1
|
Noorani N, Mehrdad A, Shamszadeh P. PVC-based mixed-matrix membranes based on IL@AC/NH 2-MIL-101 nanocomposites for improved CO 2 separation performance. Sci Rep 2024; 14:23843. [PMID: 39394262 PMCID: PMC11470065 DOI: 10.1038/s41598-024-75617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Mixed matrix membranes (MMMs), an important class of organic-inorganic nanocomposite membranes, were developed to overcome some of the limitations of purely polymeric membranes. In this study to improve the separation performance of polyvinyl chloride (PVC) membranes, mixed matrix membranes (MMMs) were prepared from incorporating choline prolinate based ionic liquid (IL) in a the coke/metal-organic framework (MOF) (NH2-MIL-101(Cr)) as a filler in polyvinyl chloride (PVC), which can be viewed as a potential solution to the trade-off problem with polymeric membranes because of the combination of the processing versatility of polymers and the high gas separation capability. Coke/MOF/PVC and IL@AC/MOF/PVC MMMs with different filler loadings of 5, 10, and 15 wt% were prepared using solution casting method and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDX) analyses, and Brunauer-Emmett-Teller (BET) surface area test. The porous structure of MMMs nanocomposites causes to which coke/MOF composite effectively accelerate gas diffusion in the PVC matrix. The permeability date was measured at 288.15, 298.15, 308.15 and 318.15 K and pressure up to 4 bar for CO2 and N2. According to the outcome, the addition of the IL([Cho][Pro]) filler, the permeability of the AC/MOF/PVC MMMs is increased compared to the pure PVC membrane. The MMMs have the highest gas separation efficiency and performance above Robson's Upper Bound from 2008.
Collapse
Affiliation(s)
- Narmin Noorani
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Abbas Mehrdad
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Parastoo Shamszadeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Abid D, Mjejri I, Jaballi R, Guionneau P, Pechev S, Hlil EK, Daro N, Elaoud Z. Exploring the Optical and Energetic Properties of a Co(II)-Based Mixed Ligand MOF. Inorg Chem 2024; 63:6152-6160. [PMID: 38551110 DOI: 10.1021/acs.inorgchem.3c03638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Due to their remarkable properties, including remarkable porosity and extensive surface area, metal-organic frameworks (MOFs) are being investigated for various applications. Herein, we report the first Co(II)-based mixed ligand MOF, formulated Co4(HTrz)2(d-cam)2.5(μ-OH)3. Its 3D structure framework is composed of helical chains {[Co4(μ3-HTrz)4]8+}n connected by d-camphorate ligand building blocks and featured as an extended structure in an AB-AB fashion. The investigated compound displays a wide absorption range across the visible spectrum, characterized by an optical gap energy of 3.7 eV, indicating its semiconducting nature and efficient sunlight absorption capabilities across various wavelengths. The electrochemical performance demonstrated an excellent reversibility, cyclability, structural stability, as well as a specific capacity of up to 100 cycles at a scan rate of 0.1 mV·s-1 and a current density of 50 mA·g-1. Thus, it showcases its ability to retain the capacity over numerous charge-discharge cycles. Additionally, the investigated sample displayed an impressive rate capability during the Li-ion charge/discharge process. Therefore, the material's remarkable electrochemical properties can be ascribed to the synergistic effects of its large specific surface area of 348.294 m2·g-1 and well-defined pore size distribution of 20.448 Å, making it a promising candidate for high-performance Li-ion batteries.
