Grup de Caracterització de Materials, Departament de Física, EEBE, Universitat Politècnica de Catalunya, and Barcelona Research Center in Multiscale Science and Engineering, C/Eduard Maristany 10, E-08019 Barcelona, Spain
| | - Thomas F Headen
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX, UK
| | - Siriney O Halukeerthi
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Bharvi Chikani
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Alexander Rosu-Finsen
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Christoph G Salzmann
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
2
|
Bilge S, Dogan-Topal B, Gürbüz MM, Yücel A, Sınağ A, Ozkan SA. Recent advances in electrochemical sensing of cocaine: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Oung SW, Kremer N, Ben Amara S, Zaidi A, Koslowski T. Protonation and orientation: a computational approach to cocaine diffusion through a model membrane. Phys Chem Chem Phys 2022; 24:14219-14227. [DOI: 10.1039/d2cp01140a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the diffusion of cocaine through a DMPC lipid bilayer as an example of a protonable, amphiphilic molecule passing a biological membrane. Using classical molecular dynamics simulations, the free...
Collapse
|
4
|
Al-Madhagi LH, Callear SK, Schroeder SLM. Hydrophilic and hydrophobic interactions in concentrated aqueous imidazole solutions: a neutron diffraction and total X-ray scattering study. Phys Chem Chem Phys 2020; 22:5105-5113. [DOI: 10.1039/c9cp05993h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of 5 M aqueous imidazole solutions combining neutron and X-ray diffraction with EPSR simulations shows dominance of hydrogen-bonding between imidazole and water and negligible hydrogen-bonding between imidazole molecules.
Collapse
Affiliation(s)
- Laila H. Al-Madhagi
- School of Chemical and Process Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
- Diamond Light Source Ltd
| | | | - Sven L. M. Schroeder
- School of Chemical and Process Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
- Diamond Light Source Ltd
| |
Collapse
|
5
|
Henao A, Ruiz GN, Steinke N, Cerveny S, Macovez R, Guàrdia E, Busch S, McLain SE, Lorenz CD, Pardo LC. On the microscopic origin of the cryoprotective effect in lysine solutions. Phys Chem Chem Phys 2020; 22:6919-6927. [DOI: 10.1039/c9cp06192d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysine cryoprotective properties are due to the tight bonding of the first hydration Shell to the amino acid. However this effect is only possible for concentration up to 5.4 water molecules per lysine.
Collapse
Affiliation(s)
- Andrés Henao
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| | - Guadalupe N. Ruiz
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| | - Nicola Steinke
- Center for Marine Environmental Sciences (MARUM)
- University of Bremen
- 28359 Bremen
- Germany
| | - Silvina Cerveny
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC)
- Donostia International Physics Center (DIPC)
- 20018 San Sebastián
- Spain
| | - Roberto Macovez
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| | - Elvira Guàrdia
- Grup de Simulació per Ordinador en Matèria Condensada
- Departament de Física
- Universitat Politècnica de Catalunya
- E-08034 Barcelona
- Spain
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ)
- Helmholtz-Zentrum Geesthacht GmbH
- 85747 Garching bei München
- Germany
| | - Sylvia E. McLain
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton
- UK
| | | | - Luis Carlos Pardo
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| |
Collapse
|
6
|
Rhys NH, Duffy IB, Sowden CL, Lorenz CD, McLain SE. On the hydration of DOPE in solution. J Chem Phys 2019; 150:115104. [PMID: 30902020 DOI: 10.1063/1.5085736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The atomic-scale hydration structure around the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) headgroup in a chloroform/water solution has been investigated using neutron diffraction enhanced by isotopic substitution and NMR, coupled with empirical potential structure refinement and molecular dynamics simulations. The results obtained show the preferential binding sites for water molecules on the DOPE headgroups, with the most predominant interactions being with the ammonium and phosphate groups. Interestingly, the level of hydration, as well as the association of DOPE molecules, varies according to the simulation method used. The results here suggest the presence of a tight water network around these lipid headgroups that could affect the permeability of the membrane for lipid-mediated diffusion.
