1
|
Guo X, Liu X, Zafar Z, Cheng G, Li Y, Nan H, Lin L, Zou J. Effects of oxygen vacancies and interfacial strain on the metal-insulator transition of VO 2 nanobeams. Phys Chem Chem Phys 2024; 26:10737-10745. [PMID: 38516809 DOI: 10.1039/d3cp06040c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The role of oxygen vacancies and interfacial strain on the metal-insulator transition (MIT) behavior of high-quality VO2 nanobeams (NBs) synthesized on SiO2/Si substrates employing V2O5 as a precursor has been investigated in this research. Selective oxygen vacancies have been generated by argon plasma irradiation. The MIT is progressively suppressed as the duration of plasma processing increases; in addition, the temperature of MIT (TMIT) drops by up to 95 K relative to the pristine VO2 NBs. Incorporating oxygen vacancies into VO2 may increase its electron concentration, which might shift the Fermi levels upward, strengthen the electronic orbital overlap of the V-V chains, and further stabilize the metallic phase at lower temperatures, based on first-principles calculations. Furthermore, in order to evaluate the influence of substrate-induced strain in our situation, the MIT in two distinct types of VO2 NB samples is examined without metal contacts by using the distinctive light scattering characteristics of the metal (M) and insulator (I) phases (i.e., M/I domains) by optical microscopy. It is found that the domain structures in the "clamped" NBs persisted up to ∼453 K, while the "released" NBs (transferred to a new substrate) did not exhibit any domain structures and turned into an entirely M phase with a dark contrast above ∼348 K. When combined with first-principles calculations, the electronic orbital occupancy in the rutile phase contributes to explaining the interfacial strain-induced modulation of MIT. The current findings shed light on how interfacial strain and oxygen vacancies impact MIT behavior. It also suggests several types of control strategies for MIT in VO2 NBs, which are essential for a broader spectrum of VO2 NB applications.
Collapse
Affiliation(s)
- Xitao Guo
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| | - Xin Liu
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| | - Zainab Zafar
- Experimental Physics Division, National Centre for Physics, Islamabad 44000, Pakistan
| | - Guiquan Cheng
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| | - Yunhai Li
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Haiyan Nan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China.
| | - Lianghua Lin
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| | - Jijun Zou
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
2
|
Saeidi SS, Vaseghi B, Rezaei G, Khajehsharifi H, Jenkins D. Magnetic, optical and phase transformation properties of Fe and Co doped VO2(A) nanobelts. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Zhang Y, Xiong W, Chen W, Zheng Y. Recent Progress on Vanadium Dioxide Nanostructures and Devices: Fabrication, Properties, Applications and Perspectives. NANOMATERIALS 2021; 11:nano11020338. [PMID: 33525597 PMCID: PMC7911400 DOI: 10.3390/nano11020338] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/24/2023]
Abstract
Vanadium dioxide (VO2) is a typical metal-insulator transition (MIT) material, which changes from room-temperature monoclinic insulating phase to high-temperature rutile metallic phase. The phase transition of VO2 is accompanied by sudden changes in conductance and optical transmittance. Due to the excellent phase transition characteristics of VO2, it has been widely studied in the applications of electric and optical devices, smart windows, sensors, actuators, etc. In this review, we provide a summary about several phases of VO2 and their corresponding structural features, the typical fabrication methods of VO2 nanostructures (e.g., thin film and low-dimensional structures (LDSs)) and the properties and related applications of VO2. In addition, the challenges and opportunities for VO2 in future studies and applications are also discussed.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China; (Y.Z.); (W.C.)
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiming Xiong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China; (Y.Z.); (W.C.)
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (W.X.); (Y.Z.)
| | - Weijin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China; (Y.Z.); (W.C.)
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China; (Y.Z.); (W.C.)
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (W.X.); (Y.Z.)
| |
Collapse
|
4
|
Nano-Particle VO2 Insulator-Metal Transition Field-Effect Switch with 42 mV/decade Sub-Threshold Slope. ELECTRONICS 2019. [DOI: 10.3390/electronics8020151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The possibility of controlling the insulator-to-metal transition (IMT) in nano-particle VO2 (NP-VO2) using the electric field effect in a metal-oxide-VO2 field-effect transistor (MOVFET) at room temperature was investigated for the first time. The IMT induced by current in NP-VO2 is a function of nano-particle size and was studied first using the conducting atomic force microscope (cAFM) current-voltage (I-V) measurements. NP-VO2 switching threshold voltage (VT), leakage current (Ileakage), and the sub-threshold slope of their conductivity (Sc) were all determined. The cAFM data had a large scatter. However, VT increased as a function of particle height (h) approximately as VT(V) = 0.034 h, while Ileakage decreased as a function of h approximately as Ileakage (A) = 3.4 × 10−8e−h/9.1. Thus, an asymptotic leakage current of 34 nA at zero particle size and a tunneling (carrier) decay constant of ~9.1 nm were determined. Sc increased as a function of h approximately as Sc (mV/decade) = 2.1 × 10−3eh/6 and was around 0.6 mV/decade at h~34 nm. MOVFETs composed of Pt drain, source and gate electrodes, HfO2 gate oxide, and NP-VO2 channels were then fabricated and showed gate voltage dependent drain-source switching voltage and current (IDS). The subthreshold slope (St) of drain-source current (IDS) varied from 42 mV/decade at VG = −5 V to 54 mV/decade at VG = +5 V.
