Mehara J, Roithová J. Identifying reactive intermediates by mass spectrometry.
Chem Sci 2020;
11:11960-11972. [PMID:
34123215 PMCID:
PMC8162775 DOI:
10.1039/d0sc04754f]
[Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/19/2020] [Indexed: 01/11/2023] Open
Abstract
Development of new reactions requires finding and understanding of novel reaction pathways. In challenging reactions such as C-H activations, these pathways often involve highly reactive intermediates which are the key to our understanding, but difficult to study. Mass spectrometry has a unique sensitivity for detecting low abundant charged species; therefore it is increasingly used for detection of such intermediates in metal catalysed- and organometallic reactions. This perspective shows recent developments in the field of mass spectrometric research of reaction mechanisms with a special focus on going beyond mass-detection. Chapters discuss the advantages of collision-induced dissociation, ion mobility and ion spectroscopy for characterization of structures of the detected intermediates. In addition, we discuss the relationship between the condensed phase chemistry and mass spectrometric detection of species from solution.
Collapse