1
|
Kumar D, Sauer J, Airi A, Bordiga S, Galimberti DR. Assignment of IR spectra of ethanol at Brønsted sites of H-ZSM-5 to monomer adsorption using a Fermi resonance model. Phys Chem Chem Phys 2024; 27:550-563. [PMID: 39655396 DOI: 10.1039/d4cp03861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Understanding how alcohol molecules interact with the Brønsted acid sites (BAS) of zeolites is a prerequisite to the design of zeolite catalysts and catalytic processes. Here, we report IR spectra for the adsorption of ethanol on a highly crystalline sample of H-ZSM-5 zeolites exposed to ethanol gas at increasing pressure. We use density functional theory in combination with a FERMI resonance model to assign the measured spectra to a single adsorbed ethanol molecule per BAS. Specifically, we assign the bands at 2450 cm-1 and 1670 cm-1 to a FERMI resonance between the fundamental (Z)O-H stretching band of a single-ethanol-loaded BAS and the first overtone of the (Z)O-H out-of-plane bending. We conclude that adsorbed dimers do not contribute in a noticeable way up to a concentration of almost one ethanol molecule per BAS site. We further show that hybrid functionals (B3LYP) are required to get a close match between the predicted and experimental spectra, whereas commonly used generalized gradient type functionals such as PBE incorrectly describe the potential energy surface. They overestimate the redshift of the OH stretching band on hydrogen bond formation which results in an erroneous assignment of the IR bands.
Collapse
Affiliation(s)
- Dipanshu Kumar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Joachim Sauer
- Institut für Chemie, Humboldt-Universität, Unter den Linden 6, 10117 Berlin, Germany
| | - Alessia Airi
- INRiM Istituto Nazionale di Ricerca Metrologica, Strada delle cacce 91, I-10135 Turin, Italy.
- Chemistry Department, University of Turin, via Gioacchino Quarello 15/A, I-10135 Turin, Italy
| | - Silvia Bordiga
- Chemistry Department, University of Turin, via Gioacchino Quarello 15/A, I-10135 Turin, Italy
| | - Daria Ruth Galimberti
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Ureel Y, Alexopoulos K, Van Geem KM, Sabbe MK. Predicting the effect of framework and hydrocarbon structure on the zeolite-catalyzed beta-scission. Catal Sci Technol 2024; 14:7020-7036. [PMID: 39421599 PMCID: PMC11474451 DOI: 10.1039/d4cy00973h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Developing improved zeolites is essential in novel sustainable processes such as the catalytic pyrolysis of plastic waste. This study used density functional theory to investigate how alkyl chain length, unsaturated bonds, and branching affect β-scission kinetics in four zeolite frameworks, a key reaction in hydrocarbon cracking. The activation enthalpy was evaluated for a wide variety of 23 hydrocarbons, with 6 to 12 carbon atoms, in FAU, MFI, MOR, and TON. The consideration of both branched and linear olefin and diolefin reactants for the β-scission indicates how the reactant structure influences the intrinsic cracking kinetics, which is especially relevant for the catalytic cracking of plastic waste feedstocks. Intrinsic chemical effects, such as resonance stabilization, the inductive effect, and pore stabilization were found to provide an essential contribution to the activation enthalpy. Additionally, a predictive group additive model incorporating a novel so-called "pore confinement descriptor" was developed for fast prediction of the β-scission activation barrier of a wide range of molecules in the four zeolites. The obtained model can serve as an input for detailed kinetic models in zeolite-catalyzed cracking reactions. The acquired fundamental insights in the cracking of hydrocarbons, relevant for renewable feedstocks, correspond well with experimental observations and will facilitate an improved rational zeolite design.
Collapse
Affiliation(s)
- Yannick Ureel
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University Technologiepark 125 9052 Gent Belgium
| | - Konstantinos Alexopoulos
- Department of Chemical Engineering, Pennsylvania State University University Park Pennsylvania 16802-1503 USA
| | - Kevin M Van Geem
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University Technologiepark 125 9052 Gent Belgium
| | - Maarten K Sabbe
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University Technologiepark 125 9052 Gent Belgium
| |
Collapse
|
3
|
Abdul Nasir J, Beale AM, Catlow CRA. Understanding deNO x mechanisms in transition metal exchanged zeolites. Chem Soc Rev 2024; 53:11657-11691. [PMID: 39440717 DOI: 10.1039/d3cs00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition-metal-containing zeolites have wide-ranging applications in several catalytic processes including the selective catalytic reduction (SCR) of NOx species. To understand how transition metal ions (TMIs) can effect NOx reduction chemistry, both structural and mechanistic aspects at the atomic level are needed. In this review, we discuss the coordination chemistry of TMIs and their mobility within the zeolite framework, the reactivity of active sites, and the mechanisms and intermediates in the NH3-SCR reaction. We emphasise the key relationship between TMI coordination and structure and mechanism and discuss approaches to enhancing catalytic activity via structural modifications.
Collapse
Affiliation(s)
- Jamal Abdul Nasir
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
| | - C Richard A Catlow
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
4
|
Shelyapina MG. NMR Relaxation to Probe Zeolites: Mobility of Adsorbed Molecules, Surface Acidity, Pore Size Distribution and Connectivity. Molecules 2024; 29:5432. [PMID: 39598821 PMCID: PMC11597874 DOI: 10.3390/molecules29225432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Unique structural and chemical properties, such as ion exchange, developed inner surface, etc., as well as the wide possibilities and flexibility of regulating these properties, cause a keen interest in zeolites. They are widely used in industry as molecular sieves, ion exchangers and catalysts. Current trends in the development of zeolite-based catalysts include the adaptation of their cationic composition, acidity and porosity for a specific catalytic process. Recent studies have shown that mesoporosity is beneficial to the rational design of catalysts with controlled product selectivity and an improved catalyst lifetime due to its efficient mass-transport properties. Nuclear magnetic resonance (NMR) has proven to be a reliable method for studying zeolites. Solid-state NMR spectroscopy allows for the quantification of both Lewis and Brønsted acidity in zeolite catalysts and, nowadays, 27Al and 29Si magic angle spinning NMR spectroscopy has become firmly established in the set of approved methods for characterizing zeolites. The use of probe molecules opens up the possibility for the indirect measurement of the characteristics of acid sites. NMR relaxation is less common, although it is especially informative and enlightening for studying the mobility of guest molecules in the porous matrix. Moreover, the NMR relaxation of guest molecules and NMR cryoporometry can quantify pore size distribution on a broader scale (compared to traditional methods), which is especially important for systems with complex pore organization. Over the last few years, there has been a growing interest in the use of 2D NMR relaxation techniques to probe porous catalysts, such as 2D T1-T2 correlation to study the acidity of the surface of catalysts and 2D T2-T2 exchange to study pore connectivity. This contribution provides a comprehensive review of various NMR relaxation techniques for studying porous media and recent results of their applications in probing micro- and mesoporous zeolites, mainly focused on the mobility of adsorbed molecules, the acidity of the zeolite surface and the pore size distribution and connectivity of zeolites with hierarchical porosity.
Collapse
Affiliation(s)
- Marina G Shelyapina
- Department of Nuclear Physics Research Methods, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| |
Collapse
|
5
|
Li J, Chen H, Liu W, Zhi Y, Ta N, Xie S, Xu L, Li X, Zhu X, Xu S. Unravelling the Crucial of Spatial Al Distribution to Realize Precise Alkali-Treatment for Target Acid-Catalyzed Reactions. Angew Chem Int Ed Engl 2024:e202416564. [PMID: 39400431 DOI: 10.1002/anie.202416564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/15/2024]
Abstract
Constructing mesoporous structure within zeolites by alkali-treatment is an effective protocol to improve their diffusion properties. However, undesirable changes in Brönsted acid site (BAS) densities always offset this advantage in acid-catalyzed reactions. In this context, the crucial roles of spatial aluminum (Al) distribution were unraveled during alkali-treatment of MFI zeolite and the desirable BAS density was achieved in obtained hierarchical samples for the target reactions. Various characterization methods, particularly the multiple one- and two-dimensional magic-angle spinning (MAS) NMR techniques, were performed to track the alkali-treatment processes. For the sample with a more uniform spatial Al distribution, more tetrahedral Al sites would fall off and migrate around the Si-OH in zeolite as Al(OH)4 -. Those re-deposited Al(OH)4 - sites were easily transformed into NMR-invisible Al sites during the calcination process, which contributed negligibly to both Brönsted and Lewis acidities, thus being referred to "acid-free" Al species. While most tetrahedral Al sites were preserved after the alkali-treatment of sample with non-uniform Al distribution and the BAS density gradually increased with treatment time. According to the requirements of typical acid-catalyzed reactions, such as catalytic cracking of 1,3,5-triisopropylbenzene and methanol-to-olefins, the desired hierarchical zeolite catalysts were developed by matching the amounts of extracted Si and generated "acid-free" Al during the precise alkali-treatment.