Collapse
|
5
|
Chen L, Liu J, Jiang C, Zhao K, Chen H, Shi X, Chen L, Sun C, Zhang S, Wang Y, Zhang Z. Nanoscale Behavior and Manipulation of the Phase Transition in Single-Crystal Cu 2 Se. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804919. [PMID: 30422346 DOI: 10.1002/adma.201804919] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Indexed: 06/09/2023]
Abstract
Phase transition is a fundamental physical phenomenon that has been widely studied both theoretically and experimentally. According to the Landau theory, the coexistence of high- and low-temperature phases is thermodynamically impossible during a second-order phase transition in a bulk single crystal. Here, the coexistence of two (α and β) phases in wedge-shaped nanosized single-crystal Cu2 Se over a large temperature range are demonstrated. By considering the surface free-energy difference between the two phases and the shape effect, a thermodynamic model is established, which explicitly explains their coexistence. Intriguingly, it is found that with a precise control of the heating temperature, the phase boundary can be manipulated at atomic level. These discoveries extend the understanding of phase transitions to the nanoscale and shed light on rational manipulation of phase transitions in nanomaterials.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jun Liu
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chao Jiang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kunpeng Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai, 200050, P. R. China
| | - Hongyi Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai, 200050, P. R. China
| | - Xun Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai, 200050, P. R. China
| | - Lidong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai, 200050, P. R. China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Shengbai Zhang
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yong Wang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
6
|
Zhang L, Yao J, Xia F, Guo Y, Cao C, Chen Z, Gao Y, Luo H. VO2(D) hollow core–shell microspheres: synthesis, methylene blue dye adsorption and their transformation into C/VOxnanoparticles. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00819h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hollow core–shell VO2(D) microspheres were fabricated and they exhibited excellent MB adsorption ability; and the regenerated C/VOxnanoparticles showed enhanced adsorption performance and good reusability.
Collapse
Affiliation(s)
- Liangmiao Zhang
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Jianing Yao
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Fang Xia
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
| | - Yunfeng Guo
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Chuanxiang Cao
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Zhang Chen
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Yanfeng Gao
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Hongjie Luo
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
7
|
Zheng J, Zhang Y, Wang Q, Jiang H, Liu Y, Lv T, Meng C. Hydrothermal encapsulation of VO2(A) nanorods in amorphous carbon by carbonization of glucose for energy storage devices. Dalton Trans 2018; 47:452-464. [DOI: 10.1039/c7dt03853d] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work developed a new route to synthesize VO2(A)@C composites and explore their application as a promising material for SCs.
Collapse
Affiliation(s)
- Jiqi Zheng
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- PR China
| | - Yifu Zhang
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- PR China
| | - Qiushi Wang
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- PR China
| | - Hanmei Jiang
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- PR China
| | - Yanyan Liu
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- PR China
| | - Tianming Lv
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- PR China
| | - Changgong Meng
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- PR China
| |
Collapse
|
8
|
Li D, Goodwill JM, Bain JA, Skowronski M. Scaling behavior of oxide-based electrothermal threshold switching devices. NANOSCALE 2017; 9:14139-14148. [PMID: 28905051 DOI: 10.1039/c7nr03865h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Materials exhibiting insulator to metal transition (IMT) and transition metal oxides showing threshold switching behavior are considered as promising candidates for selector devices for crossbar non-volatile memory application. In this study, we use an electrothermal model to simulate the behavior of nanoscale selectors based on several different functional oxides (TaOx, VO2 and NbO2). We extract the device characteristics, such as threshold voltage (VTH), leakage current, device temperature in the ON state, and the size of the conductive filament as a function of selector diameter and functional layer thickness. In addition, we benchmark these devices in a 1 selector/1 resistor (1S1R) cell with a generic phase change-like memory element. These findings provide an insight into how device performance changes with scaling and help with material selection and design of selectors.
