1
|
Shigemoto A, Sekine Y. Recent advances in low-temperature nitrogen oxide reduction: effects of electric field application. Chem Commun (Camb) 2025; 61:1559-1573. [PMID: 39698954 DOI: 10.1039/d4cc05135a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This article presents a review of catalytic processes used at low temperatures to reduce emissions of nitrogen oxides (NOx) and nitrous oxide (N2O), which are exceedingly important in terms of their environmental impacts on the Earth. With conventional purification technologies, it has been difficult to remove these compounds under low-temperature conditions. By applying a catalytic process in an electric field for the three reactions of three-way catalysts (TWC), NOx storage reduction catalysts (NSR), and direct decomposition of N2O, we have achieved high catalytic activity even at low temperatures. By promoting ion migration on the catalyst surface, we have filled in the gaps in conventional catalytic technology and have opened the way to more efficient conversion of NOx and N2O.
Collapse
Affiliation(s)
- Ayaka Shigemoto
- Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 1698555, Japan.
| | - Yasushi Sekine
- Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 1698555, Japan.
| |
Collapse
|
2
|
He Y, Lyu Y, Tymann D, Antoni PW, Hansmann MM. Cleavage of Carbodicarbenes with N 2O for Accessing Stable Diazoalkenes: Two-Fold Ligand Exchange at a C(0)-Atom. Angew Chem Int Ed Engl 2025; 64:e202415228. [PMID: 39238432 DOI: 10.1002/anie.202415228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The cleavage of carbophosphinocarbenes and carbodicarbenes with nitrous oxide (N2O) leads to the formation of room-temperature stable diazoalkenes. The utility of Ph3P/N2 and NHC/N2 ligand exchange reactions were demonstrated by accessing novel benzimidazole- and benzothiazole derived diazoalkenes, which are not accessible by the current state-of-the-art methods. The stable diazoalkenes subsequently allow further ligand exchange reactions at C(0) with carbon monoxide, isocyanide, or a diamidocarbene (DAC). Overall, the combination of hitherto unknown NHC/N2 and N2/L (L = DAC, CO, R-NC) ligand exchange reactions at a C(0) center allow the selective functionalization of the carbodicarbene ligand structure which represents a new methodology to rapidly assemble novel carbodicarbenes or cumulenic compounds.
Collapse
Affiliation(s)
- Yijie He
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Yichong Lyu
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - David Tymann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Tang K, Li Y, Sun X, Wang J, Sui Z, Xu X. Oxygen vacancy induced superior catalytic performance in Nd-Ce confined inside carbon nanotubes for N 2O-assisted dehydrogenation of ethylbenzene. J Colloid Interface Sci 2025; 678:658-668. [PMID: 39307055 DOI: 10.1016/j.jcis.2024.09.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/27/2024]
Abstract
Binary Nd-Ce oxides encapsuled in carbon nanotubes (CNTs) catalysts were synthesized and evaluated in the coupling reaction of ethylbenzene (EB) dehydrogenation and N2O decomposition, a promising strategy for styrene (ST) production while mitigating greenhouse gas emissions. The optimized Nd - Ce@CNTs exhibited competitive catalytic performance with an EB conversion of 76 % and a ST selectivity of 71 % compared to Ce@CNTs, highlighting a synergic effect between Ce and Nd in the oxidation dehydrogenation of EB with N2O as an oxidant (N2O-ODEB). Characterization results indicated that Nd incorporation induced lattice distortions, evident in the expansion or contraction of Ce - O bonds surrounding Nd. Defect densities increased to 1.381, 1.495 and 1.534 for CNTs, Ce@CNTs, and Nd - Ce@CNTs, respectively. This interaction not only facilitated the generation of oxygen vacancies, with a lower formation energy of oxygen vacancy on Nd - Ce@CNTs (2.13 eV) than that on Ce@CNTs (2.49 eV), thereby enhancing oxygen activation and migration, but also optimized the distribution of acid sites, promoting CH activation and EB dehydrogenation. In - situ diffuse reflectance infrared Fourier-transform spectra (DRIFTS) and density functional theory (DFT) calculations revealed that the lower adsorption energy of N2O (-1.84 eV) on Nd - Ce@CNTs suggested a more favorable coordinated configuration than Ce@CNTs (-0.90 eV), supported by stronger adsorption intensities at 1270 cm-1 and 1302 cm-1. Furthermore, the elongated NO bond (1.35 Å) of N2O on the Nd - Ce@CNTs surface indicated its greater ease of cleavage, providing active oxygen species that collectively contributed to the enhanced catalytic performance in the N2O-ODEB.
Collapse
Affiliation(s)
- Kezhi Tang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yulin Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Xiaohui Sun
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Zhuyin Sui
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiufeng Xu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
4
|
Hood TM, Charman RSC, Liptrot DJ, Chaplin AB. Copper(I) Catalysed Diboron(4) Reduction of Nitrous Oxide. Angew Chem Int Ed Engl 2024; 63:e202411692. [PMID: 39011672 DOI: 10.1002/anie.202411692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
A process for the catalytic reduction of nitrous oxide using NHC-ligated copper(I) tert-butoxide precatalysts and B2pin2 as the reductant is reported. These reactions proceed under mild conditions via copper(I)-boryl intermediates which react with N2O by facile O-atom insertion into the Cu-B bond and liberate N2. Turnover numbers >800 can be achieved at 80 °C under 1 bar N2O.
Collapse
Affiliation(s)
- Thomas M Hood
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Rex S C Charman
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David J Liptrot
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Adrian B Chaplin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Ward RJ, Jörges M, Remm H, Kiliani E, Krischer F, Le Dé Q, Gessner VH. An Azide-Free Synthesis of Metallodiazomethanes Using Nitrous Oxide. J Am Chem Soc 2024; 146:24602-24608. [PMID: 39164003 PMCID: PMC11378277 DOI: 10.1021/jacs.4c07999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Diazo compounds are valuable reagents in synthesis but usually require the use of potentially explosive or toxic starting materials. Here, we report the synthesis and isolation of alkali metal diazomethanides by the reaction of metalated ylides with nitrous oxide, resulting in a formal exchange of the phosphine ligand by dinitrogen. The reaction proceeds through a Wittig-like mechanism via a [3 + 2] cycloaddition of N2O across the ylide bond with release of phosphine oxide. The metalated diazomethanes exhibit an increased thermal stability due to the stronger binding of N2 compared to neutral diazomethanes. This is reflected in short C-N distances and red-shifted N-N vibrations and enables versatile applications such as for the preparation of transition metal diazomethanide complexes and the synthesis of 1,2,3-triazoles from nitriles, diazoacetates from carbon dioxide, or alkynes from aldehydes.
Collapse
Affiliation(s)
- Robert J Ward
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Mike Jörges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Henning Remm
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Elias Kiliani
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Felix Krischer
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Quentin Le Dé
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Viktoria H Gessner
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| |
Collapse
|
6
|
Genoux A, Severin K. Nitrous oxide as diazo transfer reagent. Chem Sci 2024:d4sc04530k. [PMID: 39156938 PMCID: PMC11323477 DOI: 10.1039/d4sc04530k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Nitrous oxide, commonly known as "laughing gas", is formed as a by-product in several industrial processes. It is also readily available by thermal decomposition of ammonium nitrate. Traditionally, the chemical valorization of N2O is achieved via oxidation chemistry, where N2O acts as a selective oxygen atom transfer reagent. Recent results have shown that N2O can also function as an efficient diazo transfer reagent. Synthetically useful methods for synthesizing triazenes, N-heterocycles, and azo- or diazo compounds were developed. This review article summarizes significant advancements in this emerging field.