Collapse
Affiliation(s)
- Junjie Li
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Huihui Chen
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wen Liu
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yuchun Zhi
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Na Ta
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Sujuan Xie
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Longya Xu
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiujie Li
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiangxue Zhu
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Shutao Xu
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
6
|
Ata K, Mineva T, Alonso B. Strength of London Dispersion Forces in Organic Structure Directing Agent-Zeolite Assemblies. Molecules 2024; 29:4489. [PMID: 39339483 PMCID: PMC11434474 DOI: 10.3390/molecules29184489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Herein, we study the London dispersion forces between organic structure directing agents (OSDAs)-here tetraalkyl-ammonium or -phosphonium molecules-and silica zeolite frameworks (FWs). We demonstrate that the interaction energy for these dispersion forces is correlated to the number of H atoms in OSDAs, irrespective of the structures of OSDAs or FWs, and of variations in charges and thermal motions. All calculations considered-DFT-D3 and BOMD undertaken by us, and molecular mechanics from an accessible database-led to the same trend. The mean energy of these dispersion forces is ca. -2 kcal.mol-1 per H for efficient H-O contacts.
Collapse
Affiliation(s)
- Karima Ata
- ICGM, Université de Montpellier, CNRS, ENSCM, CEDEX 05, 34293 Montpellier, France
| | - Tzonka Mineva
- ICGM, Université de Montpellier, CNRS, ENSCM, CEDEX 05, 34293 Montpellier, France
| | - Bruno Alonso
- ICGM, Université de Montpellier, CNRS, ENSCM, CEDEX 05, 34293 Montpellier, France
| |
Collapse
|
7
|
Reed JLA, James A, Carey T, Fitzgerald N, Kellet S, Nearchou A, Farrelly AL, Fell HAH, Allan PK, Hriljac JA. Engineered species-selective ion-exchange in tuneable dual-phase zeolite composites. Chem Sci 2024; 15:13699-13711. [PMID: 39211493 PMCID: PMC11352454 DOI: 10.1039/d4sc02664k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 09/04/2024] Open
Abstract
Controllable sorption selectivity in zeolites is crucial for their application in catalysis, gas separation and ion-exchange. Whilst existing approaches to achieving sorption selectivity with natural zeolites typically rely on screening for specific geological deposits, here we develop partial interzeolite transformation as a straightforward and highly tuneable method to achieve sorption selectivity via forming dual-phase composites with simultaneous control of both phase-ratio and morphology. The dual-cation (strontium and caesium) exchange properties of a series of granular mordenite/zeolite P composites formed from a parent natural mordenite material are demonstrated in complex, industrially relevant multi-ion environments pertinent to nuclear waste management. The relative uptake of caesium and strontium is controlled via the extent of transformation: composites exhibit significantly increased ion-exchange affinity for strontium compared to both the parent mordenite and physical mixtures of mordenite/zeolite P phases with similar phase ratios. The composite with a 40 : 60 mordenite : zeolite P ratio composite achieves higher uptake rates than the natural clinoptilolite material currently used to decontaminate nuclear waste streams at the Sellafield site, UK. In situ X-ray image-guided diffraction experiments during caesium exchange demonstrate that the mordenite core retains rapid caesium uptake likely responsible for the unique ion-exchange chemistry achievable through the partial inter-zeolite transformation. These results offer a straightforward and controllable route to optimised zeolite functionality and a strategy to engineer composites from low-grade natural sources at low cost and with formulation advantages for industrial deployment.
Collapse
Affiliation(s)
- James L A Reed
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Andrew James
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Thomas Carey
- National Nuclear Laboratory, Springfields Salwick Preston PR4 0XJ UK
| | - Neelam Fitzgerald
- National Nuclear Laboratory, Springfields Salwick Preston PR4 0XJ UK
| | - Simon Kellet
- Sellafield Ltd, Sellafield Seascale Cumbria CA20 1PG UK
| | - Antony Nearchou
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Adele L Farrelly
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Harrison A H Fell
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Phoebe K Allan
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Joseph A Hriljac
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| |
Collapse
|
8
|
Lu Z, Yang H, Wu G, Shan P, Lin H, He P, Zhao J, Yang Y, Zhou H. A "Liquid-In-Solid" Electrolyte for High-Voltage Anode-Free Rechargeable Sodium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404569. [PMID: 38857594 DOI: 10.1002/adma.202404569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Developing anode-free batteries is the ultimate goal in pursuit of high energy density and safety. It is more urgent for sodium (Na)-based batteries due to its inherently low energy density and safety hazards induced by highly reactive Na metal anodes. However, there is no electrolyte that can meet the demanding Na plating-stripping Coulomb efficiency (CE) while resisting oxidative decomposition at high voltages for building stable anode-free Na batteries. Here, a "liquid-in-solid" electrolyte design strategy is proposed to integrate target performances of liquid and solid-state electrolytes. Breaking through the Na+ transport channel of Na-containing zeolite molecular sieve by ion-exchange and confining aggregated liquid ether electrolytes in the nanopore and void of zeolites, it achieves excellent high-voltage stability enabled by solid-state zeolite electrolytes, while inheriting the ultra-high CE (99.84%) from liquid ether electrolytes. When applied in a 4.25 V-class anode-free Na battery, an ultra-high energy density of 412 W h kg-1 (based on the active material of both cathodes and anodes) can be reached, which is comparable to the state-of-the-art graphite||LiNi0.8Co0.1Mn0.1O2 lithium-ion batteries. Furthermore, the assembled anode-free pouch cell exhibits excellent cycling stability, and a high capacity retention of 89.2% can be preserved after 370 cycles.
Collapse
Affiliation(s)
- Ziyang Lu
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8573, Japan
| | - Huijun Yang
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8573, Japan
| | - Gang Wu
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8573, Japan
| | - Peizhao Shan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hongxin Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing, 210093, P. R. China
| | - Junmei Zhao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Haoshen Zhou
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8573, Japan
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
9
|
Liu L, Xu Q, dos Anjos Cunha L, Xin H, Head-Gordon M, Qian J. Real-Space Pseudopotential Method for the Calculation of Third-Row Elements X-ray Photoelectron Spectroscopic Signatures. J Chem Theory Comput 2024; 20:6134-6143. [PMID: 38970155 PMCID: PMC11270745 DOI: 10.1021/acs.jctc.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) is a powerful characterization technique that unveils subtle chemical environment differences via core-electron binding energy (CEBE) analysis. We extend the development of real-space pseudopotential methods to calculating 1s, 2s, and 2p3/2 CEBEs of third-row elements (S, P, and Si) within the framework of Kohn-Sham density-functional theory (KS-DFT). The new approach systematically prevents variational collapse and simplifies core-excited orbital selection within dense energy level distributions. However, careful error cancellation analysis is required to achieve accuracy comparable to all-electron methods and experiments. Combined with real-space KS-DFT implementation, this development enables large-scale simulations with both Dirichlet boundary conditions and periodic boundary conditions.
Collapse
Affiliation(s)
- Liping Liu
- Department
of Chemical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24060, United States
| | - Qiang Xu
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Leonardo dos Anjos Cunha
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Hongliang Xin
- Department
of Chemical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24060, United States
| | - Martin Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jin Qian
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Hebisch KL, Goel R, Gołą Bek K, Chmielniak PA, Sievers C. Synergy between Brønsted Acid Sites and Carbonaceous Deposits during Skeletal 1-Butene Isomerization over Ferrierite. ACS Catal 2024; 14:10280-10294. [PMID: 38988653 PMCID: PMC11232006 DOI: 10.1021/acscatal.4c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
During skeletal 1-butene isomerization over ferrierite carbonaceous deposits block 98% of the micropores within 24 h, rendering them effectively inaccessible to reactants, while the catalytic activity improves continuously for 100 h on stream. Ex-situ pyridine adsorption shows that the concentration of conventional Brønsted acid sites in the 10-R channels decreases below the detection threshold of infrared spectroscopy within 2 h. However, the operando addition of the base triethyl amine to the feed quenches the reaction, showing that mediated acidity is necessary. The larger base 2,2,6,6-tetramethyl piperidine only deactivates catalytic activity after several hours because it cannot directly bind to active sites at the sterically restricted pore mouths. The communication of internal Brønsted acid sites to the external reactants via a concerted mechanism involving protonated monoaromatic deposits trapped in the pore mouths explains the promoting effects of coke species in zeolite-catalyzed skeletal butene isomerization. This work presents a consolidated explanation of the synergy of solid acidity, structural confinement, and carbonaceous deposits in zeolites.