Collapse
Affiliation(s)
- Dhouha Abid
- Laboratory Physical-Chemistry of Solid State, Faculty of Sciences of Sfax, University of Sfax, BP 802, Route de Soukra, Sfax 3018, Tunisia
| | - Issam Mjejri
- Unit of Materials and Environement (UR15ES01), IPEIT, University of Tunis, 2 rue Jawaher Lel Nahru, Montfleury 1089, Tunisia
| | - Rim Jaballi
- Laboratory Physical-Chemistry of Solid State, Faculty of Sciences of Sfax, University of Sfax, BP 802, Route de Soukra, Sfax 3018, Tunisia
| | - Philippe Guionneau
- CNRS, Bordeaux INP, ICMCB, UMR 5026, University of Bordeaux, Pessac F-33600, France
| | - Stanislav Pechev
- CNRS, Bordeaux INP, ICMCB, UMR 5026, University of Bordeaux, Pessac F-33600, France
| | - El Kebir Hlil
- Institut Neel, CNRS, Université J. Fourier, BP. 166, Grenoble 38042, France
| | - Nathalie Daro
- CNRS, Bordeaux INP, ICMCB, UMR 5026, University of Bordeaux, Pessac F-33600, France
| | - Zakaria Elaoud
- Laboratory Physical-Chemistry of Solid State, Faculty of Sciences of Sfax, University of Sfax, BP 802, Route de Soukra, Sfax 3018, Tunisia
| |
Collapse
|
3
|
Noorani N, Mehrdad A. Improving the Separation of CO 2/N 2 Using Impregnation of a Deep Eutectic Solvent on a Porous MOF. ACS OMEGA 2024; 9:9516-9525. [PMID: 38434863 PMCID: PMC10905700 DOI: 10.1021/acsomega.3c09243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
As the partial pressure of CO2 in flue gas is 0.1-0.2 bar, CO2 capture at a low pressure needs more attention. Under low pressure conditions, the functional metal-organic framework (MOF) is powerful for CO2 capture. One of the effective methods to increase the absorption capacity of the MOF is impregnation with deep eutectic solvents. In this research, NH2-MIL101(Cr) is impregnated with a deep eutectic solvent of choline chloride:urea (DES ChCl:urea) to enhance the adsorption capacity. The CO2 and N2 adsorption capacity of NH2-MIL101(Cr) and DES/NH2-MIL101(Cr) was investigated at temperatures of 288.15-303.15 K and pressures up to 1 bar. The obtained results indicate that the adsorption capacity of the MOF increases by 1.7 and 3 times with the impregnated DES for CO2 and N2, respectively. Nevertheless, the pore volume of the MOF decreased after impregnation, but the adsorption capacity of the MOF increased due to the interaction of the adsorbate with the confined DES in pores. The contribution of the impregnated DES to adsorption capacity is explained according to Henry's law. Also, high heats of adsorption are attributed to the strong interaction between modified NH2-MIL101(Cr) and CO2. Also, the sample was refined at 298 K and vacuum and was reused without considerable reduction of the CO2 capture capacity after 6 times. Moreover, the impregnation of ChCl:urea into NH2-MIL101(Cr) nanostructures was studied using density functional theory-based approaches.
Collapse
Affiliation(s)
- Narmin Noorani
- Department of Physical Chemistry,
Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Abbas Mehrdad
- Department of Physical Chemistry,
Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| |
Collapse
|
4
|
Karbalaee Hosseini A, Moghadaskhou F, Tadjarodi A, Safarkoopayeh B. Dual-Ligand Strategy for the Design and Construction of a Cd-Zn Heterometallic Metal-Organic Framework by One-Pot Synthesis as a Heterogeneous Catalyst for the Epoxidation Reaction of Olefins. Inorg Chem 2023; 62:21156-21163. [PMID: 38096807 DOI: 10.1021/acs.inorgchem.3c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The use of metal-organic frameworks (MOFs) as catalysts is reported in various industrial applications. In contrast to monometallic MOFs, heterometallic MOFs with mixed organic ligands showed enhanced catalytic properties. The catalytic properties of heterometallic MOFs can be enhanced by generating defects and the synergistic effect between the two heterometals at secondary building units. By using a solvothermal technique, a Cd-Zn heterometallic MOF with a new morphology, [Cd2Zn(DPTTZ)0.5(OBA)3(H2O)(HCOOH)] (IUST-4) [DPTTZ = 2,5-di(4-pyridyl)thiazolo[5,4-d]thiazole, OBA = 4,4'-oxybis(benzoic acid)], was synthesized via a mixed-ligand strategy and characterized by single-crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. X-ray crystallographic analysis showed that IUST-4 is a neutral 3D metal-organic framework crystallized in the monoclinic system with space group C2/c. In this study, the catalytic properties of IUST-4 for the epoxidation of cyclooctene were investigated. IUST-4 was selected as the optimal catalyst for epoxy product production due to its high selectivity and yield. Moreover, the catalytic performance of IUST-4 was maintained despite five recycling cycles without significant degradation. The epoxidation of cyclooctene with IUST-4 has several advantages, including good selectivity, easy recovery, and short-time reaction.