Collapse
Affiliation(s)
- Alexandre Genoux
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Wu X, Du J, Gao Y, Wang H, Zhang C, Zhang R, He H, Lu GM, Wu Z. Progress and challenges in nitrous oxide decomposition and valorization. Chem Soc Rev 2024; 53:8379-8423. [PMID: 39007174 DOI: 10.1039/d3cs00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nitrous oxide (N2O) decomposition is increasingly acknowledged as a viable strategy for mitigating greenhouse gas emissions and addressing ozone depletion, aligning significantly with the UN's sustainable development goals (SDGs) and carbon neutrality objectives. To enhance efficiency in treatment and explore potential valorization, recent developments have introduced novel N2O reduction catalysts and pathways. Despite these advancements, a comprehensive and comparative review is absent. In this review, we undertake a thorough evaluation of N2O treatment technologies from a holistic perspective. First, we summarize and update the recent progress in thermal decomposition, direct catalytic decomposition (deN2O), and selective catalytic reduction of N2O. The scope extends to the catalytic activity of emerging catalysts, including nanostructured materials and single-atom catalysts. Furthermore, we present a detailed account of the mechanisms and applications of room-temperature techniques characterized by low energy consumption and sustainable merits, including photocatalytic and electrocatalytic N2O reduction. This article also underscores the extensive and effective utilization of N2O resources in chemical synthesis scenarios, providing potential avenues for future resource reuse. This review provides an accessible theoretical foundation and a panoramic vision for practical N2O emission controls.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Yanxia Gao
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Lei B, Cao F, Chen M, Wang X, Mo Z. Bisgermylene-Stabilized Stannylone: Catalytic Reduction of Nitrous Oxide and Nitro Compounds via Element-Ligand Cooperativity. J Am Chem Soc 2024; 146:17817-17826. [PMID: 38780163 DOI: 10.1021/jacs.4c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
This study describes the synthesis, structural characterization, and catalytic application of a bis(germylene)-stabilized stannylone (2). The reduction of digermylated stannylene (1) with 2.2 equiv of potassium graphite (KC8) leads to the formation of stannylone 2 as a green solid in 78% yield. Computational studies showed that stannylone 2 possesses a formal Sn(0) center and a delocalized 3-c-2-e π-bond in the Ge2Sn core, which arises from back-donation of the p-type lone pair electrons on the Sn atom to the vacant orbitals of the Ge atoms. Stannylone 2 can serve as an efficient precatalyst for the selective reduction of nitrous oxide (N2O) and nitroarenes (ArNO2) with the formation of dinitrogen (N2) and hydrazines (ArNH-NHAr), respectively. Exposure of 2 with N2O (1 atm) resulted in the insertion of two oxygen atoms into the Ge-Ge and Ge-Sn bonds, yielding the germyl(oxyl)stannylene (3). Moreover, the stoichiometric reaction of 2 with 1-chloro-4-nitrobenzene afforded an amido(oxyl)stannylene (4) through the complete scission of the N-O bonds of the nitroarene. Stannylenes 3 and 4 serve as catalytically active species for the catalytic reduction of nitrous oxide and nitroarenes, respectively. Mechanistic studies reveal that the cooperation of the low-valent Ge and Sn centers allows for multiple electron transfers to cleave the N-O bonds of N2O and ArNO2. This approach presents a new strategy for catalyzing the deoxygenation of N2O and ArNO2 using a zerovalent tin compound.
Collapse
Affiliation(s)
- Binglin Lei
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fanshu Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuyang Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Wang L, Ye Z, Wang M, Liu Z, Li J, Yang J. Effect of the Number of Methyl Groups in DMOF on N 2O Adsorption and N 2O/N 2 Separation. Inorg Chem 2024; 63:11501-11505. [PMID: 38842143 DOI: 10.1021/acs.inorgchem.4c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Nitrous oxide (N2O), as the third largest greenhouse gas in the world, also has great applications in industry, so the purification of N2O from N2 in industrial tail gas is a crucial process for achieving environmental protection and giving full play to its economic value. Based on the polarity difference of N2O and N2, N2O adsorption was researched on DMOF series materials with different polarities and methyl numbers of the ligand. N2O adsorption at 0.1 bar is enhanced, attributed to an increase of the methyl group densities at the benzenedicarboxylate linker. Grand canonical Monte Carlo simulations demonstrate the key role of methyl groups within the pore surface in the preferential N2O affinity. Methyl groups preferentially bind to N2O and thus enhanced low (partial) pressure N2O adsorption and N2O/N2 separation. The result shows that DMOF-TM has the highest N2O adsorption capacity (19.6 cm3/g) and N2O/N2 selectivity (23.2) at 0.1 bar. Breakthrough experiments show that, with an increase of the methyl number, the coadsorption time and retention time also increase, and DMOF-TM has the best N2O/N2 separation performance.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China
| | - Zhangmiao Ye
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Mingxi Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Zhaozhuang Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China
| | - Jiangfeng Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China
| |
Collapse
|
10
|
Sorbelli D, Belpassi L, Belanzoni P. Cooperative small molecule activation by apolar and weakly polar bonds through the lens of a suitable computational protocol. Chem Commun (Camb) 2024; 60:1222-1238. [PMID: 38126734 DOI: 10.1039/d3cc05614g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Small molecule activation processes are central in chemical research and cooperativity is a valuable tool for the fine-tuning of the efficiency of these reactions. In this contribution, we discuss recent and remarkable examples in which activation processes are mediated by bimetallic compounds featuring apolar or weakly polar metal-metal bonds. Relevant experimental breakthroughs are thoroughly analyzed from a computational perspective. We highlight how the rational and non-trivial application of selected computational approaches not only allows rationalization of the observed reactivities but also inferring of general principles applicable to activation processes, such as the breakdown of the structure-reactivity relationship in carbon dioxide activation in a cooperative framework. We finally provide a simple yet unbiased computational protocol to study these reactions, which can support experimental advances aimed at expanding the range of applications of apolar and weakly polar bonds as catalysts for small molecule activation.
Collapse
Affiliation(s)
- Diego Sorbelli
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA.
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8 - 06123, Perugia, Italy.
| | - Paola Belanzoni
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8 - 06123, Perugia, Italy.
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8 - 06123, Perugia, Italy.
| |
Collapse
|
11
|
Wang L, Lin C, Boldog I, Yang J, Janiak C, Li J. Inverse Adsorption Separation of N 2 O/CO 2 in AgZK-5 Zeolite. Angew Chem Int Ed Engl 2024; 63:e202317435. [PMID: 38059667 DOI: 10.1002/anie.202317435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Nitrous oxide (N2 O), as the third largest greenhouse gas in the world, also has great applications in daily life and industrial production, like anesthetic, foaming agent, combustion supporting agent, N or O atomic donor. The capture of N2 O in adipic acid tail gas is of great significance but remains challenging due to the similarity with CO2 in molecular size and physical properties. Herein, the influence of cation types on CO2 -N2 O separation in zeolite was studied comprehensively. In particular, the inverse adsorption of CO2 -N2 O was achieved by AgZK-5, which preferentially adsorbs N2 O over CO2 , making it capable of trapping N2 O from an N2 O/CO2 mixture. AgZK-5 shows a recorded N2 O/CO2 selectivity of 2.2, and the breakthrough experiment indicates excellent performance for N2 O/CO2 separation. The density functional theory (DFT) calculation shows that Ag+ has stronger adsorption energy with N2 O, and the kinetics of N2 O is slightly faster than that of CO2 on AgZK-5.