Collapse
Affiliation(s)
- Natasha H Rhys
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Imogen B Duffy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Christopher L Sowden
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Sylvia E McLain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
7
|
Smith P, Steinke N, Turner JF, McLain SE, Lorenz CD. On the hydration structure of the pro-drug GPG-NH2 and its derivatives. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Bruni F, Di Mino C, Imberti S, McLain SE, Rhys NH, Ricci MA. Hydrogen Bond Length as a Key To Understanding Sweetness. J Phys Chem Lett 2018; 9:3667-3672. [PMID: 29920095 DOI: 10.1021/acs.jpclett.8b01280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Neutron diffraction experiments have been performed to investigate and compare the structure of the hydration shell of three monosaccharides, namely, fructose, glucose, and mannose. It is found that despite their differences with respect to many thermodynamical quantities, bioprotective properties against environmental stresses, and taste, the influence of these monosaccharides on the bulk water solvent structure is virtually identical. Conversely, these sugars interact with the neighboring water molecules by forming H bonds of different length and strength. Interestingly, the sweetness of these monosaccharides, along with that of the disaccharide trehalose, is correlated with the length of these H bonds. This suggests that the small differences in stereochemistry between the different sugars determine a relevant change in polarity, which has a fundamental impact on the behavior of these molecules in vivo.
Collapse
Affiliation(s)
- F Bruni
- Dipartimento di Scienze, Sezione di Nanoscienze , Università degli Studi "Roma Tre" , Via della Vasca Navale 84 , 00146 Roma , Italy
| | - C Di Mino
- Dipartimento di Scienze, Sezione di Nanoscienze , Università degli Studi "Roma Tre" , Via della Vasca Navale 84 , 00146 Roma , Italy
| | - S Imberti
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxfordshire OX11 0QX , United Kingdom
| | - S E McLain
- Department of Biochemistry , University of Oxford , South Park Road , Oxford , Oxfordshire OX1 3QU , United Kingdom
| | - N H Rhys
- Department of Biochemistry , University of Oxford , South Park Road , Oxford , Oxfordshire OX1 3QU , United Kingdom
| | - M A Ricci
- Dipartimento di Scienze, Sezione di Nanoscienze , Università degli Studi "Roma Tre" , Via della Vasca Navale 84 , 00146 Roma , Italy
| |
Collapse
|
9
|
Steinke N, Genina A, Gillams RJ, Lorenz CD, McLain SE. Proline and Water Stabilization of a Universal Two-Step Folding Mechanism for β-Turn Formation in Solution. J Am Chem Soc 2018; 140:7301-7312. [DOI: 10.1021/jacs.8b03643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nicola Steinke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Anna Genina
- Department of Physics, King’s College London, London WC2R 2LS, U.K
| | | | | | - Sylvia E. McLain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
10
|
Castilla-Ortega E, Ladrón de Guevara-Miranda D, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F, Santín LJ. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol 2017; 141:100-117. [DOI: 10.1016/j.bcp.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
11
|
Rhys NH, Bruni F, Imberti S, McLain SE, Ricci MA. Glucose and Mannose: A Link between Hydration and Sweetness. J Phys Chem B 2017; 121:7771-7776. [DOI: 10.1021/acs.jpcb.7b03919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. H. Rhys
- Department
of Biochemistry, University of Oxford, South Park Road, Oxford, Oxfordshire OX1 3QU, United Kingdom
| | - F. Bruni
- Dipartimento
di Scienze, Sezione di Nanoscienze, Università degli Studi “Roma Tre”, Via della Vasca Navale 84, 00146 Roma, Italy
| | - S. Imberti
- ISIS
Neutron and Muon source, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - S. E. McLain
- Department
of Biochemistry, University of Oxford, South Park Road, Oxford, Oxfordshire OX1 3QU, United Kingdom
| | - M. A. Ricci
- Dipartimento
di Scienze, Sezione di Nanoscienze, Università degli Studi “Roma Tre”, Via della Vasca Navale 84, 00146 Roma, Italy
| |
Collapse
|
12
|
|
13
|
Sridhar A, Ross GA, Biggin PC. Waterdock 2.0: Water placement prediction for Holo-structures with a pymol plugin. PLoS One 2017; 12:e0172743. [PMID: 28235019 PMCID: PMC5325533 DOI: 10.1371/journal.pone.0172743] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
Water is often found to mediate interactions between a ligand and a protein. It can play a significant role in orientating the ligand within a binding pocket and contribute to the free energy of binding. It would thus be extremely useful to be able to accurately predict the position and orientation of water molecules within a binding pocket. Recently, we developed the WaterDock protocol that was able to predict 97% of the water molecules in a test set. However, this approach generated false positives at a rate of over 20% in most cases and whilst this might be acceptable for some applications, in high throughput scenarios this is not desirable. Here we tackle this problem via the inclusion of knowledge regarding the solvation structure of ligand functional groups. We call this new protocol WaterDock2 and demonstrate that this protocol maintains a similar true positive rate to the original implementation but is capable of reducing the false-positive rate by over 50%. To improve the usability of the method, we have also developed a plugin for the popular graphics program PyMOL. The plugin also contains an implementation of the original WaterDock.