Collapse
Affiliation(s)
- Dasheng Li
- Carnegie Mellon University, Dept. of Materials Science and Engineering, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
9
|
Li M, Magdassi S, Gao Y, Long Y. Hydrothermal Synthesis of VO 2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701147. [PMID: 28722273 DOI: 10.1002/smll.201701147] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Vanadium dioxide (VO2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τc ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τc , low luminous transmittance (Tlum ), and undesirable solar modulation ability (ΔTsol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO2 . This Review focuses on hydrothermal synthesis, physical properties of VO2 polymorphs, and their transformation to thermochromic VO2 (M), and discusses the advantages, challenges, and prospects of VO2 (M) in energy-efficient smart windows application.
Collapse
Affiliation(s)
- Ming Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shlomo Magdassi
- Institute of Chemistry, The Hebrew University, Edmond Safra Campus, Jerusalem, 91904, Israel
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Long
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
10
|
Jiang C, Chen L, Ji S, Liu J, Zhang Z, Jin P, Wang Y, Zhang Z. Atomic scale observation of a defect-mediated first-order phase transition in VO 2(A). NANOSCALE 2017; 9:9834-9840. [PMID: 28513694 DOI: 10.1039/c7nr01513e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study of first-order structural transformations has attracted extensive attention due to their significant scientific and industrial importance. However, it remains challenging to exactly determine the nucleation sites at the very beginning of the transformation. Here, we report the atomic scale real-time observation of a unique defect-mediated reversible phase transition between the low temperature phase (LTP) and the high temperature phase (HTP) of VO2(A). In situ Cs-corrected scanning transmission electron microscopy (STEM) images clearly indicate that both phase transitions (from the HTP to the LTP and from the LTP to the HTP) start at the defect sites in parent phases. Intriguingly, the structure of the defects within the LTP is demonstrated to be the HTP of VO2 (A), and the defect in the HTP of VO2(A) is determined to be the LTP structure of VO2(A). These findings are expected to broaden our current understanding of the first-order phase transition and shed light on controlling materials' structure-property phase transition by "engineering" defects in applications.
Collapse
Affiliation(s)
- Chao Jiang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Popuri SR, Artemenko A, Decourt R, Villesuzanne A, Pollet M. Presence of Peierls pairing and absence of insulator-to-metal transition in VO2 (A): a structure–property relationship study. Phys Chem Chem Phys 2017; 19:6601-6609. [DOI: 10.1039/c7cp00248c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on structure–property relationships, we propose a two-step semiconductor-to-semiconductor phase transition in VO2 (A).
Collapse
Affiliation(s)
| | | | - R. Decourt
- CNRS
- ICMCB
- F-33600 Pessac
- France
- Univ. Bordeaux
| | | | - M. Pollet
- CNRS
- ICMCB
- F-33600 Pessac
- France
- Univ. Bordeaux
| |
Collapse
|
12
|
Liang S, Shi Q, Zhu H, Peng B, Huang W. One-Step Hydrothermal Synthesis of W-Doped VO 2 (M) Nanorods with a Tunable Phase-Transition Temperature for Infrared Smart Windows. ACS OMEGA 2016; 1:1139-1148. [PMID: 31457185 PMCID: PMC6640816 DOI: 10.1021/acsomega.6b00221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/02/2016] [Indexed: 05/22/2023]
Abstract
Vanadium dioxide (VO2), with reversible metal-semiconductor transition near room temperature, is a compelling candidate for thermochromic windows. Nanocomposite coatings derived from VO2 nanoparticles are particularly superior to VO2 films due to their advantages in large-scale preparation, flexible shaping, and regulation of optical properties. In this work, we developed a novel method for one-step hydrothermal synthesis of W-doped VO2 (M) nanorods and studied their application in large-scale infrared smart windows. On introducing tartaric acid as a new reductant, VO2 underwent a two-stage phase evolution from the pure phase comprising VO2 (A) nanobelts to VO2 (M) nanorods, instead of the conventional three-stage B-A-M phase evolution during hydrothermal synthesis. This transition is very favorable for the large-scale hydrothermal synthesis of VO2 (M). The phase-transition temperature of VO2 (M) nanoparticles can be regulated systematically by W doping, with a reduction efficiency of about 24.52 °C/atom % W. Moreover, VO2 (M) composite films were fabricated using a convenient roller coating method, which exhibited significant midinfrared transmission switching up to 31%, with a phase-transition temperature of about 37.3 °C. This work demonstrates the significant progress in the one-step hydrothermal synthesis of VO2 (M) nanorods and provides significant insights into their applications in infrared smart windows.
Collapse
|