Collapse
Affiliation(s)
- Akram Karbalaee Hosseini
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Barzin Safarkoopayeh
- School of Chemistry, College of Science, University of Tehran, 1417935840 Tehran, Iran
| |
Collapse
|
5
|
Rouzifar M, Sobhani S, Farrokhi A, Sansano JM. Cobalt isatin-Schiff-base derivative of MOF as a heterogeneous multifunctional bio-photocatalyst for sunlight-induced tandem air oxidation condensation process. Sci Rep 2023; 13:5115. [PMID: 36991101 DOI: 10.1038/s41598-023-32241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
A sunlight-induced tandem air oxidation-condensation of alcohols with ortho-substituted anilines or malononitrile for the efficient synthesis of benz-imidazoles/-oxazoles/-thiazoles, or benzylidene malononitrile catalyzed by Co-isatin-Schiff-base-MIL-101(Fe) as a heterogeneous multifunctional bio-photocatalyst is reported. In these reactions, Co-isatin-Schiff-base-MIL-101(Fe) acts both as a photocatalyst, and a Lewis acid to catalyze the reaction of the in-situ formed aldehydes with o-substituted anilines or malononitrile. A significant decrease in the band gap energy and an increase in the characteristic emission of MIL-101(Fe) after functionalization with cobalt Schiff-base according to the DRS analysis and fluorescence spectrophotometry, respectively, indicate that the photocatalytic effectiveness of the catalyst is associated primarily to the synergetic influence of Fe-O cluster and Co-Schiff-base. EPR results obviously pointed out that Co-isatin-Schiff-base-MIL-101(Fe) is capable of creating 1O2 and O2⋅- as active oxygen species under visible light irradiation. Using an inexpensive catalyst, sunlight irradiation, air as a cost-effective and abundant oxidant, and a low amount of the catalyst with recoverability and durability in ethanol as a green solvent, make this methodology as an environmentally friendly process with energy-saving organic synthetic strategies. Furthermore, Co-isatin-Schiff-base-MIL-101(Fe) displays excellent photocatalytic antibacterial activity under sunlight irradiation against E. coli, S. aureus and S. pyogenes. Based on our knowledge, this is the first report of using a bio-photocatalyst for the synthesis of the target molecules.
Collapse
Affiliation(s)
- Majid Rouzifar
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran.
| | - Alireza Farrokhi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
6
|
Li Y, Cai DG, Zhu ZH, Xu H, Zheng TF, Chen JL, Liu SJ, Wen HR. Solvothermal synthesis and device fabrication of a Eu 3+-based metal-organic framework as a turn-on and blue-shift fluorescence sensor toward Cr 3+, Al 3+ and Ga 3. Dalton Trans 2023; 52:4167-4175. [PMID: 36892084 DOI: 10.1039/d2dt03230a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel three-dimensional Eu3+-based metal-organic framework with the formula {[(CH3)2NH2][Eu(BTDI)]·H2O·DMF}n (JXUST-25) was prepared by solvothermal method based on Eu3+ and 5,5'-(benzothiadiazole-4,7-diyl)diisophthalic acid (H4BTDI) with benzothiadiazole (BTD) luminescent groups. Due to the presence of Eu3+ and organic fluorescence ligand, JXUST-25 displays turn-on and blue-shift fluorescence toward Cr3+, Al3+ and Ga3+ with limits of detection (LOD) of 0.073, 0.006 and 0.030 ppm, respectively. Interestingly, the alkaline environment can change the fluorescence of JXUST-25 toward Cr3+/Al3+/Ga3+ and the addition of HCl solution realizes the reversible change of the fluorescence of JXUST-25 toward Cr3+/Al3+/Ga3+. It is noteworthy that the fluorescent test paper and light-emitting diode lamp based on JXUST-25 can effectively detect Cr3+, Al3+ and Ga3+ by the visual changes. In addition, the turn-on and blue-shift fluorescence between JXUST-25 and M3+ ions may be caused by the host-guest interaction and the absorbance caused enhancement mechanism.