Collapse
Affiliation(s)
- Li Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Caihong Lin
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - István Boldog
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Jiangfeng Yang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Jinping Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
12
|
Groll L, Kelly JA, Inoue S. Reactivity of NHI-Stabilized Heavier Tetrylenes towards CO 2 and N 2 O. Chem Asian J 2024; 19:e202300941. [PMID: 37996985 DOI: 10.1002/asia.202300941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
A heteroleptic amino(imino)stannylene (TMS2 N)(It BuN)Sn: (TMS=trimethylsilyl, It Bu=C[(N-t Bu)CH]2 ) as well as two homoleptic NHI-stabilized tetrylenes, (It BuN)2 E: (NHI=N-heterocyclic imine, E=Ge, Sn) are presented. VT-NMR investigations of (It BuN)2 Sn: (2) reveal an equilibrium between the monomeric stannylene at room temperature and the dimeric form at -80 °C as well as in the solid state. Upon reaction of the homoleptic tetrylenes with CO2 , both compounds insert two equivalents of CO2 , however differing bonding modes can be observed. (It BuN)2 Sn: (2) inserts one equivalent of CO2 into each Sn-N bond, giving carbamato groups coordinated κ2 O,O' to the metal center. With (It BuN)2 Ge: (3), the Ge-N bonds stay intact upon activation, being bridged by one molecule of CO2 respectively, forming 4-membered rings. Furthermore, the reactivity of 2 towards N2 O was investigated, resulting in partial oxidation to form stannylene dimer [((It BuN)3 SnO)(It BuN)Sn:]2 (6).
Collapse
Affiliation(s)
- Lisa Groll
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - John A Kelly
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
13
|
Yang Q, Surin I, Geiger J, Eliasson H, Agrachev M, Kondratenko VA, Zanina A, Krumeich F, Jeschke G, Erni R, Kondratenko EV, López N, Pérez-Ramírez J. Lattice-Stabilized Chromium Atoms on Ceria for N 2O Synthesis. ACS Catal 2023; 13:15977-15990. [PMID: 38125976 PMCID: PMC10728900 DOI: 10.1021/acscatal.3c04463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The development of selective catalysts for direct conversion of ammonia into nitrous oxide, N2O, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective N2O production over 100 h on stream up to 79% N2O selectivity at full NH3 conversion. Raman, electron paramagnetic resonance, and in situ UV-vis spectroscopies reveal that chromium incorporation enhances the density of oxygen vacancies and the rate of their generation and healing. Accordingly, temporal analysis of products, kinetic studies, and atomistic simulations show lattice oxygen of ceria to directly participate in the reaction, establishing the cocatalytic role of the carrier. Coupled with the dynamic restructuring of chromium sites to stabilize intermediates of N2O formation, these factors enable catalytic performance on par with or exceeding benchmark systems. These findings demonstrate how nanoscale engineering can elevate a previously overlooked metal into a highly competitive catalyst for selective ammonia oxidation to N2O, paving the way toward industrial implementation.
Collapse
Affiliation(s)
- Qingxin Yang
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Ivan Surin
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Julian Geiger
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Henrik Eliasson
- Electron
Microscopy Center, Empa - Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mikhail Agrachev
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Vita A. Kondratenko
- Advanced
Methods for Applied Catalysis, Leibniz-Institut
für Katalyse e. V., Albert Einstein-Str. 29a, 18059 Rostock, Germany
| | - Anna Zanina
- Advanced
Methods for Applied Catalysis, Leibniz-Institut
für Katalyse e. V., Albert Einstein-Str. 29a, 18059 Rostock, Germany
| | - Frank Krumeich
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Rolf Erni
- Electron
Microscopy Center, Empa - Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Evgenii V. Kondratenko
- Advanced
Methods for Applied Catalysis, Leibniz-Institut
für Katalyse e. V., Albert Einstein-Str. 29a, 18059 Rostock, Germany
| | - Núria López
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Martinez J, Schneider JE, Anferov SW, Anderson JS. Electrochemical Reduction of N 2O with a Molecular Copper Catalyst. ACS Catal 2023; 13:12673-12680. [PMID: 37822863 PMCID: PMC10563017 DOI: 10.1021/acscatal.3c02658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Indexed: 10/13/2023]
Abstract
Deoxygenation of nitrous oxide (N2O) has significant environmental implications, as it is not only a potent greenhouse gas but is also the main substance responsible for the depletion of ozone in the stratosphere. This has spurred significant interest in molecular complexes that mediate N2O deoxygenation. Natural N2O reduction occurs via a Cu cofactor, but there is a notable dearth of synthetic molecular Cu catalysts for this process. In this work, we report a selective molecular Cu catalyst for the electrochemical reduction of N2O to N2 using H2O as the proton source. Cyclic voltammograms show that increasing the H2O concentration facilitates the deoxygenation of N2O, and control experiments with a Zn(II) analogue verify an essential role for Cu. Theory and spectroscopy support metal-ligand cooperative catalysis between Cu(I) and a reduced tetraimidazolyl-substituted radical pyridine ligand (MeIm4P2Py = 2,6-(bis(bis-2-N-methylimidazolyl)phosphino)pyridine), which can be observed by Electron Paramagnetic Resonance (EPR) spectroscopy. Comparison with biological processes suggests a common theme of supporting electron transfer moieties in enabling Cu-mediated N2O reduction.
Collapse
Affiliation(s)
- Jorge
L. Martinez
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph E. Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W. Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Tofoni A, Tavani F, Vandone M, Braglia L, Borfecchia E, Ghigna P, Stoian DC, Grell T, Stolfi S, Colombo V, D’Angelo P. Full Spectroscopic Characterization of the Molecular Oxygen-Based Methane to Methanol Conversion over Open Fe(II) Sites in a Metal-Organic Framework. J Am Chem Soc 2023; 145:21040-21052. [PMID: 37721732 PMCID: PMC10540213 DOI: 10.1021/jacs.3c07216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/19/2023]
Abstract
Iron-based enzymes efficiently activate molecular oxygen to perform the oxidation of methane to methanol (MTM), a reaction central to the contemporary chemical industry. Conversely, a very limited number of artificial catalysts have been devised to mimic this process. Herein, we employ the MIL-100(Fe) metal-organic framework (MOF), a material that exhibits isolated Fe sites, to accomplish the MTM conversion using O2 as the oxidant under mild conditions. We apply a diverse set of advanced operando X-ray techniques to unveil how MIL-100(Fe) can act as a catalyst for direct MTM conversion. Single-phase crystallinity and stability of the MOF under reaction conditions (200 or 100 °C, CH4 + O2) are confirmed by X-ray diffraction measurements. X-ray absorption, emission, and resonant inelastic scattering measurements show that thermal treatment above 200 °C generates Fe(II) sites that interact with O2 and CH4 to produce methanol. Experimental evidence-driven density functional theory (DFT) calculations illustrate that the MTM reaction involves the oxidation of the Fe(II) sites to Fe(III) via a high-spin Fe(IV)═O intermediate. Catalyst deactivation is proposed to be caused by the escape of CH3• radicals from the relatively large MOF pore cages, ultimately resulting in the formation of hydroxylated triiron units, as proven by valence-to-core X-ray emission spectroscopy. The O2-based MTM catalytic activity of MIL-100(Fe) in the investigated conditions is demonstrated for two consecutive reaction cycles, proving the MOF potential toward active site regeneration. These findings will desirably lay the groundwork for the design of improved MOF catalysts for the MTM conversion.