Collapse
Affiliation(s)
- Karoline L Hebisch
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Risha Goel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kinga Gołą Bek
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pawel A Chmielniak
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Li J, Liu W, Zhang X, Chen F, Xie S, Xu L, Li X, Zhu X. Construction of diverse hollow MFI zeolites through regulating the micropore filling agents. J Colloid Interface Sci 2024; 665:125-132. [PMID: 38520929 DOI: 10.1016/j.jcis.2024.03.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Constructing hollow structure into microporous zeolites can improve the accessibility of acid sites located at the inner part and the diffusion property. Hence, the development of an efficient synthesis strategy to acquire zeolites with tunable hollow structures and acidity has attracted much attention. In this work, an innovative tandem synthesis route was proposed to prepare MFI zeolites with diverse hollow structure while maintaining solid yields exceeding 90 %. The substitution of ethanol molecules, which previously occupied the micropores, with tetrapropylammonium cations was proved to be the key factor to construct hollow structure. And a crystallization-driven particle dissolution mechanism was proposed. The dimension of the hollow cavity, particle size, and Si/Al ratio can be flexibly regulated. Interestingly, hollow MFI samples featuring the common cavity structure, "eye-like" cavity structure, or double-cavity structure can be directly synthesized by controlling the dissolution of core parts. In the 1-butene catalytic cracking reactions, a much higher conversion of 67.2 % was acquired over hollow ZSM-5 compared with that over conventional ZSM-5 (35.8 %) after 64 h of reaction. This improvement can be attributed to the eightfold increase of diffusivity in hollow ZSM-5. This facile and efficient synthesis method endows accurate regulation of the hollow structure, which is meaningful for both fundamental research and industrial applications of hollow zeolites.
Collapse
Affiliation(s)
- Junjie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinbao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fucun Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Sujuan Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Longya Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiujie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xiangxue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
12
|
Erlebach A, Šípka M, Saha I, Nachtigall P, Heard CJ, Grajciar L. A reactive neural network framework for water-loaded acidic zeolites. Nat Commun 2024; 15:4215. [PMID: 38760371 PMCID: PMC11101627 DOI: 10.1038/s41467-024-48609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Under operating conditions, the dynamics of water and ions confined within protonic aluminosilicate zeolite micropores are responsible for many of their properties, including hydrothermal stability, acidity and catalytic activity. However, due to high computational cost, operando studies of acidic zeolites are currently rare and limited to specific cases and simplified models. In this work, we have developed a reactive neural network potential (NNP) attempting to cover the entire class of acidic zeolites, including the full range of experimentally relevant water concentrations and Si/Al ratios. This NNP has the potential to dramatically improve sampling, retaining the (meta)GGA DFT level accuracy, with the capacity for discovery of new chemistry, such as collective defect formation mechanisms at the zeolite surface. Furthermore, we exemplify how the NNP can be used as a basis for further extensions/improvements which include data-efficient adoption of higher-level (hybrid) references via Δ-learning and the acceleration of rare event sampling via automatic construction of collective variables. These developments represent a significant step towards accurate simulations of realistic catalysts under operando conditions.
Collapse
Affiliation(s)
- Andreas Erlebach
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| | - Martin Šípka
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
- Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75, Prague, Czech Republic
| | - Indranil Saha
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| |
Collapse
|
13
|
Wang C, Zheng M, Hu M, Cai W, Chu Y, Wang Q, Xu J, Deng F. Unraveling Spatially Dependent Hydrophilicity and Reactivity of Confined Carbocation Intermediates during Methanol Conversion over ZSM-5 Zeolite. J Am Chem Soc 2024; 146:8688-8696. [PMID: 38482699 DOI: 10.1021/jacs.4c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Carbocations play a pivotal role as reactive intermediates in zeolite-catalyzed methanol-to-hydrocarbon (MTH) transformations. However, the interaction between carbocations and water vapor and its subsequent effects on catalytic performance remain poorly understood. Using micro-magnetic resonance imaging (μMRI) and solid-state NMR techniques, this work investigates the hydrophilic behavior of cyclopentenyl cations within ZSM-5 pores under vapor conditions. We show that the polar cationic center of cyclopentenyl cations readily initiates water nucleus formation through water molecule capture. This leads to an inhomogeneous water adsorption gradient along the axial positions of zeolite, correlating with the spatial distribution of carbocation concentrations. The adsorbed water promotes deprotonation and aromatization of cyclopentenyl cations, significantly enhancing the aromatic product selectivity in MTH catalysis. These results reveal the important influence of adsorbed water in modulating the carbocation reactivity within confined zeolite pores.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingji Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Ma JT, Meng TF, Chen ZY, Zhu YJ, Lian C, Wang P, Liu DH, Zhao YP. Catalytic performance and mechanism study of the isomerization of 2,5-dichlorotoluene to 2,4-dichlorotoluene. RSC Adv 2024; 14:8709-8717. [PMID: 38495976 PMCID: PMC10938376 DOI: 10.1039/d4ra00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
This work investigates the influence of catalyst HZSM-5 on the isomerization of 2,5-dichlorotoluene (2,5-DCT) to produce 2,4-dichlorotoluene (2,4-DCT). We observe that hydrothermal treatment leads to a decrease in total acidity and Brønsted/Lewis ratio of HZSM-5 while generating new secondary pores. These characteristics result in excellent selectivity for post-hydrothermal modified HZSM-5 in the isomerization reaction from 2,5-DCT to 2,4-DCT. Under atmospheric pressure at 350 °C, unmodified HZSM-5 achieves a selectivity of 66.4% for producing 2,4-DCT, however after hydrothermal modification the selectivity increases to 78.7%. Density Functional Theory (DFT) calculations explore the thermodynamic aspects of adsorption between the HZSM-5 surface and 2,4-DCT. The kinetic perspective investigates the mechanism involving proton attack on the methyl group of 2,5-DCT followed by rearrangement leading to formation of 2,4-DCT during isomerization. The consistency between simulation and experimental results provides evidence for the feasibility of isomerizing 2,5-DCT to 2,4-DCT. This work fills the gap in the low value-added product 2,5-DCT isomer conversion, indicating its significant practical application potential and provides a valuable reference and guidelines for industrial research in this field.
Collapse
Affiliation(s)
- Jiang-Tao Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Teng-Fei Meng
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Zi-Yun Chen
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Yu-Jun Zhu
- Department of Pharmaceutical and Biomedical Engineering, Clinical College of Anhui Medical University Hefei 230031 China
| | - Cheng Lian
- School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Peng Wang
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Ding-Hua Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Yu-Pei Zhao
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| |
Collapse
|
15
|
Gomes GJ, Zalazar MF, Padilha JC, Costa MB, Bazzi CL, Arroyo PA. Unveiling the mechanisms of carboxylic acid esterification on acid zeolites for biomass-to-energy: A review of the catalytic process through experimental and computational studies. CHEMOSPHERE 2024; 349:140879. [PMID: 38061565 DOI: 10.1016/j.chemosphere.2023.140879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
In recent years, there has been significant interest from industrial and academic areas in the esterification of carboxylic acids catalyzed by acidic zeolites, as it represents a sustainable and economically viable approach to producing a wide range of high-value-added products. However, there is a lack of comprehensive reviews that address the intricate reaction mechanisms occurring at the catalyst interface at both the experimental and atomistic levels. Therefore, in this review, we provide an overview of the esterification reaction on acidic zeolites based on experimental and theoretical studies. The combination of infrared spectroscopy with atomistic calculations and experimental strategies using modulation excitation spectroscopy techniques combined with phase-sensitive detection is presented as an approach to detecting short-lived intermediates at the interface of zeolitic frameworks under realistic reaction conditions. To achieve this goal, this review has been divided into four sections: The first is a brief introduction highlighting the distinctive features of this review. The second addresses questions about the topology and activity of different zeolitic systems, since these properties are closely correlated in the esterification process. The third section deals with the mechanisms proposed in the literature. The fourth section presents advances in IR techniques and theoretical calculations that can be applied to gain new insights into reaction mechanisms. Finally, this review concludes with a subtle approach, highlighting the main aspects and perspectives of combining experimental and theoretical techniques to elucidate different reaction mechanisms in zeolitic systems.