Collapse
Affiliation(s)
- Yu Li
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Ding-Gui Cai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
7
|
Cai DG, Qiu CQ, Zhu ZH, Zheng TF, Wei WJ, Chen JL, Liu SJ, Wen HR. Fabrication and DFT Calculation of Amine-Functionalized Metal-Organic Framework as a Turn-On Fluorescence Sensor for Fe 3+ and Al 3+ Ions. Inorg Chem 2022; 61:14770-14777. [PMID: 36070603 DOI: 10.1021/acs.inorgchem.2c02195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to their important role in biological systems, it is urgent to develop a material that can rapidly and sensitively detect the concentration of Fe3+ and Al3+ ions. In this work, a brand-new CdII-based metal-organic framework [Cd(BTBD)2(AIC)]n (JXUST-18, BTBD = 4,7-bis(1H-1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole and H2AIC = 5-aminoisophthalic acid) with a 4-connected sql topology was designed and synthesized. The symmetrical CdII centers are linked by AIC2- ligands with μ3-η1:η1:η1:η1 coordination mode to form a [Cd2(COO)2] secondary building unit (SBU). The contiguous SBUs are further connected by BTBD ligands to form a two-dimensional (2D) layer structure. JXUST-18 can remain stable in aqueous solutions with pH values of 3-12 or in boiling water. Luminescent experiments suggest that JXUST-18 displays more than eightfold fluorescence enhancement in the presence of Fe3+ and Al3+ ions, and the detection limits for Fe3+ and Al3+ ions are 0.196 and 0.184 μM, respectively. Furthermore, the change in luminescence color is uncomplicatedly distinguishable with the naked eye under ultraviolet light at 365 nm. In addition, a series of devices based on JXUST-18 including fluorescence test strips, lamp beads, and composite films were developed to detect metal ions via visual changes in luminescence color. Significantly, JXUST-18 is a rare MOF-based turn-on fluorescence sensor for the detection of Fe3+ ions. The theoretical calculation suggests that the complexation of Fe3+/Al3+ ions and the -NH2 group contributes to fluorescence enhancement.
Collapse
Affiliation(s)
- Ding-Gui Cai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Cheng-Qiang Qiu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Wen-Juan Wei
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
8
|
Zhang M, Lin W, Ma L, Pi Y, Wang T. An in situ derived MOF@In 2S 3 heterojunction stabilizes Co(II)-salicylaldimine for efficient photocatalytic formic acid dehydrogenation. Chem Commun (Camb) 2022; 58:7140-7143. [PMID: 35666225 DOI: 10.1039/d2cc01969h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report here the hierarchical construction of a molecular Co(II)-salicylaldimine catalyst and an in situ derived In2S3 semiconductor in a MOF@In2S3 heterojunction through sequentially controllable in situ etching and post-synthetic modification for photocatalytic hydrogen production from formic acid. The enhanced catalyst stability and facilitated charge carrier mobility between the In2S3 photosensitizers and Co catalyst realize a superior H2 production rate of 18 746 μmol g-1 h-1 (selectivity > 99.9%) with a turnover number (TON) of up to 6146 in 24 h (apparent quantum efficiency of 3.8% at 420 nm), indicating a 165-fold enhancement over that of the pristine MOF. This work highlights a powerful strategy for synergistic Earth-abundant metal-based MOF photocatalysis in promoting H2 production from FA.
Collapse
Affiliation(s)
- Meijin Zhang
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Wenting Lin
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Liang Ma
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Yunhong Pi
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Tiejun Wang
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
9
|
Liu Y, Sun J, Fan L, Xu Q. Pd Clusters on Schiff Base–Imidazole-Functionalized MOFs for Highly Efficient Catalytic Suzuki Coupling Reactions. Front Chem 2022; 10:845274. [PMID: 35300386 PMCID: PMC8921604 DOI: 10.3389/fchem.2022.845274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
Subnanometer noble metal clusters have attracted much attention because of abundant low-coordinated metal atoms that perform excellent catalytic activity in various catalytic processes. However, the surface free energy of metals increases significantly with decreasing size of the metal clusters, which accelerates the aggregation of small clusters. In this work, new Schiff base–imidazole-functionalized MOFs were successfully synthesized via the postsynthetic modification method. Highly dispersed Pd clusters with an average size of 1.5 nm were constructed on this functional MOFs and behaved excellent catalytic activity in the Suzuki coupling of phenyboronic acid and bromobenzene (yield of biaryl >99%) under mild reaction conditions. Moreover, the catalyst can be reused six times without loss of activity. Such catalytic behavior is found to closely related to the surface functional groups that promote the formation of small Pd0 clusters in the metallic state.