Collapse
Affiliation(s)
- Alessandro Tofoni
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Francesco Tavani
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Marco Vandone
- Dipartimento
di Chimica & UdR INSTM di Milano, Università
degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Luca Braglia
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
| | - Elisa Borfecchia
- Dipartimento
di Chimica & UdR INSTM di Torino, Università
di Torino, Via P. Giuria
7, 10125 Turin, Italy
| | - Paolo Ghigna
- Dipartimento
di Chimica, Università di Pavia, V.le Taramelli 13, I-27100 Pavia, Italy
| | - Dragos Costantin Stoian
- The Swiss-Norwegian
Beamlines (SNBL), European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Toni Grell
- Dipartimento
di Chimica & UdR INSTM di Milano, Università
degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Sara Stolfi
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
| | - Valentina Colombo
- Dipartimento
di Chimica & UdR INSTM di Milano, Università
degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- CNR
− SCITEC − Istituto di Scienze e Tecnologie Chimiche
“Giulio Natta”, Via Golgi 19, 20133 Milan, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
16
|
Hansmann MM. Diazoalkenes: From an Elusive Intermediate to a Stable Substance Class in Organic Chemistry. Angew Chem Int Ed Engl 2023; 62:e202304574. [PMID: 37095063 DOI: 10.1002/anie.202304574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 04/26/2023]
Abstract
Over decades diazoalkenes (R2 C=C=N2 ) were postulated as reactive intermediates in organic chemistry even though their direct spectroscopic detection proved very challenging. In the 1970/80ies several groups probed their existence mainly indirectly by trapping experiments or directly by matrix-isolation studies. In 2021, our group and the Severin group reported independently the synthesis and characterization of the first room-temperature stable diazoalkenes, which initiated a rapidly expanding research field. Up to now four different classes of N-heterocyclic substituted room-temperature stable diazoalkenes have been reported. Their properties and unique reactivity, such as N2 /CO exchange or utilization as vinylidene precursors in organic and transition metal chemistry are presented. This review summarizes the early discoveries of diazoalkenes from their initial postulation as transient, elusive species up to the recent findings of the room-temperature stable derivatives.
Collapse
Affiliation(s)
- Max M Hansmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, Dortmund, Germany
| |
Collapse
|
17
|
Zhang H, Rodrigalvarez J, Martin R. C(sp 2)-H Hydroxylation via Catalytic 1,4-Ni Migration with N 2O. J Am Chem Soc 2023; 145:17564-17569. [PMID: 37531410 PMCID: PMC10586377 DOI: 10.1021/jacs.3c07018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Herein, we report a Ni-catalyzed C(sp2)-H hydroxylation of aryl bromides with N2O as an oxygen-atom donor. The reaction is enabled by a 1,4-Ni translocation that results in ipso/ortho difunctionalized products. Regioselectivity and stereocontrol are dictated by a judicious choice of the ligand backbone, thus giving access to either carbonyl or phenol derivatives and offering an opportunity to repurpose hazardous substances en route to valuable oxygen-containing building blocks.
Collapse
Affiliation(s)
- Huihui Zhang
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat
Rovira i Virgili, Departament de Química
Orgànica, c/Marcel·lí
Domingo, 1, 43007 Tarragona, Spain
| | - Jesus Rodrigalvarez
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
18
|
Kooij B, Varava P, Fadaei-Tirani F, Scopelliti R, Pantazis DA, Van Trieste GP, Powers DC, Severin K. Copper Complexes with Diazoolefin Ligands and their Photochemical Conversion into Alkenylidene Complexes. Angew Chem Int Ed Engl 2023; 62:e202214899. [PMID: 36445783 DOI: 10.1002/anie.202214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Homometallic copper complexes with alkenylidene ligands are discussed as intermediates in catalysis but the isolation of such complexes has remained elusive. Herein, we report the structural characterization of copper complexes with bridging and terminal alkenylidene ligands. The compounds were obtained by irradiation of CuI complexes with N-heterocyclic diazoolefin ligands. The complex with a terminal alkenylidene ligand required isolation in a crystalline matrix, and its structural characterization was enabled by in crystallo photolysis at low temperature.
Collapse
Affiliation(s)
- Bastiaan Kooij
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Paul Varava
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | | | | | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
19
|
Sorbelli D, Belpassi L, Belanzoni P. Widening the Landscape of Small Molecule Activation with Gold-Aluminyl Complexes: A Systematic Study of E-H (E=O, N) Bonds, SO 2 and N 2 O Activation. Chemistry 2023; 29:e202203584. [PMID: 36660925 DOI: 10.1002/chem.202203584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
The electronic features of gold-aluminyl complexes have been thoroughly explored. Their similarity with Group 14 dimetallenes and other metal-aluminyl complexes suggests that their reactivity with small molecules beyond carbon dioxide could be accessed. In this work, the reactivity of the [t Bu3 PAuAl(NON)] (NON=4,5-bis(2,6 diisopropylanilido)-2,7-ditert-butyl-9,9-dimethylxanthene) complex towards water, ammonia, sulfur dioxide and nitrous oxide is computationally explored. The reaction mechanisms computed for each substrate strongly suggest that all activation processes are in principle experimentally feasible. Electronic structure analysis highlights that, in all cases, the reactivity is driven by the presence of the poorly polarized electron-sharing gold-aluminyl bond, which induces a radical-like reactivity of the complex towards all the substrates. A flat topology of the potential energy surface (PES) has been found for the reaction with N2 O, where two almost isoenergetic transition states can be located along the same reaction coordinate with different geometries, suggesting that the N2 O binding mode may not be a good indicator of the nature of N2 O activation in a cooperative bimetallic reactivity. In addition, the catalytic potentialities of these complexes have been explored in the framework of nitrous oxide reduction. The study reveals that the [t Bu3 PAuAl(NON)] complex might be an efficient catalyst towards oxidation of phosphines (and boranes) via N2 O reduction. These findings underline recurring trends in the novel chemistry of gold-aluminyl complexes and call for experimental feedbacks.
Collapse
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy.,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy.,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8, 06123, Perugia, Italy
| |
Collapse
|
20
|
Severin K. Homogeneous catalysis with nitrous oxide. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Ni S, Vaillant FL, Mateos-Calbet A, Martin R, Cornella J. Ni-Catalyzed Oxygen Transfer from N 2O onto sp 3-Hybridized Carbons. J Am Chem Soc 2022; 144:18223-18228. [PMID: 36162124 PMCID: PMC9562464 DOI: 10.1021/jacs.2c06227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Herein we disclose a catalytic synthesis of cycloalkanols
that
harnesses the potential of N2O as an oxygen transfer agent
onto sp3-hybridized carbons. The protocol is distinguished
by its mild conditions and wide substrate scope, thus offering an
opportunity to access carbocyclic compounds from simple precursors
even in an enantioselective manner. Preliminary mechanistic studies
suggest that the oxygen insertion event occurs at an alkylnickel species
and that N2O is the O transfer reagent.