Collapse
Affiliation(s)
- Glaucio José Gomes
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina; Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil; Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil.
| | - María Fernanda Zalazar
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina.
| | - Janine Carvalho Padilha
- Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil
| | - Michelle Budke Costa
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Claudio Leones Bazzi
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Pedro Augusto Arroyo
- Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil
| |
Collapse
|
16
|
Wen Y, Hu L, Boxleiter A, Li D, Tang Y. Rare Earth Elements Recovery and Waste Management of Municipal Solid Waste Incineration Ash. ACS SUSTAINABLE RESOURCE MANAGEMENT 2024; 1:17-27. [PMID: 39177103 PMCID: PMC10840445 DOI: 10.1021/acssusresmgt.3c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 08/24/2024]
Abstract
The advancements in high-tech products and pursuit of renewable energy demand a massive and continuously growing supply of rare earth elements (REE). However, REE production from mining is heavily restricted by technoeconomic limitations and global geopolitical tensions. Municipal solid waste incineration ash (MSWIA) has been recently recognized as a potential alternative for REE recovery. This study applies and optimizes a green modular treatment system using organic ligands for effective REE recovery and concentration from MSWIA with minimal generation of secondary wastes. Citrate extracted >80% of total REE at pH 2.0 and ∼60% at pH 4.0. A subsequent oxalate precipitation step selectively concentrated >98% of extracted REE by ∼7-12 times compared to raw MSWIA. Waste byproducts were upcycled to synthesize zeolites, resulting in an overall solid waste volume reduction of ∼80% and heavy metal immobilization efficiency of ∼75% with negligible leaching, bringing the dual benefits of REE recovery and waste management. This work serves as a pioneer study in REE recovery from an emerging source and provides system level insights on the practicality of a simple three-step treatment system. Compared to existing literature, this system features a low chemical/energy input and a light environmental footprint.
Collapse
Affiliation(s)
- Yinghao Wen
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Lei Hu
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Anthony Boxleiter
- Department
of Geosciences, Georgia State University, 38 Peachtree Center Avenue, Atlanta, Georgia 30303, United States
| | - Dien Li
- Savannah
River National Laboratory, Aiken, South Carolina 29808, United States
| | - Yuanzhi Tang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Gramatikov SP, Petkov PS, Wang Z, Yang W, Vayssilov GN. Variation of the Orientations of Organic Structure-Directing Agents inside the Channels of SCM-14 and SCM-15 Germanosilicates Obtained by Ab Initio Molecular Dynamic Simulations. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:159. [PMID: 38251123 PMCID: PMC10819554 DOI: 10.3390/nano14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
We report ab initio molecular dynamic simulations of the organic structure-directing agent (OSDA) in the channels of SCM-14 and SCM-15 germanosilicates for models with different germanium distribution. Since OSDA was free to move inside the channels, independent of its initial orientation after the simulations in all structures the OSDA, protonated 4-pyrrolidinopyridine, is positioned almost perpendicular to the large channels of SCM-14. The structures obtained from the dynamic simulation are more stable by 157 to 331 kJ/mol than the structures obtained by initial geometry optimization. After simulations, the average distance between the N atom of the pyridine moiety of the OSDA and O from Ge-O-Ge is shorter by 0.2 Å than the same distance obtained from initial optimization. The stretching N-H frequencies in the IR spectra of the OSDA and other calculated vibrational frequencies are not characteristic of the orientation of the molecule and cannot be used to detect it.
Collapse
Affiliation(s)
- Stoyan P. Gramatikov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (S.P.G.); (P.S.P.)
| | - Petko St. Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (S.P.G.); (P.S.P.)
| | - Zhendong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., 1658 North Pudong Rd., Pudong, Shanghai 201208, China; (Z.W.); (W.Y.)
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., 1658 North Pudong Rd., Pudong, Shanghai 201208, China; (Z.W.); (W.Y.)
| | - Georgi N. Vayssilov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (S.P.G.); (P.S.P.)
| |
Collapse
|
18
|
Hu P, Deguchi M, Yamada H, Kobayashi K, Ohara K, Sukenaga S, Ando M, Shibata H, Machida A, Yanaba Y, Liu Z, Okubo T, Wakihara T. Revealing the evolution of local structures in the formation process of alkaline earth metal cation-containing zeolites from glasses. Phys Chem Chem Phys 2023; 26:116-122. [PMID: 38059533 DOI: 10.1039/d3cp04954j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Alkaline earth metal cations are ubiquitously present in natural zeolites but less exploited in synthetic zeolites due to their low solubility in water, and hence it remains elusive how they contribute to zeolite formation. Herein, harmotome, a PHI-type zeolite with Ba2+, is readily synthesized from a Ba-containing aluminosilicate glass. This glass-to-zeolite transformation process, in particular the structure-regulating role of Ba2+, is investigated by anomalous X-ray scattering and high-energy X-ray total scattering techniques. The results demonstrate that the steady Ba2+-aluminosilicate interactions not only help prevent the precipitation of barium species under alkaline synthetic conditions, but also dictate the local structures with distinct interatomic distances between the Ba2+ and the surrounding aluminosilicate species throughout the transformation process, which lead to the successful formation of harmotome without detectable impurities. This study highlights the usefulness of the comprehensive X-ray scattering techniques in revealing the formation scheme of the zeolites containing specific metal species. In addition, a promising alternative approach to design and synthesize zeolites with unique compositions and topologies by using well-crafted glasses with suitable metal cation dopants is demonstrated.
Collapse
Affiliation(s)
- Peidong Hu
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makiko Deguchi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroki Yamada
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Faculty of Materials for Energy, Shimane University, 1060 Nishi-Kawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Kentaro Kobayashi
- Faculty of Materials for Energy, Shimane University, 1060 Nishi-Kawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Koji Ohara
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Faculty of Materials for Energy, Shimane University, 1060 Nishi-Kawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Sohei Sukenaga
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Mariko Ando
- Graduate School of Engineering, Tohoku University, 6-6-04 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Hiroyuki Shibata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Akihiko Machida
- Synchrotron Radiation Research Center, National Institutes for Quantum Science and Technology (QST), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yutaka Yanaba
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Zhendong Liu
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Okubo
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toru Wakihara
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Daouli A, Rey J, Lahrar EH, Valtchev V, Badawi M, Guillet-Nicolas R. Ab Initio Screening of Divalent Cations for CH 4, CO 2, H 2, and N 2 Separations in Chabazite Zeolite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15962-15973. [PMID: 37929920 DOI: 10.1021/acs.langmuir.3c01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The efficient separation and adsorption of critical gases are, more than ever, a major focus point in important energy processes, such as CH4 enrichment of biogas or natural gas, CO2 separation and capture, and H2 purification and storage. Thanks to its physicochemical properties, cation-exchanged chabazite is a potent zeolite for such applications. Previous computational screening investigations have mostly examined chabazites exchanged with monovalent cations. Therefore, in this contribution, periodic density functional theory (DFT) calculations in combination with dispersion corrections have been used for a systematic screening of divalent cation exchanged chabazite zeolites. The work focuses on cheap and readily available divalent cations, Ca(II), Mg(II), and Zn(II), Fe(II), Sn(II), and Cu(II) and investigates the effect of the cation nature and location within the framework on the adsorption selectivity of chabazite for specific gas separations, namely, CO2/CH4, N2/CH4, and N2/H2. All the cationic adsorption sites were explored to describe the diversity of sites in a typical experimental chabazite with a Si/Al ratio close to 2 or 3. The results revealed that Mg-CHA is the most promising cation for the selective adsorption of CO2. These predictions were further supported by ab initio molecular dynamics simulations performed at 300 K, which demonstrated that the presence of CH4 has a negligible impact on the adsorption of CO2 on Mg-CHA. Ca(II) was found to be the most favorable cation for the selective adsorption of H2 and CO2. Finally, none of the investigated cations were suitable for the preferential capture of N2 and H2 in the purification of CH4 rich mixtures. These findings provide valuable insights into the factors influencing the adsorption behavior of N2, H2, CH4, and CO2 and highlight the crucial role played by theoretical calculations and simulations for the optimal design of efficient adsorbents.
Collapse
Affiliation(s)
- Ayoub Daouli
- Laboratoire de Physique et Chimie Théoriques, CNRS, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
| | - Jérôme Rey
- Laboratoire de Physique et Chimie Théoriques, CNRS, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000Caen, France
| | - El Hassane Lahrar
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000Caen, France
| | - Valentin Valtchev
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000Caen, France
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, CNRS, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
| | - Rémy Guillet-Nicolas
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000Caen, France
| |
Collapse
|
20
|
Koike M, Grosskreuz I, Asakura Y, Miyawaki R, Gies H, Wada H, Shimojima A, Marler B, Kuroda K. Bridging the Gap between Zeolites and Dense Silica Polymorphs: Formation of All-Silica Zeolite with High Framework Density from Natural Layered Silicate Magadiite. Chemistry 2023; 29:e202301942. [PMID: 37486717 DOI: 10.1002/chem.202301942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
A silica zeolite (RWZ-1) with a very high framework density (FD) was synthesized from highly crystalline natural layered silicate magadiite, bridging the gap between the two research areas of zeolites and dense silica polymorphs. Magadiite was topotactically converted into a 3D framework through two-step heat treatment. The resulting structure had a 1D micropore system of channel-like cavities with an FD of 22.1 Si atoms/1000 Å3 . This value is higher than those of all other silica zeolites reported so far, approaching those of silica polymorphs (tridymite (22.6) and α-quartz (26.5)). RWZ-1 is a slight negative thermal expansion material with thermal properties approaching those of dense silica polymorphs. It contributes to the creation of a new field on microporous high-density silica/silicates. Synergistic interactions are expected between the micropores with molecular sieving properties and the dense layer-like building units with different topologies which provide thermal and mechanical stabilities.