Collapse
Affiliation(s)
- Yangqing Liu
- School of Chemistry and Chemical Engineering, Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, Yancheng Institute of Technology, Yancheng, China
| | - Jingwen Sun
- School of Chemistry and Chemical Engineering, Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, Yancheng Institute of Technology, Yancheng, China
| | - Lan Fan
- Yancheng Lanfeng Environmental Engineering Technology Co., LTD, Yancheng, China
| | - Qi Xu
- School of Chemistry and Chemical Engineering, Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, Yancheng Institute of Technology, Yancheng, China
- *Correspondence: Qi Xu,
| |
Collapse
|
10
|
Zhang YY, Zhou ML, Bao YS, Yang M, Cui YH, Liu DL, Wu Q, Liu L, Han ZB. Palladium nanoparticles encapsuled in MOF: An efficient dual-functional catalyst to produce benzylmalononitrile derivatives by one-pot reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Triandafillidi I, Kokotou MG, Lotter D, Sparr C, Kokotos CG. Aldehyde-catalyzed epoxidation of unactivated alkenes with aqueous hydrogen peroxide. Chem Sci 2021; 12:10191-10196. [PMID: 34377408 PMCID: PMC8336450 DOI: 10.1039/d1sc02360h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
The organocatalytic epoxidation of unactivated alkenes using aqueous hydrogen peroxide provides various indispensable products and intermediates in a sustainable manner. While formyl functionalities typically undergo irreversible oxidations when activating an oxidant, an atropisomeric two-axis aldehyde capable of catalytic turnover was identified for high-yielding epoxidations of cyclic and acyclic alkenes. The relative configuration of the stereogenic axes of the catalyst and the resulting proximity of the aldehyde and backbone residues resulted in high catalytic efficiencies. Mechanistic studies support a non-radical alkene oxidation by an aldehyde-derived dioxirane intermediate generated from hydrogen peroxide through the Payne and Criegee intermediates.
Collapse
Affiliation(s)
- Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Dominik Lotter
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
12
|
Liu XY, Yin XM, Yang SL, Zhang L, Bu R, Gao EQ. Chromic and Fluorescence-Responsive Metal-Organic Frameworks Afforded by N-Amination Modification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20380-20387. [PMID: 33878258 DOI: 10.1021/acsami.1c03937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensory materials that show color and/or fluorescence changes in response to specific gases or vapors have important applications in many fields. Here, we report the postsynthetic preparation of novel sensory metal-organic frameworks (MOFs) and their multiple responsive properties. Through postsynthetic N-amination, the 2,2'-bipyridyl spacers in a Zr(IV) MOF are partially transformed into N-aminobipyridinium. The new MOF (Zr-bpy-A) shows chromic behavior toward ammonia and amines because the electron-deficient pyridinium groups form charge-transfer complexes with amino moieties. It also shows a unique chromic response to formaldehyde owing to the Schiff-base condensation with the N-amino groups. Furthermore, the N-amino group can be used to graft different polycyclic aromatic hydrocarbons, which endow the MOF with strong fluorescence of variable colors and afford a high-contrast fluorescence response to ammonia/amines and formaldehyde associated with the chromic response. The presence of the unquaternized bipyridyl group also leads to a fluorescence response to HCl. The multiple responsive behaviors hold appeal for applications in sensing, switching, and antifake marking, which are illustrated with a test paper and writing ink.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xue-Mei Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
13
|
Wei YP, Yang S, Wang P, Guo JH, Huang J, Sun WY. Iron(iii)-bipyridine incorporated metal-organic frameworks for photocatalytic reduction of CO 2 with improved performance. Dalton Trans 2021; 50:384-390. [PMID: 33320135 DOI: 10.1039/d0dt03500a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) represent an emerging class of platforms to assemble single site photocatalysts for artificial photosynthesis. In this work, we report a new CO2 reduction photocatalyst (UiO-68-Fe-bpy) based on a robust Zr(iv)-MOF platform with incorporated Fe(bpy)Cl3 (bpy refers to the 4'-methyl-[2,2'-bipyridine] moiety) via amine-aldehyde condensation. We show that this hybrid catalyst can reduce CO2 to form CO under visible light illumination with excellent selectivity and enhanced activity with respect to its parent MOF and corresponding homogeneous counterpart. Using steady state and transient absorption (TA) spectroscopy, we show that the enhanced photocatalytic activity of UiO-68-Fe-bpy is attributed to the elongated excited state lifetime of Fe(bpy)Cl3 after being incorporated to the UiO-68-NH2 platform. This work demonstrates the great potential of MOFs as a next generation platform for solar fuel conversion.