Collapse
Affiliation(s)
- Shengyang Ni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Franck Le Vaillant
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ana Mateos-Calbet
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
22
|
Nicholas KM, Lander C, Shao Y. Computational Evaluation of Potential Molecular Catalysts for Nitrous Oxide Decomposition. Inorg Chem 2022; 61:14591-14605. [PMID: 36067530 DOI: 10.1021/acs.inorgchem.2c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas (GHG) with limited use as a mild anesthetic and underdeveloped reactivity. Nitrous oxide splitting (decomposition) is critical to its mitigation as a GHG. Although heterogeneous catalysts for N2O decomposition have been developed, highly efficient, long-lived solid catalysts are still needed, and the details of the catalytic pathways are not well understood. Reported herein is a computational evaluation of three potential molecular (homogeneous) catalysts for N2O splitting, which could aid in the development of more active and robust catalysts and provide deeper mechanistic insights: one Cu(I)-based, [(CF3O)4Al]Cu (A-1), and two Ru(III)-based, Cl(POR)Ru (B-1) and (NTA)Ru (C-1) (POR = porphyrin, NTA = nitrilotriacetate). The structures and energetic viability of potential intermediates and key transition states are evaluated according to a two-stage reaction pathway: (A) deoxygenation (DO), during which a metal-N2O complex undergoes N-O bond cleavage to produce N2 and a metal-oxo species and (B) (di)oxygen evolution (OER), in which the metal-oxo species dimerizes to a dimetal-peroxo complex, followed by conversion to a metal-dioxygen species from which dioxygen dissociates. For the (F-L)Cu(I) activator (A-1), deoxygenation of N2O is facilitated by an O-bound (F-L)Cu-O-N2 or better by a bimetallic N,O-bonded, (F-L)Cu-NNO-Cu(F-L) complex; the resulting copper-oxyl (F-L)Cu-O is converted exergonically to (F-L)Cu-(η2,η2-O2)-Cu(F-L), which leads to dioxygen species (F-L)Cu(η2-O2), that favorably dissociates O2. Key features of the DO/OER process for (POR)ClRu (B-1) include endergonic N2O coordination, facile N2 evolution from LR'u-N2O-RuL to Cl(POR)RuO, moderate barrier coupling of Cl(POR)RuO to peroxo Cl(POR)Ru(O2)Ru(POR)Cl, and eventual O2 dissociation from Cl(POR)Ru(η1-O2), which is nearly thermoneutral. N2O decomposition promoted by (NTA)Ru(III) (C-1) can proceed with exergonic N2O coordination, facile N2 dissociation from (NTA)Ru-ON2 or (NTA)Ru-N2O-Ru(NTA) to form (NTA)Ru-O; dimerization of the (NTA)Ru-oxo species is facile to produce (NTA)Ru-O-O-Ru(NTA), and subsequent OE from the peroxo species is moderately endergonic. Considering the overall energetics, (F-L)Cu and Cl(POR)Ru derivatives are deemed the best candidates for promoting facile N2O decomposition.
Collapse
Affiliation(s)
- Kenneth M Nicholas
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chance Lander
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
23
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Activation of Carbon Dioxide by 9-Carbene-9-borafluorene Monoanion: Carbon Monoxide Releasing Transformation of Trioxaborinanone to Luminescent Dioxaborinanone. J Am Chem Soc 2022; 144:16276-16281. [PMID: 36037435 DOI: 10.1021/jacs.2c06845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first structurally characterized example of a trioxaborinanone (2) is produced by the reaction of a 9-carbene-9-borafluorene monoanion and carbon dioxide. When compound 2 is heated or irradiated with UV light, carbon monoxide (CO) is released, and a luminescent dioxaborinanone (3) is formed. Notably, carbon monoxide releasing molecules (CORMs) are of interest for their ability to deliver a specific amount of CO. Due to the turn-on fluorescence observed as a result of the conversion to 3, CORM 2 serves as a means to optically observe CO loss "by eye" under thermal or photochemical conditions.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| |
Collapse
|
24
|
Razus D. Nitrous Oxide: Oxidizer and Promoter of Hydrogen and Hydrocarbon Combustion. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Domnina Razus
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy 202 Spl. Independentei, sector 6, 060021 Bucharest, Romania
| |
Collapse
|
25
|
Affiliation(s)
- Jun-Jie Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
26
|
Molinillo P, Lacroix B, Vattier F, Rendón N, Suárez A, Lara P. Reduction of N 2O with hydrosilanes catalysed by RuSNS nanoparticles. Chem Commun (Camb) 2022; 58:7176-7179. [PMID: 35670417 DOI: 10.1039/d2cc01470j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of RuSNS nanoparticles, prepared by decomposition of Ru(COD)(COT) with H2 in the presence of an SNS ligand, have been found to catalyse the reduction of the greenhouse gas N2O to N2 employing different hydrosilanes.
Collapse
Affiliation(s)
- Pablo Molinillo
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Bertrand Lacroix
- Department of Material Science and Metallurgic Engineering, and Inorganic Chemistry, University of Cádiz, Spain.,IMEYMAT: Institute of Research on Electron Microscopy and Materials of the University of Cádiz, Spain
| | - Florencia Vattier
- Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Nuria Rendón
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Andrés Suárez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Patricia Lara
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
27
|
Liu Z, Li Y, Sun X, Sui Z, Xu X. N2O Utilization as a Soft Oxidant for the Catalytic Synthesis of Styrene from Ethylbenzene over Ce–Co/CNTs Catalyst. Catal Letters 2022. [DOI: 10.1007/s10562-022-04051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Mechanistic Studies of Oxygen-Atom Transfer (OAT) in the Homogeneous Conversion of N2O by Ru Pincer Complexes. INORGANICS 2022. [DOI: 10.3390/inorganics10060069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As the overall turnover-limiting step (TOLS) in the homogeneous conversion of N2O, the oxygen-atom transfer (OAT) from an N2O to an Ru-H complex to generate an N2 and Ru-OH complex has been comprehensively investigated by density functional theory (DFT) computations. Theoretical results show that the proton transfer from Ru-H to the terminal N of endo N2O is most favorable pathway, and the generation of N2 via OAT is accomplished by a three-step mechanism [N2O-insertion into the Ru-H bond (TS-1-2, 24.1 kcal mol−1), change of geometry of the formed (Z)-O-bound oxyldiazene intermediate (TS-2-3, 5.5 kcal mol−1), and generation of N2 from the proton transfer (TS-3-4, 26.6 kcal mol−1)]. The Gibbs free energy of activation (ΔG‡) of 29.0 kcal mol−1 for the overall turnover-limiting step (TOLS) is determined. With the participation of potentially existing traces of water in the THF solvent serving as a proton shuttle, the Gibbs free energy of activation in the generation of N2 (TS-3-4-OH2) decreases to 15.1 kcal mol−1 from 26.6 kcal mol−1 (TS-3-4). To explore the structure–activity relationship in the conversion of N2O to N2, the catalytic activities of a series of Ru-H complexes (C1–C10) are investigated. The excellent linear relationships (R2 > 0.91) between the computed hydricities (ΔGH−) and ΔG‡ of TS-3-4, between the computed hydricities (ΔGH−) and the ΔG‡ of TOLS, were obtained. The utilization of hydricity as a potential parameter to predict the activity is consistent with other reports, and the current results suggest a more electron-donating ligand could lead to a more active Ru-H catalyst.
Collapse
|
29
|
Tang Z, Surin I, Rasmussen A, Krumeich F, Kondratenko EV, Kondratenko VA, Pérez‐Ramírez J. Ceria‐Supported Gold Nanoparticles as a Superior Catalyst for Nitrous Oxide Production via Ammonia Oxidation. Angew Chem Int Ed Engl 2022; 61:e202200772. [DOI: 10.1002/anie.202200772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Zhenchen Tang
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Ivan Surin
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Asbjörn Rasmussen
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Evgenii V. Kondratenko
- Department of Catalyst Discovery and Reaction Engineering Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Vita A. Kondratenko
- Department of Catalyst Discovery and Reaction Engineering Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Javier Pérez‐Ramírez
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
30
|
Sinhababu S, Lakliang Y, Mankad NP. Recent advances in cooperative activation of CO 2 and N 2O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Trans 2022; 51:6129-6147. [PMID: 35355033 DOI: 10.1039/d2dt00210h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gaseous small molecules, CO2 and N2O, play important roles in climate change and ozone layer depletion, and they hold promise as underutilized reagents and chemical feedstocks. However, productive transformations of these heteroallenes are difficult to achieve because of their inertness. In nature, these gases are cycled through ecological systems by metalloenzymes featuring multimetallic active sites that employ cooperative mechanisms. Thus, cooperative bimetallic chemistry is an important strategy for synthetic systems, as well. In this Perspective, recent advances (since 2010) in cooperative activation of CO2 and N2O are reviewed, including examples involving s-block, p-block, d-block, and f-block metals and different combinations thereof.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Yutthana Lakliang
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| |
Collapse
|
31
|
Le Vaillant F, Mateos Calbet A, González-Pelayo S, Reijerse EJ, Ni S, Busch J, Cornella J. Catalytic synthesis of phenols with nitrous oxide. Nature 2022; 604:677-683. [PMID: 35478236 PMCID: PMC9046086 DOI: 10.1038/s41586-022-04516-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
The development of catalytic chemical processes that enable the revalorization of nitrous oxide (N2O) is an attractive strategy to alleviate the environmental threat posed by its emissions1–6. Traditionally, N2O has been considered an inert molecule, intractable for organic chemists as an oxidant or O-atom transfer reagent, owing to the harsh conditions required for its activation (>150 °C, 50‒200 bar)7–11. Here we report an insertion of N2O into a Ni‒C bond under mild conditions (room temperature, 1.5–2 bar N2O), thus delivering valuable phenols and releasing benign N2. This fundamentally distinct organometallic C‒O bond-forming step differs from the current strategies based on reductive elimination and enables an alternative catalytic approach for the conversion of aryl halides to phenols. The process was rendered catalytic by means of a bipyridine-based ligands for the Ni centre. The method is robust, mild and highly selective, able to accommodate base-sensitive functionalities as well as permitting phenol synthesis from densely functionalized aryl halides. Although this protocol does not provide a solution to the mitigation of N2O emissions, it represents a reactivity blueprint for the mild revalorization of abundant N2O as an O source. A study demonstrates that nitrous oxide can act as the source of O in a catalytic conversion of aryl halides to phenols, releasing N2 as by-product.