Collapse
Affiliation(s)
- Masakazu Koike
- Department of Applied Chemistry Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan
| | - Isabel Grosskreuz
- Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Yusuke Asakura
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Present Address: Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Ritsuro Miyawaki
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| | - Hermann Gies
- Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Hiroaki Wada
- Department of Applied Chemistry Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan
| | - Bernd Marler
- Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Kazuyuki Kuroda
- Department of Applied Chemistry Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan
| |
Collapse
|
21
|
Matam SK, Silverwood IP, Boudjema L, O'Malley AJ, Catlow CRA. Methanol diffusion and dynamics in zeolite H-ZSM-5 probed by quasi-elastic neutron scattering and classical molecular dynamics simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220335. [PMID: 37691467 PMCID: PMC10493552 DOI: 10.1098/rsta.2022.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 09/12/2023]
Abstract
Zeolite ZSM-5 is a key catalyst in commercially relevant processes including the widely studied methanol to hydrocarbon reaction, and molecular diffusion in zeolite pores is known to be a crucial factor in controlling catalytic reactions. Here, we present critical analyses of recent quasi-elastic neutron scattering (QENS) data and complementary molecular dynamics (MD) simulations. The QENS experiments show that the nature of methanol diffusion dynamics in ZSM-5 pores is dependent both on the Si/Al ratio (11, 25, 36, 40 and 140), which determines the Brønsted acid site density of the zeolite, and that the nature of the type of motion observed may vary qualitatively over a relatively small temperature range. At 373 K, on increasing the ratio from 11 to 140, the observed mobile methanol fraction increases and the nature of methanol dynamics changes from rotational (in ZSM-5 with Si/Al of 11) to translational diffusion. The latter is either confined localized diffusion within a pore in zeolites with ratios up to 40 or non-localized, longer-range diffusion in zeolite samples with the ratio of 140. The complementary MD simulations conducted over long time scales (1 ns), which are longer than those measured in the present study by QENS (≈1-440 ps), at 373 K predict the occurrence of long-range translational diffusion of methanol in ZSM-5, independent of the Si/Al ratios (15, 47, 95, 191 and siliceous MFI). The rate of diffusion increases slightly by increasing the ratio from 15 to 95 and thereafter does not depend on zeolite composition. Discrepancies in the observed mobile methanol fraction between the MD simulations (100% methanol mobility in ZSM-5 pores across all Si/Al ratios) and QENS experiments (for example, ≈80% immobile methanol in ZSM-5 with Si/Al of 11) are attributed to the differences in time resolutions of the techniques. This perspective provides comprehensive information on the effect of acid site density on methanol dynamics in ZSM-5 pores and highlights the complementarity of QENS and MD, and their advantages and limitations. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Santhosh K. Matam
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Ian P. Silverwood
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Lotfi Boudjema
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1E 6BT, UK
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alexander J. O'Malley
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Institute for Sustainability, Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - C. Richard A. Catlow
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1E 6BT, UK
| |
Collapse
|
22
|
Wilding MC, Sella A, Howard CA, Sobrido AJ, Catlow CRA. Exploring the length scales, timescales and chemistry of challenging materials (Part 2). PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20230175. [PMID: 37691460 PMCID: PMC10493547 DOI: 10.1098/rsta.2023.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
This themed issue explores the different length and timescales that determine the physics and chemistry of a variety of key of materials, explored from the perspective of a wide range of disciplines, including physics, chemistry materials science, Earth science and biochemistry. The topics discussed include catalysis, chemistry under extreme conditions, energy materials, amorphous and liquid structure, hybrid organic materials and biological materials. The issue is in two parts, with this second set of contributions exploring hybrid organic materials, catalysis low-dimensional and graphitic materials, biological materials and naturally occurring, super-hard material as well as dynamic high pressure and new developments in imaging techniques pressure. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Martin C. Wilding
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11, 0QX, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrea Sella
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | | | - Ana Jorge Sobrido
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - C. R. A. Catlow
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11, 0QX, UK
- Department of Chemistry, University College London, London WC1E 6BT, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
23
|
Zhour K, Daouli A, Postnikov A, Hasnaoui A, Badawi M. Potential of nanostructured carbon materials for iodine detection in realistic environments revealed by first-principles calculations. Phys Chem Chem Phys 2023; 25:26461-26474. [PMID: 37752811 DOI: 10.1039/d3cp02205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In the context of effective detection of iodine species (I2, CH3I) formed in nuclear power plants and nuclear fuel reprocessing facilities, we perform a comparative study of the potential sensing performance of four expectedly promising 2D materials (8-Pmmn borophene, BC3, C3N, and BC6N) towards the iodine-containing gases and, with the view of checking selectivity, towards common inhibiting gases in the containment atmosphere (H2O and CO), applying methods of dispersion-corrected density functional theory with periodic boundary conditions. A covalent bond is formed between the CO molecule and boron in BC3 or in 8-Pmmn borophene, compromising the anticipated applicability of these materials for iodine detection. The presence of nitrogen atoms in BC6N-2 prevents the formation of a covalent bond with CO; however, the closeness of adsorption energies for all the four gases studied does not distinguish this material as specifically sensitive to iodine species. Finally, the energies of adsorption on C3N yield a significant and promising discrimination between the adsorption energies of (I2, CH3I) vs. (CO, H2O), revealing possibilities for this material's use as an iodine sensor. The conclusions are supported by simulations at finite temperature; underlying electronic structures are also discussed.
Collapse
Affiliation(s)
- Kazem Zhour
- LCPT, Université de Lorraine, F-54000 Nancy, France.
| | - Ayoub Daouli
- LS2ME, Sultan Moulay Slimane University of Beni Mellal, FP-Khouribga, Morocco
| | | | - Abdellatif Hasnaoui
- LS2ME, Sultan Moulay Slimane University of Beni Mellal, FP-Khouribga, Morocco
| | | |
Collapse
|
24
|
Van Speybroeck V, Bocus M, Cnudde P, Vanduyfhuys L. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catal 2023; 13:11455-11493. [PMID: 37671178 PMCID: PMC10476167 DOI: 10.1021/acscatal.3c01945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Indexed: 09/07/2023]
Abstract
Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps-diffusion, adsorption, and reaction-as they take place at the catalyst particle level.
Collapse
Affiliation(s)
| | - Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
25
|
Van Speybroeck V. Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220239. [PMID: 37211031 PMCID: PMC10200353 DOI: 10.1098/rsta.2022.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 05/23/2023]
Abstract
The question is addressed in how far current modelling strategies are capable of modelling dynamic phenomena in realistic nanostructured materials at operating conditions. Nanostructured materials used in applications are far from perfect; they possess a broad range of heterogeneities in space and time extending over several orders of magnitude. Spatial heterogeneities from the subnanometre to the micrometre scale in crystal particles with a finite size and specific morphology, impact the material's dynamics. Furthermore, the material's functional behaviour is largely determined by the operating conditions. Currently, there exists a huge length-time scale gap between attainable theoretical length-time scales and experimentally relevant scales. Within this perspective, three key challenges are highlighted within the molecular modelling chain to bridge this length-time scale gap. Methods are needed that enable (i) building structural models for realistic crystal particles having mesoscale dimensions with isolated defects, correlated nanoregions, mesoporosity, internal and external surfaces; (ii) the evaluation of interatomic forces with quantum mechanical accuracy albeit at much lower computational cost than the currently used density functional theory methods and (iii) derivation of the kinetics of phenomena taking place in a multi-length-time scale window to obtain an overall view of the dynamics of the process. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
|
26
|
Wu X, Wei Y, Liu Z. Dynamic Catalytic Mechanism of the Methanol-to-Hydrocarbons Reaction over Zeolites. Acc Chem Res 2023. [PMID: 37402692 DOI: 10.1021/acs.accounts.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
ConspectusThe methanol-to-hydrocarbons (MTH) process has provided a new route to obtaining basic chemicals without relying on an oil resource. Acidity and shape selectivity endow the zeolite with a decisive role in MTH catalysis. However, the inherent reaction characteristics of the MTH reaction over zeolites, such as the complexity of catalytic reaction kinetics, the diversity of catalytic reaction modes, and even the limitations of catalytic and diffusive decoupling, have all confused people with respect to obtaining a comprehensive mechanistic understanding. By examining the zeolite-catalyzed MTH reaction from the perspective of chemical bonding, one would realize that this reaction reflects the dynamic assembly process of C-C bonds from C1 components to multicarbon products. The key to understanding the MTH reaction lies in the mechanism by which C-C bonds are formed and rearranged in the confined microenvironment of the channel or cage structures of zeolite catalysts to achieve shape-selective production.The applications of advanced in situ spectroscopy as well as computational chemistry provide tremendous opportunities for capturing and identifying the details of the structure and properties of reactants, intermediates, and products in the confined reaction space of zeolite channels or cages, observing the real-time dynamic evolution of the catalytic surface, and modeling the elementary reaction steps at the molecular and atomic levels.In this Account, the dynamic catalytic mechanism of the zeolite-catalyzed MTH reaction will be outlined based on decades of continuous research and in-depth understanding. The combination of advanced in situ spectroscopy and theoretical methods allowed us to observe and simulate the formation, growth, and aging process on the working catalyst surface and thus map the dynamical evolution of active sites from a Brønsted acid site (BAS) to an organic-inorganic hybrid supramolecule (OIHS) in the MTH reaction. Moreover, the ever-evolving dynamic succession of the OIHS from surface methoxy species (SMS) to active ion-pair complexes (AIPC) to inert complexes (IC) guided the dynamic autocatalytic process from initiation to sustaining and then to termination, resulting in a complex interlaced hypercycle reaction network. The concept of dynamic catalysis will provide deep insight into the complex catalytic mechanisms as well as the structure-activity relationships in MTH chemistry. More importantly, we are now getting closer to the nature of zeolite catalysis beyond the traditional view of BAS catalysis.
