1
|
Norvaiša K, Maguire S, Donohoe C, O'Brien JE, Twamley B, Gomes-da-Silva LC, Senge MO. Steric Repulsion Induced Conformational Switch in Supramolecular Structures. Chemistry 2021; 28:e202103879. [PMID: 34792217 PMCID: PMC9299809 DOI: 10.1002/chem.202103879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/24/2022]
Abstract
Inspired by the rigidified architecture of ‘picket‐fence’ systems, we propose a strategy utilizing strain to impose intramolecular tension in already peripherally overcrowded structures leading to selective atropisomeric conversion. Employing this approach, tuneable shape‐persistent porphyrin conformations were acquired exhibiting distinctive supramolecular nanostructures based on the orientation of the peripheral groups. The intrinsic assemblies driven by non‐covalent bonding interactions form supramolecular polymers while encapsulating small molecules in parallel channels or solvent‐accessible voids. The developed molecular strain engineering methodologies combined with synthetic approaches have allowed the introduction of the pivalate units creating a highly strained molecular skeleton. Changes in the absorption spectrum indicated the presence of severe steric repulsions between the peripheral groups which were confirmed by single crystal X‐ray analysis. To release the steric strain introduced by the peripheral units, thermal equilibration strategies were used to selectively convert the most abundant atropisomer to the desirable minor one.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, D02 R590, Dublin 2, Ireland
| | - Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, D02 R590, Dublin 2, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, D02 R590, Dublin 2, Ireland.,CQC, Coimbra Chemistry Center Department of Chemistry, University of Coimbra, 3000-435, Coimbra, Portugal
| | - John E O'Brien
- School of Chemistry Trinity College Dublin, The University of Dublin, D02 PN40, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin, The University of Dublin, D02 PN40, Dublin 2, Ireland
| | - Ligia C Gomes-da-Silva
- CQC, Coimbra Chemistry Center Department of Chemistry, University of Coimbra, 3000-435, Coimbra, Portugal
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, D02 R590, Dublin 2, Ireland.,Institute for Advanced Study (TUM-IAS) Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenbergstrasse 2a, D-85748, Garching, Germany
| |
Collapse
|
2
|
Norvaiša K, Yeow K, Twamley B, Roucan M, Senge MO. Strategic Synthesis of 'Picket Fence' Porphyrins Based on Nonplanar Macrocycles. European J Org Chem 2021; 2021:1871-1882. [PMID: 33889056 PMCID: PMC8048935 DOI: 10.1002/ejoc.202100154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Traditional 'picket fence' porphyrin systems have been a topic of interest for their capacity to direct steric shielding effects selectively to one side of the macrocycle. Sterically overcrowded porphyrin systems that adopt macrocycle deformations have recently drawn attention for their applications in organocatalysis and sensing. Here we explore the combined benefits of nonplanar porphyrins and the old molecular design to bring new concepts to the playing field. The challenging ortho-positions of meso-phenyl residues in dodecasubstituted porphyrin systems led us to transition to less hindered para- and meta-sites and develop selective demethylation based on the steric interplay. Isolation of the symmetrical target compound [2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(3,5-dipivaloyloxyphenyl)porphyrin] was investigated under two synthetic pathways. The obtained insight was used to isolate unsymmetrical [2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(2-nitro-5-pivaloyloxyphenyl)porphyrin]. Upon separation of the atropisomers, a detailed single-crystal X-ray crystallographic analysis highlighted intrinsic intermolecular interactions. The nonplanarity of these systems in combination with 'picket fence' motifs provides an important feature in the design of supramolecular ensembles.