Collapse
Affiliation(s)
| | - Ana Mateos Calbet
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Edward J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Julia Busch
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
32
|
Tang Z, Surin I, Rasmussen A, Krumeich F, Kondratenko EV, Kondratenko VA, Pérez-Ramírez J. Ceria‐Supported Gold Nanoparticles as a Superior Catalyst for Nitrous Oxide Production via Ammonia Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenchen Tang
- Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - Ivan Surin
- Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - Asbjörn Rasmussen
- Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - Frank Krumeich
- Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | | | | | - Javier Pérez-Ramírez
- ETH Zurich Institute for Chemical and Bioengineering ETH HönggerbergVladimir-Prelog-Weg 1HCI E125 CH-8093 Zurich SWITZERLAND
| |
Collapse
|
33
|
Chen X, Wang H, Du S, Driess M, Mo Z. Deoxygenation of Nitrous Oxide and Nitro Compounds Using Bis(N‐Heterocyclic Silylene)Amido Iron Complexes as Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shaozhi Du
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Matthias Driess
- Department of Chemistry Technische Universität Berlin Metalorganics and Inorganic Materials, Sekr. C2 Strasse des 17. Juni 135 10623 Berlin Germany
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
34
|
Alig L, Eisenlohr KA, Zelenkova Y, Rosendahl S, Herbst‐Irmer R, Demeshko S, Holthausen MC, Schneider S. Rhenium‐Mediated Conversion of Dinitrogen and Nitric Oxide to Nitrous Oxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Alig
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Kim A. Eisenlohr
- Goethe-Universität Frankfurt Institut für Anorganische und Analytische Chemie Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Yaroslava Zelenkova
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Sven Rosendahl
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst‐Irmer
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Max C. Holthausen
- Goethe-Universität Frankfurt Institut für Anorganische und Analytische Chemie Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Sven Schneider
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
35
|
Ma L, Zhang F, Li K, Zhang Y, Song Z, Wang L, Yang J, Li J. Improved N2O capture performance of chromium terephthalate MIL-101 via substituent engineering. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Monreal Corona R, Besalu E, Pla Quintana A, Poater A. A Predictive Chemistry DFT Study of the N 2O Functionalization for the Preparation of Triazolopyridine and Triazoloquinoline Scaffolds. Org Chem Front 2022. [DOI: 10.1039/d2qo00589a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The whole reaction mechanism of the functionalization of N2O for the synthesis of triazolopyridine and triazoloquinoline scaffolds has been unveiled by means of DFT calculations. The rate determining step of...
Collapse
|
37
|
Eckhardt AK, Riu MLY, Müller P, Cummins CC. Frustrated Lewis Pair Stabilized Phosphoryl Nitride (NPO), a Monophosphorus Analogue of Nitrous Oxide (N 2O). J Am Chem Soc 2021; 143:21252-21257. [PMID: 34898205 DOI: 10.1021/jacs.1c11426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphoryl nitride (NPO) is a highly reactive intermediate, and its chemistry has only been explored under matrix isolation conditions so far. Here we report the synthesis of an anthracene (A) and phosphoryl azide based molecule (N3P(O)A) that acts as a molecular synthon of NPO. Experimentally, N3P(O)A dissociates thermally with a first-order kinetic half-life that is associated with an activation enthalpy of ΔH⧧ = 27.5 ± 0.3 kcal mol-1 and an activation entropy of ΔS⧧ = 10.6 ± 0.3 cal mol-1 K-1 that are in good agreement with calculated DLPNO-CCSD(T)/cc-pVTZ//PBE0-D3(BJ)/cc-pVTZ energies. In solution N3P(O)A undergoes Staudinger reactivity with tricyclohexylphosphine (PCy3) and subsequent complexation with tris(pentafluorophenyl)borane (B(C6F5)3, BCF) to form Cy3P-NP(A)O-B(C6F5)3. Anthracene is cleaved off photochemically to form the frustrated Lewis pair (FLP) stabilized NPO complex Cy3P⊕-N═P-O-B⊖(C6F5)3. An intrinsic bond orbital (IBO) analysis suggests that the adduct is zwitterionic, with a positive and negative charge localized on the complexing Cy3P and BCF, respectively.
Collapse
Affiliation(s)
- André K Eckhardt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Chen X, Wang H, Du S, Driess M, Mo Z. Deoxygenation of Nitrous Oxide and Nitro Compounds Using Bis(N-Heterocyclic Silylene)Amido Iron Complexes as Catalysts. Angew Chem Int Ed Engl 2021; 61:e202114598. [PMID: 34766416 DOI: 10.1002/anie.202114598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/07/2022]
Abstract
Herein, we report the efficient degradation of N2 O with a well-defined bis(silylene)amido iron complex as catalyst. The deoxygenation of N2 O using the iron silanone complex 4 as a catalyst and pinacolborane (HBpin) as a sacrificial reagent proceeds smoothly at 50 °C to form N2 , H2 , and (pinB)2 O. Mechanistic studies suggest that the iron-silicon cooperativity is the key to this catalytic transformation, which involves N2 O activation, H atom transfer, H2 release and oxygenation of the boron sites. This approach has been further developed to enable catalytic reductions of nitro compounds, producing amino-boranes with good functional-group tolerance and excellent chemoselectivity.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shaozhi Du
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Matthias Driess
- Department of Chemistry, Technische Universität Berlin, Metalorganics and Inorganic Materials, Sekr. C2, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
39
|
Feuerstein W, Varava P, Fadaei-Tirani F, Scopelliti R, Severin K. Synthesis, structural characterization, and coordination chemistry of imidazole-based alkylidene ketenes. Chem Commun (Camb) 2021; 57:11509-11512. [PMID: 34652353 DOI: 10.1039/d1cc05161j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alkylidene ketenes typically display high intrinsic reactivity, impeding isolation on a preparative scale. Herein, we report the synthesis of alkylidene ketenes by reaction of imidazole-based diazoolefins with carbon monoxide. The good thermal stability of these heterocumulenes allows for characterization by single crystal X-ray diffraction. N-Heterocyclic alkylidene ketenes can be used as C-donor ligands for transition and main group metals, as evidenced by the isolation of complexes with AuCl, RhCl(CO)2, PdCl(C3H5) and GaCl3.