Collapse
Affiliation(s)
- Akshay Sridhar
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Gregory A. Ross
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Steinke N, Genina A, Lorenz CD, McLain SE. Salt Interactions in Solution Prevent Direct Association of Urea with a Peptide Backbone. J Phys Chem B 2017; 121:1866-1876. [DOI: 10.1021/acs.jpcb.6b12542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicola Steinke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Anna Genina
- Department of Physics, King’s College London, London SE1 9NH, U.K
| | | | - Sylvia E. McLain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
15
|
Silva-Santisteban A, Steinke N, Johnston AJ, Ruiz GN, Carlos Pardo L, McLain SE. On the structure of prilocaine in aqueous and amphiphilic solutions. Phys Chem Chem Phys 2017; 19:12665-12673. [DOI: 10.1039/c7cp01723e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The solvation of prilocaine has been investigated in pure water and in amphiphilic solutions using a combination of neutron diffraction and simulations.
Collapse
Affiliation(s)
- Alvaro Silva-Santisteban
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QU
- UK
- Departament de Física i Enginyeria Nuclear & Barcelona Research Center in Multiscale Science and Engineering
| | - Nicola Steinke
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QU
- UK
| | | | - Guadalupe N. Ruiz
- Departament de Física i Enginyeria Nuclear & Barcelona Research Center in Multiscale Science and Engineering
- Universitat Politècnica de Catalunya
- 08019 Barcelona
- Spain
| | - Luis Carlos Pardo
- Departament de Física i Enginyeria Nuclear & Barcelona Research Center in Multiscale Science and Engineering
- Universitat Politècnica de Catalunya
- 08019 Barcelona
- Spain
| | | |
Collapse
|
16
|
Maugeri L, Busch S, McLain SE, Pardo LC, Bruni F, Ricci MA. Structure-activity relationships in carbohydrates revealed by their hydration. Biochim Biophys Acta Gen Subj 2016; 1861:1486-1493. [PMID: 28011302 DOI: 10.1016/j.bbagen.2016.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 11/25/2022]
Abstract
One of the more intriguing aspects of carbohydrate chemistry is that despite having very similar molecular structures, sugars have very different properties. For instance, there is a sensible difference in sweet taste between glucose and trehalose, even though trehalose is a disaccharide that comprised two glucose units, suggesting a different ability of these two carbohydrates to bind to sweet receptors. Here we have looked at the hydration of specific sites and at the three-dimensional configuration of water molecules around three carbohydrates (glucose, cellobiose, and trehalose), combining neutron diffraction data with computer modelling. Results indicate that identical chemical groups can have radically different hydration patterns depending on their location on a given molecule. These differences can be linked with the specific activity of glucose, cellobiose, and trehalose as a sweet substance, as building block of cellulose fiber, and as a bioprotective agent, respectively. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Laura Maugeri
- Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, Roma 00146, Italy
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr. Garching bei München 1 85747, Germany
| | - Sylvia E McLain
- Department of Biochemistry, University of Oxford, South Park Road, Oxford, Oxfordshire OX1 3QU, UK
| | - Luis Carlos Pardo
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya Barcelona 08028, Catalonia, Spain
| | - Fabio Bruni
- Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, Roma 00146, Italy
| | - Maria Antonietta Ricci
- Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, Roma 00146, Italy.