Collapse
Affiliation(s)
- Xinqiang Wu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yingxu Wei
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Sugiura Y, Tobita N, Tobita T, Taga M, Nakachi S, Yokota K, Yamada E, Horie M, Momma K, Matsubara S. Oil Inclusions Found in Skeleton Crystals of Quartz Indicated the Existence of Organic Matter Surrounding Ancient Growth Environments. ACS OMEGA 2023; 8:21464-21473. [PMID: 37360484 PMCID: PMC10286290 DOI: 10.1021/acsomega.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
In nature, minerals record various origins and information for geology and geobiochemistry. Here, we investigated the origin of organic matter and growth mechanism of quartz with oil inclusion revealing fluorescence under short ultraviolet (UV) light, obtained from the clay vein at Shimanto-cho, Kochi, Shikoku Island, Japan. Geological investigation indicated that the oil-quartz was formed in hydrothermal metamorphic veins found in the late Cretaceous interbedded sandstone and mudstone. The obtained oil-quartz crystals are mostly double-terminated. Micro-X-ray computed tomography (microCT) indicated that oil-quartz crystals have various veins originating as skeleton structures along the quartz crystal {111} and {1-11} faces. Spectroscopic and chromatographic studies indicated that aromatic ester and tetraterpene (lycopene) molecules, which revealed fluorescence, were detected. Large molecular weight sterol molecules, such as C40, were also detected in the vein of oil-quartz. This investigation indicated that organic inclusions in mineral crystals would form with ancient microorganism culture environments.
Collapse
Affiliation(s)
- Yuki Sugiura
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu 761-3095, Kagawa, Japan
- Research
Planning Office, Headquarters of Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science
and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-0035, Ibaraki, Japan
| | - Naoko Tobita
- Friends
of Mineral, 4-13-18,
Toyotama-naka, Nerima, Tokyo 176-0013, Japan
| | - Takashi Tobita
- Friends
of Mineral, 4-13-18,
Toyotama-naka, Nerima, Tokyo 176-0013, Japan
| | - Masaru Taga
- Faculty
of Agriculture, Ryukoku University, 1-5, Yokotani, Seta-Ohe, Ohtsu, Shiga, Japan 520-2194
| | - Shu Nakachi
- Natural
History Lab., 120 Suoh-kata, Ohtsuki-Town, Hata, Kochi 788-0313, Japan
| | - Kazumichi Yokota
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu 761-3095, Kagawa, Japan
| | - Etsuko Yamada
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu 761-3095, Kagawa, Japan
| | - Masanori Horie
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu 761-3095, Kagawa, Japan
| | - Koichi Momma
- Department
of Geology and Paleontology, National Museum
of Nature and Science, 4-1-1, Amakubo, Tsukuba 305-0005, Ibaraki, Japan
| | - Satoshi Matsubara
- Department
of Geology and Paleontology, National Museum
of Nature and Science, 4-1-1, Amakubo, Tsukuba 305-0005, Ibaraki, Japan
| |
Collapse
|
28
|
Rao W, Tang X, Lin K, Xu X, Xia H, Jiang Y, Liu Z, Zheng A. Loading-Driven Diffusion Pathway Selectivity in Zeolites with Continuum Intersecting Channels. J Phys Chem Lett 2023; 14:3567-3573. [PMID: 37017545 DOI: 10.1021/acs.jpclett.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The diffusion processes in zeolites are important for heterogeneous catalysis. Herein, we show that unique zeolites with "continuum intersecting channels" (e.g., BEC, POS, and SOV), in which two intersections are proximal, are greatly significant to the diffusion process with spontaneous switching of the diffusion pathway under varied loading. At low loading, the synergy of strong adsorption sites and molecular reorientation in intersections contribute to almost exclusive molecular diffusion in smaller channels. With an increase in molecular loading, the adsorbates are transported preferentially in larger channels mainly due to the lower diffusion barrier inside continuum intersection channels. This work demonstrates the ability to adjust the prior diffusion pathway by controlling the molecular loading, which may be beneficial for the separation of the product and byproduct in heterogeneous catalysis.
Collapse
Affiliation(s)
- Wei Rao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xianzhu Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Hongqiang Xia
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Yanqiu Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
29
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
30
|
Liu C, Uslamin EA, Pidko EA, Kapteijn F. Revealing Main Reaction Paths to Olefins and Aromatics in Methanol-to-Hydrocarbons over H-ZSM-5 by Isotope Labeling. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
31
|
Saka C. Metal-free phosphorus and boron-doped graphitic carbon nitride/zeolite hetero-linked particles for highly efficient green hydrogen production in methanol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43480-43495. [PMID: 36656470 DOI: 10.1007/s11356-023-25393-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Herein, the development of phosphorus and boron-doped graphitic carbon nitride/zeolite (P- and B-doped g-C3N4-zeolite) catalyst under three-step heating conditions was performed. The first step is to prepare g-C3N4 synthesis from urea at 500 °C. In the second step, the production of a B-doped zeolite-g-C3N4 catalyst by calcination of g-C3N4 and zeolite was obtained at a ratio of 1:1 with boric acid at 500 °C. In the third step, the obtained B-doped zeolite- g-C3N4 catalyst consists of the preparation of B- and P-doped g-C3N4-zeolite catalyst as a result of the hydrothermal method with phosphoric acid. Characterization studies of the obtained catalysts were carried out with X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). These obtained catalysts were used as a metal-free catalyst in the production of hydrogen (H2-P) by sodium borohydride in methanol(NaBH4-MR) for the first time in the literature. The hydrogen production rate (HGR) value for P- and B-doped g-C3N4-zeolite catalysts was 6250 ml min-1 g-1.
Collapse
Affiliation(s)
- Cafer Saka
- Faculty of Health Sciences, Siirt University, 56100, Siirt, Turkey.
| |
Collapse
|
32
|
Bocus M, Goeminne R, Lamaire A, Cools-Ceuppens M, Verstraelen T, Van Speybroeck V. Nuclear quantum effects on zeolite proton hopping kinetics explored with machine learning potentials and path integral molecular dynamics. Nat Commun 2023; 14:1008. [PMID: 36823162 PMCID: PMC9950054 DOI: 10.1038/s41467-023-36666-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Proton hopping is a key reactive process within zeolite catalysis. However, the accurate determination of its kinetics poses major challenges both for theoreticians and experimentalists. Nuclear quantum effects (NQEs) are known to influence the structure and dynamics of protons, but their rigorous inclusion through the path integral molecular dynamics (PIMD) formalism was so far beyond reach for zeolite catalyzed processes due to the excessive computational cost of evaluating all forces and energies at the Density Functional Theory (DFT) level. Herein, we overcome this limitation by training first a reactive machine learning potential (MLP) that can reproduce with high fidelity the DFT potential energy surface of proton hopping around the first Al coordination sphere in the H-CHA zeolite. The MLP offers an immense computational speedup, enabling us to derive accurate reaction kinetics beyond standard transition state theory for the proton hopping reaction. Overall, more than 0.6 μs of simulation time was needed, which is far beyond reach of any standard DFT approach. NQEs are found to significantly impact the proton hopping kinetics up to ~473 K. Moreover, PIMD simulations with deuterium can be performed without any additional training to compute kinetic isotope effects over a broad range of temperatures.