Collapse
Affiliation(s)
- Wolfram Feuerstein
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | - Paul Varava
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| |
Collapse
|
40
|
Landman IR, Fadaei-Tirani F, Severin K. Nitrous oxide as a diazo transfer reagent: the synthesis of triazolopyridines. Chem Commun (Camb) 2021; 57:11537-11540. [PMID: 34664049 DOI: 10.1039/d1cc04907k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitrous oxide is a potential diazo transfer reagent, but its applications in organic chemistry are scarce. Here, we show that triazolopyridines and triazoloquinolines are formed in the reactions of metallated 2-alkylpyridines or 2-alkylquinolines with N2O. The reactions can be performed under mild conditions and give synthetically interesting triazoles in moderate to good yields.
Collapse
Affiliation(s)
- Iris R Landman
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
41
|
Alig L, Eisenlohr KA, Zelenkova Y, Rosendahl S, Herbst-Irmer R, Demeshko S, Holthausen MC, Schneider S. Rhenium-Mediated Conversion of Dinitrogen and Nitric Oxide to Nitrous Oxide. Angew Chem Int Ed Engl 2021; 61:e202113340. [PMID: 34714956 PMCID: PMC9299976 DOI: 10.1002/anie.202113340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Reductive splitting of N2 is an attractive strategy towards nitrogen fixation beyond ammonia at ambient conditions. However, the resulting nitride complexes often suffer from thermodynamic overstabilization hampering functionalization. Furthermore, oxidative nitrogen atom transfer of N2 derived nitrides remains unknown. We here report a ReIV pincer platform that mediates N2 splitting upon chemical reduction or electrolysis with unprecedented yield. The N2 derived ReV nitrides undergo facile nitrogen atom transfer to nitric oxide, giving nitrous oxide nearly quantitatively. Experimental and computational results indicate that outer‐sphere ReN/NO radical coupling is facilitated by the activation of the nitride via initial coordination of NO.
Collapse
Affiliation(s)
- Lukas Alig
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Kim A Eisenlohr
- Goethe-Universität Frankfurt, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Yaroslava Zelenkova
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Sven Rosendahl
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Serhiy Demeshko
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Max C Holthausen
- Goethe-Universität Frankfurt, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Sven Schneider
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
42
|
Varava P, Dong Z, Scopelliti R, Fadaei-Tirani F, Severin K. Isolation and characterization of diazoolefins. Nat Chem 2021; 13:1055-1060. [PMID: 34621076 DOI: 10.1038/s41557-021-00790-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022]
Abstract
Diazoolefins tend to be highly reactive compounds that rapidly lose dinitrogen. So far, most experimental evidence for diazoolefins is indirect, via trapping experiments. Here we show that diazoolefins are observed to form in reactions of N-heterocyclic olefins with nitrous oxide. The products benefit from resonance stabilization, which enables isolation on a preparative scale, and comprehensive characterization, which includes crystallographic analyses. N-heterocyclic diazoolefins show a strong ylidic character, with a high charge density at the carbon atom next to the diazo group. Despite the presence of terminal N2 groups, N-heterocyclic diazoolefins display a good thermal stability, which surpasses that observed for most diazoalkanes. N-heterocyclic diazoolefins can bind transition and main group metal complexes without the liberation of dinitrogen, and spectroscopic data show that they are strong electron donors. They can also undergo reactions that involve the N2 group, as evidenced by cycloaddition reactions.
Collapse
Affiliation(s)
- Paul Varava
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zhaowen Dong
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
43
|
Chen C, Daniliuc CG, Kehr G, Erker G. Formation and Cycloaddition Reactions of a Reactive Boraalkene Stabilized Internally by N-Heterocyclic Carbene. Angew Chem Int Ed Engl 2021; 60:19905-19911. [PMID: 34219331 DOI: 10.1002/anie.202106724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Indexed: 01/07/2023]
Abstract
The synthesis of element-carbon double bonds is of great importance for the development and understanding of reactive π-bonded systems in chemistry. The seven-membered heterocyclic system 4 b is readily made by internal C-H activation at a pendent isopropyl methyl group of the respective [(IPr)C6 F5 BH]+ borenium ion. Subsequent deprotonation with the IMes carbene gives the neutral cyclic boraalkene system 5 b. The B=C double bond in compound 5 b adds carbon dioxide, CS2 , sulfur dioxide, phenyl isocyanate, an acetylenic ester or two NO molecules to give the corresponding four-membered ring annulated heterocycles. With sulfur or selenium 5 b gives the respective three-membered ring systems. N2 O reacts with 5 b to give a mixture of the related oxaborirane 18 and a unique [B]OH containing diazoalkane product 19.
Collapse
Affiliation(s)
- Chaohuang Chen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
44
|
Antoni PW, Reitz J, Hansmann MM. N 2/CO Exchange at a Vinylidene Carbon Center: Stable Alkylidene Ketenes and Alkylidene Thioketenes from 1,2,3-Triazole Derived Diazoalkenes. J Am Chem Soc 2021; 143:12878-12885. [PMID: 34348463 DOI: 10.1021/jacs.1c06906] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present a new class of room-temperature stable diazoalkenes featuring a 1,2,3-triazole backbone. Dinitrogen of the diazoalkene moiety can be thermally displaced by an isocyanide and carbon monoxide. The latter alkylidene ketenes are typically considered as highly reactive compounds, traditionally only accessible by flash vacuum pyrolysis. We present a new and mild synthetic approach to the first structurally characterized alkylidene ketenes by a substitution reaction. Density functional theory calculations suggest the substitution with isocyanides to take place via a stepwise addition/elimination mechanism. In the case of carbon monoxide, the reaction proceeds through an unusual concerted exchange at a vinylidene carbon center. The vinylidene ketenes react with carbon disulfide via a four-membered thiete intermediate to give vinylidene thioketenes under release of COS. We present spectroscopic as well as structural data for the complete isoelectronic series (R2C═C═X; X = N2, CO, CNR, CS) including 1J(13C-13C) data. As N2, CO, and isocyanides belong to the archetypical ligands in transition-metal chemistry, this process can be interpreted in analogy to coordination chemistry as a ligand exchange reaction at a vinylidene carbon center.
Collapse
Affiliation(s)
- Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Justus Reitz
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
45
|
Chen C, Daniliuc CG, Kehr G, Erker G. Formation and Cycloaddition Reactions of a Reactive Boraalkene Stabilized Internally by
N
‐Heterocyclic Carbene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chaohuang Chen
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
46
|
Davis JV, Gamage MM, Guio O, Captain B, Temprado M, Hoff CD. Mechanistic Pathways for N 2O Elimination from trans-R 3Sn-O-N═N-O-SnR 3 and for Reversible Binding of CO 2 to R 3Sn-O-SnR 3 (R = Ph, Cy). Inorg Chem 2021; 60:12075-12084. [PMID: 34338521 DOI: 10.1021/acs.inorgchem.1c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate and mechanism of the elimination of N2O from trans-R3Sn-O-N═N-O-SnR3 (R = Ph (1Ph) and R = Cy (1Cy)) to form R3Sn-O-SnR3 (R = Ph (2Ph) and R = Cy (2Cy)) have been studied using both NMR and IR techniques to monitor the reactions in the temperature range of 39-79 °C in C6D6. Activation parameters for this reaction are ΔH⧧ = 15.8 ± 2.0 kcal·mol-1 and ΔS⧧ = -28.5 ± 5 cal·mol-1·K-1 for 1Ph and ΔH⧧ = 22.7 ± 2.5 kcal·mol-1 and ΔS⧧ = -12.4 ± 6 cal·mol-1·K-1 for 1Cy. Addition of O2, CO2, N2O, or PPh3 to sealed tube NMR experiments did not alter in a detectable way the rate or product distribution of the reactions. Computational DFT studies of elimination of hyponitrite from trans-Me3Sn-O-N═N-O-SnMe3 (1Me) yield a mechanism involving initial migration of the R3Sn group from O to N passing through a marginally stable intermediate product and subsequent N2O elimination. Reactions of 1Ph with protic acids HX are rapid and lead to formation of R3SnX and trans-H2N2O2. Reaction of 1Ph with the metal radical •Cr(CO)3C5Me5 at low concentrations results in rapid evolution of N2O. At higher •Cr(CO)3C5Me5 concentrations, evolution of CO2 rather than N2O is observed. Addition of 1 atm or less CO2 to benzene or toluene solutions of 2Ph and 2Cy resulted in very rapid reaction to form the corresponding carbonates R3Sn-O-C(═O)-O-SnR3 (R = Ph (3Ph) and R = Cy (3Cy)) at room temperature. Evacuation results in fast loss of bound CO2 and regeneration of 2Ph and 2Cy. Variable temperature data for formation of 3Cy yield ΔHo = -8.7 ± 0.6 kcal·mol-1, ΔSo = -17.1 ± 2.0 cal·mol-1·K-1, and ΔGo298K = -3.6 ± 1.2 kcal·mol-1. DFT studies were performed and provide additional insight into the energetics and mechanisms for the reactions.
