1
|
Horák M, Čalkovský V, Mach J, Křápek V, Šikola T. Plasmonic Properties of Individual Gallium Nanoparticles. J Phys Chem Lett 2023; 14:2012-2019. [PMID: 36794890 PMCID: PMC10017019 DOI: 10.1021/acs.jpclett.3c00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Gallium is a plasmonic material offering ultraviolet to near-infrared tunability, facile and scalable preparation, and good stability of nanoparticles. In this work, we experimentally demonstrate the link between the shape and size of individual gallium nanoparticles and their optical properties. To this end, we utilize scanning transmission electron microscopy combined with electron energy loss spectroscopy. Lens-shaped gallium nanoparticles with a diameter between 10 and 200 nm were grown directly on a silicon nitride membrane using an effusion cell developed in house that was operated under ultra-high-vacuum conditions. We have experimentally proven that they support localized surface plasmon resonances and their dipole mode can be tuned through their size from the ultraviolet to near-infrared spectral region. The measurements are supported by numerical simulations using realistic particle shapes and sizes. Our results pave the way for future applications of gallium nanoparticles such as hyperspectral absorption of sunlight in energy harvesting or plasmon-enhanced luminescence of ultraviolet emitters.
Collapse
Affiliation(s)
- Michal Horák
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Vojtěch Čalkovský
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Jindřich Mach
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Vlastimil Křápek
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Tomáš Šikola
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| |
Collapse
|
2
|
Huang S, Yang X, Liang X, Wu X, Yang C, Du J, Hou Y. Engineering a strong and stable ultraviolet chiroptical effect in a large-area chiral plasmonic shell. OPTICS EXPRESS 2022; 30:31486-31497. [PMID: 36242228 DOI: 10.1364/oe.468675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Ultraviolet chiral metamaterials (UCM) are highly desired for their strong interaction with the intrinsic resonance of molecules and ability in manipulating the polarization state of high energy photons, but rarely reported to date due to their small feature size and complex geometry. Herein, we design and fabricate a kind of novel ultraviolet chiral plasmonic shell (UCPS) by combing the stepwise Al deposition and colloid-sphere assembled techniques. The cancellation effect originated from the disorder lattices of micro-domains in the colloid monolayer has been successfully overcome by optimizing the deposition parameters, and a strong CD signal of larger than 1 deg in the UV region is demonstrated both in simulation and experiment. This strong ultraviolet chiroptical resonances mainly come from the surface chiral lattice resonance mode, the whispering gallery mode and also the interaction between neighbor shells, and can be effectively tuned by changing structural parameters, for example, the sphere diameter, or even slightly increasing the deposition temperature in experiment. To improve the stability, the fabricated UCPSs are protected by N2 in the deposition chamber and then passivated by UV-ozone immediately after each deposition step. The formed UCPS show an excellent stability when exposing in the atmospheric environment. The computer-aided geometrical model, electromagnetic modes, and the tunable chiroptical resonance modes have been systematically investigated.
Collapse
|
3
|
Leng D, Wang T, Li Y, Huang Z, Wang H, Wan Y, Pei X, Wang J. Plasmonic Bismuth Nanoparticles: Thiolate Pyrolysis Synthesis, Size-Dependent LSPR Property, and Their Oxidation Behavior. Inorg Chem 2021; 60:17258-17267. [PMID: 34708656 DOI: 10.1021/acs.inorgchem.1c02621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmonics, especially the localized surface plasmon resonance (LSPR) in non-noble metal bismuth nanoparticles (Bi NPs), and its spectral features and applications have stimulated increasing research interest in recent years. However, the lack of mature methods to prepare Bi NPs with a well-controlled size and/or shape significantly limits the experimental investigations concerning the LSPR optical properties. Herein, we realize the size-tunable synthesis of nearly monodisperse spherical Bi NPs through a thiolate pyrolysis reaction in solution. The instantaneous thermolysis of a layered molecular intermediate, bismuth dodecanethiolate [Bi(SC12H25)3], results in a classical LaMer mechanism for the nucleation and growth of Bi NPs, allowing for a precise size control from 65 to 205 nm in the average diameter. The diameter tunability enables a systematic study on the size dependence of LSPR optical properties of Bi NPs, and we observe rich ultraviolet-visible-near-infrared spectral responses arising from the LSPR absorption and scattering of Bi NPs as their size varies, which will greatly benefit the light harvesting and manipulation in the solar spectrum. Furthermore, we find that a complete oxidation occurs to Bi NPs under air flow at the temperature when they melt and accordingly generate metastable tetragonal-phase β-Bi2O3 NPs that show an optical band gap of 2.15 eV and interesting temperature-dependent β → α → δ → (γ + β) polymorphic transitions.
Collapse
Affiliation(s)
- Dehui Leng
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tingting Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - YingFen Li
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zibin Huang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huimin Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yixin Wan
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoxiao Pei
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junli Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
4
|
Wu J, Zhang L, Huang F, Ji X, Dai H, Wu W. Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121714. [PMID: 31818672 DOI: 10.1016/j.jhazmat.2019.121714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been reported to be able to quickly and non-destructively identify target analytes. SERS substrate with high sensitivity and selectivity gave SERS technology a broad application prospect. This contribution aims to provide a detailed and systematic review of the current state of research on SERS-based explosive sensors, with particular attention to current research advances. This review mainly focuses on the strategies for improving SERS performance and the SERS substrates with different dimensions including zero-dimensional (0D) nanocolloids, one-dimensional (1D) nanowires and nanorods, two-dimensional (2D) arrays, and three-dimensional (3D) networks. The effects of elemental composition, the shape and size of metal nanoparticles, hot-spot structure and surface modification on the performance of explosive detection are also reviewed. In addition, the future development tendency and application of SERS-based explosive sensors are prospected.
Collapse
Affiliation(s)
- Jingjing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Fang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
5
|
Gordillo N, Catalán-Gómez S, Pau JL, Redondo-Cubero A. Spectrally broad plasmonic absorption in Ga and In nanoparticle hybrids. NANOTECHNOLOGY 2019; 30:475705. [PMID: 31426038 DOI: 10.1088/1361-6528/ab3c73] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we use Joule-effect thermal evaporation to produce hybrid structures made of Ga and In nanoparticles (NPs) on Si (100) substrates. Taking advantage of the protective oxide shell, In NPs can be used as a template for a second deposition step without structural changes, enabling the hybridization of NPs of materials. These complex structures of mixed NPs present a spectrally broad plasmonic absorption that can be optically tuned with a wide range of photon energies from UV to IR regions with a full width at half maximum range of ∼400 to 800 nm. The results suggest that the localized surface plasmon resonance (LSPR) of the hybrid NPs is mainly due to the plasmonic coupling of the in-plane modes. Furthermore, different scenarios studied by discrete dipole approximation simulations show that the interconnection between NPs is extremely sensitive to the size and the local arrangement of the nanostructures. This kind of broadening and tunable LSPR may have interest for energy transfer applications, biosensing platforms and solar cells.
Collapse
Affiliation(s)
- N Gordillo
- Lab. de Microelectrónica, Dpto. de Física Aplicada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | | | | | | |
Collapse
|