Collapse
Affiliation(s)
- Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Ruben Goeminne
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Aran Lamaire
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Maarten Cools-Ceuppens
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Toon Verstraelen
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | | |
Collapse
|
33
|
Active Sites in H-Mordenite Catalysts Probed by NMR and FTIR. Catalysts 2023. [DOI: 10.3390/catal13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mordenites are widely used in catalysis and environmental protection. The catalytic properties of mordenite are largely determined by the composition of its crystal framework, i.e., the SiO2/Al2O3 molar ratio (MR), and the cationic form. In H-mordenites, the most important characteristic becomes the structure and distribution of acid sites, which depends on the number and distribution of Al tetrahedra in the framework. In the present work, the local structure of these centers in H-mordenite catalysts with a nominal MR varied from 9.9 to 19.8 was studied in detail using a combination of magic angle spinning nuclear magnetic resonance (MAS NMR) and Fourier transform infrared spectroscopy (FTIR). 27Al MAS NMR indicates the presence of extra-framework Al in most of the studied samples that results in a higher real MR of the zeolitic framework compared to the nominal value. Concentrations of Lewis and Brønsted acid sites, as well as of silanol groups were estimated by elemental analysis, NMR, and FTIR spectroscopy. The values of site concentrations obtained from band intensities of adsorbed CO and those of OH groups are compared with the amount of framework and extra-framework aluminum. The advantages and restrictions of different methods of active site characterization are discussed.
Collapse
|
34
|
Fischer M. Adsorption of Carbamazepine in All-Silica Zeolites Studied with Density Functional Theory Calculations. Chemphyschem 2023; 24:e202300022. [PMID: 36715697 DOI: 10.1002/cphc.202300022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The anticonvulsant drug carbamazepine (-) is an emerging contaminant of considerable concern due to its hazard potential and environmental persistence. Previous experimental studies proposed hydrophobic zeolites as promising adsorbents for the removal of carbamazepine from water, but only a few framework types were considered in those investigations. In the present work, electronic structure calculations based on dispersion-corrected density functional theory (DFT) were used to study the adsorption of CBZ in eleven all-silica zeolites having different pore sizes and connectivities of the pore system (AFI, ATS, BEA, CFI, DON, FAU, IFR, ISV, MOR, SFH, SSF framework types). It was found that some zeolites with one-dimensional channels formed by twelve-membered rings (IFR, AFI) exhibit the highest affinity towards CBZ. A "good fit" of CBZ into the zeolite pores that maximizes dispersion interactions was identified as the dominant factor determining the interaction strength. Further calculations addressed the role of temperature (for selected systems) and of guest-guest interactions between coadsorbed CBZ molecules. In addition to predicting zeolite frameworks of particular interest as materials for selective CBZ removal, the calculations presented here also contribute to the atomic-level understanding of the interaction of functional organic molecules with all-silica zeolites.
Collapse
Affiliation(s)
- Michael Fischer
- Crystallography & Geomaterials Research, Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany.,Bremen Center for Computational Materials Science, University of Bremen, 28359, Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
35
|
Minami A, Hu P, Sada Y, Yamada H, Ohara K, Yonezawa Y, Sasaki Y, Yanaba Y, Takemoto M, Yoshida Y, Okubo T, Wakihara T. Tracking Sub-Nano-Scale Structural Evolution in Zeolite Synthesis by In Situ High-Energy X-ray Total Scattering Measurement with Pair Distribution Function Analysis. J Am Chem Soc 2022; 144:23313-23320. [PMID: 36524986 DOI: 10.1021/jacs.2c05722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The crystallization mechanism of zeolites remains unclarified to date because of lack of effective techniques in characterizing the local structures of amorphous precursors under synthetic conditions. Herein, in situ high-energy X-ray total scattering measurement with pair distribution function analysis is performed throughout the hydrothermal synthesis of SSZ-13 zeolite to investigate the amorphous-to-crystalline transformation at the sub-nano level in real time. Ordered four-membered rings (4Rs) are dominantly formed during the induction period, prior to the significant increase in the number of symmetric six- and eight-membered rings (6Rs and 8Rs) in the crystal growth stage. These preformed ordered 4Rs contribute to the formation of d6r and cha composite building units containing 6Rs and 8Rs with the assistance of the organic structure-directing agent, leading to the construction of embryonic zeolite crystallites, which facilitate the crystal growth through a particle attachment pathway. This work enriches the toolbox for better understanding the crystallization pathway of zeolites.
Collapse
Affiliation(s)
- Ayano Minami
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Peidong Hu
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan.,Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo113-8656, Japan
| | - Yuki Sada
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Hiroki Yamada
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5198, Japan
| | - Koji Ohara
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5198, Japan
| | - Yasuo Yonezawa
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo113-8656, Japan
| | - Yukichi Sasaki
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya456-8587, Japan
| | - Yutaka Yanaba
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8505, Japan
| | - Masanori Takemoto
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo113-8656, Japan
| | - Yuki Yoshida
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Tatsuya Okubo
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Toru Wakihara
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan.,Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo113-8656, Japan
| |
Collapse
|
36
|
Rybicki M, Sillar K, Sauer J. Dual-Site Model for Ab Initio Calculations of Gibbs Free Energies and Enthalpies of Adsorption: Methane in Zeolite Mobile Five (H-MFI). J Phys Chem Lett 2022; 13:11595-11600. [PMID: 36480747 DOI: 10.1021/acs.jpclett.2c03302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Quantum chemical hybrid MP2:PBE+D2 calculations in combination with molecular statistics are employed to calculate enthalpies and Gibbs free energies of adsorption for CH4 at Brønsted acid sites [bridging Si-O(H)-Al groups] and silica wall sites (Si-O-Si) of the proton form of zeolite MFI (H-ZSM-5) and its purely siliceous analogue Silicalite-1. A Langmuir model is adopted to calculate the amounts of CH4 adsorbed at each type of site from the Gibbs free energies. The combination of these results according to the ratio of silica wall sites and Brønsted acid sites in the sample yields adsorption isotherms for zeolites with different Si/Al ratios. The zero-coverage isosteric heats of adsorption, calculated as thermal averages of the adsorption enthalpies of the individual sites, vary between 20.2 kJ/mol for the pore wall site and 29.2 kJ/mol for the acid site and agree well within ±1 kJ/mol with experimental results.
Collapse
Affiliation(s)
- Marcin Rybicki
- Institute of Chemistry, Humboldt-Universitaät zu Berlin, Unter den Linden 6, 10099Berlin, Germany
| | - Kaido Sillar
- Institute of Chemistry, Humboldt-Universitaät zu Berlin, Unter den Linden 6, 10099Berlin, Germany
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411Tartu, Estonia
| | - Joachim Sauer
- Institute of Chemistry, Humboldt-Universitaät zu Berlin, Unter den Linden 6, 10099Berlin, Germany
| |
Collapse
|
37
|
Plessow PN, Studt F. Cooperative Effects of Active Sites in the MTO Process: A Computational Study of the Aromatic Cycle in H-SSZ-13. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Philipp N. Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
38
|
Abdel Halim S, Hassaneen HME. Experimental and theoretical study on the regioselective bis- or polyalkylation of 6-amino-2-mercapto-3 H-pyrimidin-4-one using zeolite nano-gold catalyst and a quantum hybrid computational method. RSC Adv 2022; 12:35794-35808. [PMID: 36545085 PMCID: PMC9752498 DOI: 10.1039/d2ra06572j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
The synthetic utility of 6-amino-2-mercapto-3H-pyrimidin-4-one 3 as building blocks for new poly (pyrimidine) by alkylation using the bis(halo) compounds and zeolite nano-gold as a catalyst was investigated. Furthermore, the experimental findings by the theoretical Density functional theory (DFT) computations at the DFT/B3LYP level of theory, utilizing the 6-311++G (d,p) basis set in the gas phase, were used to investigate the distinct phases for Regio isomer 11a & 12a and 11b & 12b compounds was fair and of good quality. The stability of the 12a and 12b phases is higher than the other Regio isomer 11a and 11b phases, according to DFT modelling. By computing HOMO and LUMO pictures, the electronic parameters: dipole moment of these compounds in the ground state were theoretically investigated. Non-linear optical (NLO) characteristics and quantum chemical parameters were examined using frontier molecular orbital (FMO) analysis. Natural bond orbital analysis was used to characterize the charge transfer of the electron density in the investigated compounds (NBO). The molecular electrostatic potential surfaces (MEPS) plots have been generated, and absorption spectral analysis in different solvents has been theoretically and experimentally examined to better understand the reactivity spots. At the B3LYP/6-311G (d,p) level of theory, thermodynamic properties were also calculated. Finally, DFT calculations were used to connect the structure-activity relationship (SAR) with real antibacterial results for compounds 12a and 12b.