Collapse
Affiliation(s)
- Jack V Davis
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Mohan M Gamage
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Oswaldo Guio
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Burjor Captain
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Manuel Temprado
- Departamento de Química Analítica, Química Física e Ingeniería Química, Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Alcalá de Henares, 28871, Madrid, Spain
| | - Carl D Hoff
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
47
|
Davis JV, Guio O, Captain B, Hoff CD. Production of cis-Na 2N 2O 2 and NaNO 3 by Ball Milling Na 2O and N 2O in Alkali Metal Halide Salts. ACS OMEGA 2021; 6:18248-18252. [PMID: 34308055 PMCID: PMC8296613 DOI: 10.1021/acsomega.1c02119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Ball milling of sodium oxides and alkali metal halide salts under a pressure of 2 atm nitrous oxide at temperatures of 38 ± 4 °C is reported. After 2.5 h of ball milling, FTIR data for both 14N2O and 15N2O additions show conclusively that cis-Na2N2O2 is formed based on excellent agreement with data reported earlier by Jansen and Feldmann who prepared pure crystalline cis-Na2N2O2 by reaction of sodium oxide and nitrous oxide for 2 h at 360 °C in a tube furnace. Continued ball milling under nitrous oxide leads to slow buildup of NaNO3 with yields on the order of 24% achieved in 20 h. Production of nitrate only occurs during active ball milling. Studies over the first 10 h reveal a trend among potassium halide salts: KBr ≅ KCl > KI ≫ KF. Ball milling of sodium oxide alone under an atmosphere of N2O gives much lower yields than ball milling in the presence of added alkali metal halide salt. Ball milling of sodium oxide and nitrous oxide in fluorocarbon oil, silicone oil, calcium fluoride, clinoptilolite, molecular sieves, and silica gel does not lead to significant yields of either cis-Na2N2O2 or NaNO3.
Collapse
|
48
|
Aguirre Quintana LM, Yang Y, Ramanathan A, Jiang N, Bacsa J, Maron L, La Pierre HS. Chalcogen-atom abstraction reactions of a Di-iron imidophosphorane complex. Chem Commun (Camb) 2021; 57:6664-6667. [PMID: 34128515 DOI: 10.1039/d1cc02195h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reaction of the complexes [Fe2(μ2-NP(pip)3)2(NP(pip)3)2] (1-Fe) and [Co2(μ2-NP(pip)3)2(NP(pip)3)2] (1-Co), where [NP(pip)3]1- is tris(piperidinyl)imidophosphorane, with nitrous oxide, S8, or Se0 results in divergent reactivity. With nitrous oxide, 1-Fe forms [Fe2(μ2-O)(μ2-NP(pip)3)2(NP(pip)3)2] (2-Fe), with a very short Fe3+-Fe3+ distance. Reactions of 1-Fe with S8 or Se0 result in the bridging, side-on coordination (μ-κ1:κ1-E22-) of the heavy chalcogens in complexes [Fe2(μ-κ1:κ1-E2)(μ2-NP(pip)3)2(NP(pip)3)2] (E = S, 3-Fe, or Se, 4-Fe). In all cases, the complex 1-Co is inert.
Collapse
Affiliation(s)
- Luis M Aguirre Quintana
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Yan Yang
- Laboratorie de Physique et Chimie des Nano-objects, Institute National Des Sciences Appliquees, Toulouse 31077, Cedex 4, France
| | - Arun Ramanathan
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Ningxin Jiang
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - John Bacsa
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Laurent Maron
- Laboratorie de Physique et Chimie des Nano-objects, Institute National Des Sciences Appliquees, Toulouse 31077, Cedex 4, France
| | - Henry S La Pierre
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA. and Nuclear and Radiological Engineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
49
|
Kjellberg M, Ohleier A, Thuéry P, Nicolas E, Anthore-Dalion L, Cantat T. Photocatalytic deoxygenation of N-O bonds with rhenium complexes: from the reduction of nitrous oxide to pyridine N-oxides. Chem Sci 2021; 12:10266-10272. [PMID: 34377414 PMCID: PMC8336470 DOI: 10.1039/d1sc01974k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022] Open
Abstract
The accumulation of nitrogen oxides in the environment calls for new pathways to interconvert the various oxidation states of nitrogen, and especially their reduction. However, the large spectrum of reduction potentials covered by nitrogen oxides makes it difficult to find general systems capable of efficiently reducing various N-oxides. Here, photocatalysis unlocks high energy species able both to circumvent the inherent low reactivity of the greenhouse gas and oxidant N2O (E0(N2O/N2) = +1.77 V vs. SHE), and to reduce pyridine N-oxides (E1/2(pyridine N-oxide/pyridine) = −1.04 V vs. SHE). The rhenium complex [Re(4,4′-tBu-bpy)(CO)3Cl] proved to be efficient in performing both reactions under ambient conditions, enabling the deoxygenation of N2O as well as synthetically relevant and functionalized pyridine N-oxides. A rhenium-based photocatalyst enables the deoxygenation of several compounds containing N–O bonds, such as N2O and pyridine N-oxides.![]()
Collapse
Affiliation(s)
- Marianne Kjellberg
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette CEDEX France
| | - Alexia Ohleier
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette CEDEX France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette CEDEX France
| | - Emmanuel Nicolas
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette CEDEX France
| | | | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette CEDEX France
| |
Collapse
|
50
|
Munz D, Meyer K. Charge frustration in ligand design and functional group transfer. Nat Rev Chem 2021; 5:422-439. [PMID: 37118028 DOI: 10.1038/s41570-021-00276-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Molecules with different resonance structures of similar importance, such as heterocumulenes and mesoionics, are prominent in many applications of chemistry, including 'click chemistry', photochemistry, switching and sensing. In coordination chemistry, similar chameleonic/schizophrenic entities are referred to as ambidentate/ambiphilic or cooperative ligands. Examples of these had remained, for a long time, limited to a handful of archetypal compounds that were mere curiosities. In this Review, we describe ambiphilicity - or, rather, 'charge frustration' - as a general guiding principle for ligand design and functional group transfer. We first give a historical account of organic zwitterions and discuss their electronic structures and applications. Our discussion then focuses on zwitterionic ligands and their metal complexes, such as those of ylidic and redox-active ligands. Finally, we present new approaches to single-atom transfer using cumulated small molecules and outline emerging areas, such as bond activation and stable donor-acceptor ligand systems for reversible 1e- chemistry or switching.
Collapse
|