| |
Collapse
|
17
|
Rhys NH, Gillams RJ, Collins LE, Callear SK, Lawrence MJ, McLain SE. On the structure of an aqueous propylene glycol solution. J Chem Phys 2016; 145:224504. [DOI: 10.1063/1.4971208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Natasha H. Rhys
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Richard J. Gillams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Louise E. Collins
- King’s College London, Institute of Pharmaceutical Science, London SE1 9NH, United Kingdom
| | - Samantha K. Callear
- STFC, ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QU United Kingdom
| | - M. Jayne Lawrence
- King’s College London, Institute of Pharmaceutical Science, London SE1 9NH, United Kingdom
| | - Sylvia E. McLain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
18
|
Steinke N, Gillams RJ, Pardo LC, Lorenz CD, McLain SE. Atomic scale insights into urea–peptide interactions in solution. Phys Chem Chem Phys 2016; 18:3862-70. [DOI: 10.1039/c5cp06646h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Investigations on the β-turn forming peptide, GPG, suggest that urea denatures proteins by replacing water molecules and subsequently weakening the peptide bonds as a possible mechanism of protein denaturation by urea.
Collapse
Affiliation(s)
- Nicola Steinke
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QU
- UK
| | | | - Luis Carlos Pardo
- Departament de Física i Enginyeria Nuclear
- Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB)
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Catalonia, Spain
| | | | | |
Collapse
|
19
|
Sridhar A, Johnston AJ, Varathan L, McLain SE, Biggin PC. The solvation structure of alprazolam. Phys Chem Chem Phys 2016; 18:22416-25. [DOI: 10.1039/c6cp02645a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alprazolam is a benzodiazepine that is commonly prescribed for the treatment of anxiety and other related disorders.
Collapse
|
20
|
Shephard JJ, Callear SK, Imberti S, Evans JSO, Salzmann CG. Microstructures of negative and positive azeotropes. Phys Chem Chem Phys 2016; 18:19227-35. [DOI: 10.1039/c6cp02450e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azeotropes famously impose fundamental restrictions on distillation processes, yet their special thermodynamic properties make them highly desirable for a diverse range of industrial and technological applications. Using neutron diffraction, this study provides first insights into the microstructures of azeotropes.
Collapse
Affiliation(s)
- J. J. Shephard
- Department of Chemistry
- University College London
- WC1H 0AJ London
- UK
- Department of Chemistry
| | - S. K. Callear
- ISIS Facility
- Rutherford Appleton Laboratory
- Didcot OX11 0QX
- UK
| | - S. Imberti
- ISIS Facility
- Rutherford Appleton Laboratory
- Didcot OX11 0QX
- UK
| | - J. S. O. Evans
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | - C. G. Salzmann
- Department of Chemistry
- University College London
- WC1H 0AJ London
- UK
| |
Collapse
|
21
|
Henao A, Johnston AJ, Guàrdia E, McLain SE, Pardo LC. On the positional and orientational order of water and methanol around indole: a study on the microscopic origin of solubility. Phys Chem Chem Phys 2016; 18:23006-16. [DOI: 10.1039/c6cp04183c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increase in solubility for indole in methanol water solutions relative to pure water is a result methanol −OH–π interactions. In addition, excess entropy calculations suggest that this process is enthalpically rather than entropically driven.
Collapse
Affiliation(s)
- Andres Henao
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB
- Universitat Politècnica de Catalunya
- E-08028 Barcelona
| | | | - Elvira Guàrdia
- Grup de Simulació per Ordinador en Matèria Condensada
- Departament de Física
- B4-B5 Campus Nord
- Universitat Politècnica de Catalunya
- E-08034 Barcelona
| | | | - Luis Carlos Pardo
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB
- Universitat Politècnica de Catalunya
- E-08028 Barcelona
| |
Collapse
|