Collapse
Affiliation(s)
- Karolis Norvaiša
- Chair of Organic ChemistrySchool of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin2Ireland
| | - Kathryn Yeow
- Chair of Organic ChemistrySchool of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin2Ireland
| | - Brendan Twamley
- School of ChemistryTrinity College DublinThe University of DublinDublin2Ireland
| | - Marie Roucan
- Chair of Organic ChemistrySchool of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin2Ireland
| | - Mathias O. Senge
- Chair of Organic ChemistrySchool of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin2Ireland
- Institute for Advanced Study (TUM-IAS)Technical University of MunichLichtenbergstrasse 2a85748GarchingGermany
| |
Collapse
|
3
|
Nikolaou V, Charalambidis G, Ladomenou K, Nikoloudakis E, Drivas C, Vamvasakis I, Panagiotakis S, Landrou G, Agapaki E, Stangel C, Henkel C, Joseph J, Armatas G, Vasilopoulou M, Kennou S, Guldi DM, Coutsolelos AG. Controlling Solar Hydrogen Production by Organizing Porphyrins. CHEMSUSCHEM 2021; 14:961-970. [PMID: 33285030 DOI: 10.1002/cssc.202002761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In this study, a highly efficient photocatalytic H2 production system is developed by employing porphyrins as photocatalysts. Palladium and platinum tetracarboxyporphyrins (PdTCP and PtTCP) are adsorbed or coadsorbed onto TiO2 nanoparticles (NPs), which act as the electron transport medium and as a scaffold that promotes the self-organization of the porphyrinoids. The self-organization of PdTCP and PtTCP, forming H- and J-aggregates, respectively, is the key element for H2 evolution, as in the absence of TiO2 NPs no catalytic activity is detected. Notably, J-aggregated PtTCPs are more efficient for H2 production than H-aggregated PdTCPs. In this approach, a single porphyrin, which self-organizes onto TiO2 NPs, acts as the light harvester and simultaneously as the catalyst, whereas TiO2 serves as the electron transport medium. Importantly, the concurrent adsorption of PdTCP and PtTCP onto TiO2 NPs results in the most efficient catalytic system, giving a turnover number of 22,733 and 30.2 mmol(H2 ) g(cat)-1 .
Collapse
Affiliation(s)
- Vasilis Nikolaou
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Kalliopi Ladomenou
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Emmanouil Nikoloudakis
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Charalambos Drivas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Ioannis Vamvasakis
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | - Stylianos Panagiotakis
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Georgios Landrou
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Eleni Agapaki
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Christina Stangel
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Christian Henkel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße. 3, 91058, Erlangen, Germany
| | - Jan Joseph
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße. 3, 91058, Erlangen, Germany
| | - Gerasimos Armatas
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research "Demokritos", 15310, Aghia Paraskevi Attikis, Athens, Greece
| | - Stella Kennou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße. 3, 91058, Erlangen, Germany
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| |
Collapse
|
4
|
Norvaiša K, O'Brien JE, Gibbons DJ, Senge MO. Elucidating Atropisomerism in Nonplanar Porphyrins with Tunable Supramolecular Complexes. Chemistry 2020; 27:331-339. [PMID: 33405259 PMCID: PMC7839692 DOI: 10.1002/chem.202003414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Atropisomerism is a fundamental feature of substituted biaryls resulting from rotation around the biaryl axis. Different stereoisomers are formed due to restricted rotation about the single bond, a situation often found in substituted porphyrins. Previously NMR determination of porphyrin atropisomers proved difficult, if not almost impossible to accomplish, due to low resolution or unresolvable resonance signals that predominantly overlapped. Here, we shed some light on this fundamental issue found in porphyrinoid stereochemistry. Using benzenesulfonic acid (BSA) for host‐guest interactions and performing 1D, 2D NMR spectroscopic analyses, we were able to characterize all four rotamers of the nonplanar 5,10,15,20‐tetrakis(2‐aminophenyl)‐2,3,7,8,12,13,17,18‐octaethylporphyirin as restricted H‐bonding complexes. Additionally, X‐ray structural analysis was used to investigate aspects of the weak host–guest interactions. A detailed assignment of the chemical signals suggests charge‐assisted complexation as a key to unravel the atropisomeric enigma. From a method development perspective, symmetry operations unique to porphyrin atropisomers offer an essential handle to accurately identify the rotamers using NMR techniques only.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - John E O'Brien
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Dáire J Gibbons
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Mathias O Senge
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland.,Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
| |
Collapse
|
5
|
Jeoung S, Kim S, Kim M, Moon HR. Pore engineering of metal-organic frameworks with coordinating functionalities. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213377] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Goswami S, Chen M, Wasielewski MR, Farha OK, Hupp JT. Boosting Transport Distances for Molecular Excitons within Photoexcited Metal-Organic Framework Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34409-34417. [PMID: 30207679 DOI: 10.1021/acsami.8b14977] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we describe the fabrication of porphyrin-containing metal-organic framework thin films with 1,4-diazabicyclo[2.2.2]octane (DABCO) pillaring linkers and investigate exciton transport within the films. Steady-state emission spectroscopy indicates that the exciton can traverse up to 26 porphyrin layers when DABCO is used as a pillaring linker, whereas on average only 9-11 layers can be traversed when either 4,4'-bipyridine (a pillaring linker) or pyridine (a nonpillaring, layer-interdigitating ligand) is used. These results can be understood by taking into account the decreased separation distances between transition dipoles associated with chromophores (porphyrins) sited in adjacent layers. Shorter distances translate into faster Förster-type exciton hopping and, therefore, more hops within the few nanosecond lifetime of the porphyrin's singlet excited-state. The findings have favorable implications for the development of MOF-based photoelectrodes and photoelectrochemical energy-conversion devices.