Collapse
Affiliation(s)
- Shimaa Abdel Halim
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt +20 01090306455
| | | |
Collapse
|
39
|
Vanlommel S, Hoffman AEJ, Smet S, Radhakrishnan S, Asselman K, Chandran CV, Breynaert E, Kirschhock CEA, Martens JA, Van Speybroeck V. How Water and Ion Mobility Affect the NMR Fingerprints of the Hydrated JBW Zeolite: A Combined Computational-Experimental Investigation. Chemistry 2022; 28:e202202621. [PMID: 36005885 PMCID: PMC10092413 DOI: 10.1002/chem.202202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/08/2022]
Abstract
An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.
Collapse
Affiliation(s)
- Siebe Vanlommel
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 469052ZwijnaardeBelgium
| | | | - Sam Smet
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Karel Asselman
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - C. Vinod Chandran
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Eric Breynaert
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- National High Magnetic Field Laboratory 1800 E. Paul Dirac Dr.TallahasseeFL32310United States
| | | | - Johan A. Martens
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | | |
Collapse
|
40
|
Gong X, Ye Y, Chowdhury AD. Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| |
Collapse
|
41
|
Sun H, Lei T, Liu J, Guo X, Lv J. Physicochemical Properties of Water-Based Copolymer and Zeolite Composite Sustained-Release Membrane Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8553. [PMID: 36500049 PMCID: PMC9737451 DOI: 10.3390/ma15238553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
A nitrogen fertilizer slow-release membrane was proposed using polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), epoxy resin, and zeolite as raw materials. The effects of the water-based copolymer (PVA:PVP) solution ratio A (A1−A4) and zeolite amount B (B1−B4) on the water absorption rate (XS), water permeability (TS), fertilizer permeability (TF), tensile strength (KL), elongation at break (DSL), and viscosity (ND) of the membrane were explored using the swelling method, a self-made device, and a universal testing machine. The optimal combination of the water-based copolymer and zeolite amount was determined by the coefficient-of-variation method. The results show that the effects of the decrease in A on KL and the increase in B on KL and DSL are promoted first and then inhibited. DSL and ND showed a negative response to the A decrease, whereas XS, TS, and TF showed a positive response. The effect of increasing B on ND, TS, and TF showed a zigzag fluctuation. In the condition of A1−A3, XS showed a negative response to the B increase, whereas in the condition of A4, XS was promoted first and then inhibited. Adding PVP and zeolite caused the hydroxyl stretching vibration peak of PVA at 3300 cm−1 to widen; the former caused the vibration peak to move to low frequencies, and the latter caused it to move to high frequencies. The XRD pattern shows that the highest peak of zeolite is located at 2θ = 7.18° and the crystallization peak of the composite membrane increases with the rise in the proportion of zeolite. Adding PVP made the surface of the membrane smooth and flat, and adding a small amount of zeolite improved the mechanical properties of the membrane and exhibited good compatibility with water-based copolymers. In the evaluation model of the physicochemical properties of sustained-release membrane materials, the weight of all indicators was in the following order: TF > ND > TS > KL > XL > DSL. The optimal membrane material for comprehensive performance was determined to be A2B3.
Collapse
Affiliation(s)
- Haonan Sun
- College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tao Lei
- College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianxin Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xianghong Guo
- College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiangjian Lv
- College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
42
|
Chen W, Tarach KA, Yi X, Liu Z, Tang X, Góra-Marek K, Zheng A. Charge-separation driven mechanism via acylium ion intermediate migration during catalytic carbonylation in mordenite zeolite. Nat Commun 2022; 13:7106. [DOI: 10.1038/s41467-022-34708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractBy employing ab initio molecular dynamic simulations, solid-state NMR spectroscopy, and two-dimensional correlation analysis of rapid scan Fourier transform infrared spectroscopy data, a new pathway is proposed for the formation of methyl acetate (MA) via the acylium ion (i.e.,CH3 − C ≡ O+) in 12-membered ring (MR) channel of mordenite by an integrated reaction/diffusion kinetics model, and this route is kinetically and thermodynamically more favorable than the traditional viewpoint in 8MR channel. From perspective of the complete catalytic cycle, the separation of these two reaction zones, i.e., the C-C bond coupling in 8MR channel and MA formation in 12MR channel, effectively avoids aggregation of highly active acetyl species or ketene, thereby reducing undesired carbon deposit production. The synergistic effect of different channels appears to account for the high carbonylation activity in mordenite that has thus far not been fully explained, and this paradigm may rationalize the observed catalytic activity of other reactions.
Collapse
|
43
|
Bocus M, Van Speybroeck V. Insights into the Mechanism and Reactivity of Zeolite-Catalyzed Alkylphenol Dealkylation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052Zwijnaarde, Belgium
| | | |
Collapse
|
44
|
Han Y, Wang F, Zhang J. Design and syntheses of hybrid zeolitic imidazolate frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Park S, Lee M, Hong S, Jeong Y, Kim D, Choi N, Nam J, Baik H, Choi J. Low-temperature ozone treatment for p-xylene perm-selective MFI type zeolite membranes: Unprecedented revelation of performance-negating cracks larger than 10 nm in polycrystalline membrane structures. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Kim N, Min K. Optimal machine learning feature selection for assessing the mechanical properties of a zeolite framework. Phys Chem Chem Phys 2022; 24:27031-27037. [PMID: 36189494 DOI: 10.1039/d2cp02949a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, 45 and 249 critical features were discovered among 896 zeolite descriptors generated by the matminer package for estimating the shear and bulk moduli of zeolites, respectively. A database containing the mechanical properties of 873 zeolite structures, calculated using density functional theory, was used to train the machine learning regression model. The results of using these critical features with the LightGBM algorithm were rigorously compared with those from other regressors as well as with different sets of features. The comparison results indicate that the surrogate model with critical features increases the prediction accuracy of the bulk and shear moduli of zeolites by 17.3% and 10.6%, respectively, and reduces the prediction uncertainty by one-third of that achieved using previously available features. The suggested features originating from several physical and chemical groups highlight the unveiled relationships between the features and mechanical properties of zeolites. The robustness of the constructed model with 356 features was confirmed by applying a set of different training-test set ratios. We believe that the suggested critical features of zeolites can help to understand the mechanical behavior of a half million unlabeled hypothetical zeolite structures and accelerate the discovery of novel zeolites with unprecedented mechanical properties.
Collapse
Affiliation(s)
- Namjung Kim
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Kyoungmin Min
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul, 06978, Republic of Korea.
| |
Collapse
|
47
|
De Wispelaere K, Plessow PN, Studt F. Toward Computing Accurate Free Energies in Heterogeneous Catalysis: a Case Study for Adsorbed Isobutene in H-ZSM-5. ACS PHYSICAL CHEMISTRY AU 2022; 2:399-406. [PMID: 36855690 PMCID: PMC9955322 DOI: 10.1021/acsphyschemau.2c00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we propose a novel computational protocol that enables calculating free energies with improved accuracy by combining the best available techniques for enthalpy and entropy calculation. While the entropy is described by enhanced sampling molecular dynamics techniques, the energy is calculated using ab initio methods. We apply the method to assess the stability of isobutene adsorption intermediates in the zeolite H-SSZ-13, a prototypical problem that is computationally extremely challenging in terms of calculating enthalpy and entropy. We find that at typical operating conditions for zeolite catalysis (400 °C), the physisorbed π-complex, and not the tertiary carbenium ion as often reported, is the most stable intermediate. This method paves the way for sampling-based techniques to calculate the accurate free energies in a broad range of chemistry-related disciplines, thus presenting a big step forward toward predictive modeling.
Collapse
Affiliation(s)
- Kristof De Wispelaere
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, B-9052 Ghent, Belgium,
| | - Philipp N. Plessow
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany,
| | - Felix Studt
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany,Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany,
| |
Collapse
|
48
|
Gong X, Çağlayan M, Ye Y, Liu K, Gascon J, Dutta Chowdhury A. First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chem Rev 2022; 122:14275-14345. [PMID: 35947790 DOI: 10.1021/acs.chemrev.2c00076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.
Collapse
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Mustafa Çağlayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | |
Collapse
|
49
|
|
50
|
Rasouli M, Yaghobi N. Bifunctional ZnO/HZSM-5 Catalysts in Direct Hydrogenation of CO2 to Aromatics; Influence of Preparation Method. Catal Letters 2022. [DOI: 10.1007/s10562-022-04073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|