Collapse
Affiliation(s)
- Subhadip Goswami
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Michelle Chen
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Michael R Wasielewski
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Omar K Farha
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
- Department of Chemistry , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | - Joseph T Hupp
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
- Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
7
|
Wang Z, Zhang JH, Zhu CY, Yin SY, Pan M. Tunable luminescence and white light emission of porphyrin-zinc coordination assemblies. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bipodal ligand 5,15-bis(4-carboxyphenyl) porphyrin (H[Formula: see text]DCPP) was designed and synthesized. By adjusting the molar ratio of H[Formula: see text]DCPP, ancillary ligand 4,4-bipyridine (bpy) and zinc acetate salts, three novel coordination assemblies, namely, zero-dimensional dimeric [Zn[Formula: see text](H[Formula: see text]DCPP)[Formula: see text] ·bpy] ·4H[Formula: see text]O ·4DMF (Zn-D), two-dimensional polymeric {[Zn[Formula: see text](DCPP) ·bpy[Formula: see text] ·H[Formula: see text]O ·DMF[Formula: see text]] ·solvent}[Formula: see text] (Zn-2D), and three-dimensional polymeric [Zn[Formula: see text](DCPP) ·bpy[Formula: see text]][Formula: see text] (Zn-3D) were assembled. Due to the delicate integration of multiple chromophores in the coordination space combining bpy, DCPP and MLCT emissions together, photoluminescence (PL) of the three porphyrin-zinc coordination assemblies differ from each other and color tone is tunable from blue to orange with changes of the excitation wavelength. In particular, white light emission (WLE) can be observed by the excitation of 270 to 290 nm, representing the first examples of single component WLE compounds based on porphyrin ligands. Furthermore, temperature-dependent luminescence results in a linear [Formula: see text]–[Formula: see text] relationship in Zn-2D and Zn-3D assemblies, applicable for long wavelength red-emitting thermometers.
Collapse
Affiliation(s)
- Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian-Hua Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yi Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shao-Yun Yin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
8
|
Loffi C, Rogolino D, Verdolino V, Pelagatti P. Elucidation of the Structure and Fluxionality of a Dinuclear Organometallic Complex Reluctant to Crystallize: An Experimental and Theoretical Integrated Approach. ChemistrySelect 2017. [DOI: 10.1002/slct.201702034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cecilia Loffi
- Department of Chemical Science; Life Science and Environmental Sustainability; Università degli Studi di Parma; Parco Area delle Scienze 17/a 43124 Parma Italy
| | - Dominga Rogolino
- Department of Chemical Science; Life Science and Environmental Sustainability; Università degli Studi di Parma; Parco Area delle Scienze 17/a 43124 Parma Italy
| | - Vincenzo Verdolino
- Department of Chemistry and Applied Biosciences Campus; Switzerland, ETH Zurich, c/o Università della Svizzera Italiana; 6900 Lugano Switzerland
- Facoltà di Informatica; Istituto di Scienze Computazionali; Università della Svizzera Italiana; 69000 Lugano Switzerland
| | - Paolo Pelagatti
- Department of Chemical Science; Life Science and Environmental Sustainability; Università degli Studi di Parma; Parco Area delle Scienze 17/a 43124 Parma Italy
| |
Collapse
|
9
|
Synthesis, Electronic Spectroscopy, Cyclic Voltammetry, Photophysics, Electrical Properties and X‐ray Molecular Structures of
meso
‐{Tetrakis[4‐(benzoyloxy)phenyl]porphyrinato}zinc(II) Complexes with Aza Ligands. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|