Collapse
Affiliation(s)
- Yuan-Ping Wei
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | |
Collapse
|
14
|
Shi Y, Chen L, li J, Hu Q, Ji G, Lu Y, Hu X, Zhu B, Huang W. Co supported on interparticle porosity dominated hierarchical porous TS-1 as highly efficient heterogeneous catalyst for epoxidation of styrene. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Rouzifar M, Sobhani S, Farrokhi A, Sansano JM. Fe-MIL-101 modified by isatin-Schiff-base-Co: a heterogeneous catalyst for C–C, C–O, C–N, and C–P cross coupling reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj03468e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fe-MIL-101-isatin-Schiff-base-Co was synthesized and applied as a catalyst for Ullmann-type, Buchwald–Hartwig, Hirao, Hiyama and Mizoroki–Heck cross-coupling reactions of aryl halides.
Collapse
Affiliation(s)
- Majid Rouzifar
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Alireza Farrokhi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080-Alicante, Spain
| |
Collapse
|
16
|
Moyo B, Gitari M, Tavengwa NT. Application of sorptive micro-extraction techniques for the pre-concentration of antibiotic drug residues from food samples - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1865-1880. [PMID: 33000997 DOI: 10.1080/19440049.2020.1802069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antibiotic residues have become a major concern worldwide as food contaminants due to the risk that they may pose to human health. The presence of these residues in food is due to improper veterinary practices. Consequently, rapid and cost-effective clean-up methods prior to analysis for these residues in food matrices are increasingly becoming necessary in order to ensure food safety. Miniaturised extraction and pre-concentration techniques have been developed as alternatives to conventional extraction procedures in recent years. Furthermore, the current trends in analytical sample preparation favour extraction techniques that comply with the principles of green analytical chemistry. Solid phase micro-extraction, stir bar sorptive extraction, stir cake sorptive extraction and fabric phase sorptive extraction methods are very promising sorbent-based sorptive micro-extraction techniques, and they are compliant to the principles of green chemistry. This review critically discusses the application of these techniques in the extraction and pre-concentration of antibiotic residues from food samples in the years 2015 to 2020.
Collapse
Affiliation(s)
- Babra Moyo
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda , Thohoyandou, South Africa
| | - Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda , Thohoyandou, South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda , Thohoyandou, South Africa
| |
Collapse
|
17
|
Anatase TiO2@MIL-101(Cr) nanocomposite for photocatalytic degradation of bisphenol A. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
|
19
|
Rajak R, Saraf M, Mobin SM. Mixed-Ligand Architected Unique Topological Heterometallic Sodium/Cobalt-Based Metal–Organic Framework for High-Performance Supercapacitors. Inorg Chem 2020; 59:1642-1652. [DOI: 10.1021/acs.inorgchem.9b02762] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Monika, Ansari A. Mechanistic insights into the allylic oxidation of aliphatic compounds by tetraamido iron( v) species: A C–H vs. O–H bond activation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03095c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight into a comparative study of C–H vs. O–H bond activation of allylic compound by the high valent iron complex. Our theoretical findings can help to design catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| |
Collapse
|
21
|
Kousik S, Velmathi S. Engineering Metal-Organic Framework Catalysts for C-C and C-X Coupling Reactions: Advances in Reticular Approaches from 2014-2018. Chemistry 2019; 25:16451-16505. [PMID: 31313373 DOI: 10.1002/chem.201901987] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Indexed: 01/24/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials that have been actively used for several industrial and synthetic applications. MOFs are spatially and geometrically extrapolated coordination polymers with intriguing properties such as tunable porosity and dimensionality. In terms of their catalytic efficiency, MOFs combine the easy recoverability of heterogeneous catalysts with the increased selectivity of biological catalysts. It is therefore not surprising that a lot of work on optimizing MOF catalysts for organic transformations has been carried out over the past decade. In this review, recent developments in MOF catalysis are summarized, with special attention being paid to C-C, C-N, and C-O coupling reactions. The influence of pore size, pore environment, and load on catalytic activity is described. Post-synthetic stabilization techniques and host-guest interactions in caged MOF scaffolds are detailed. Mechanistic aspects pertaining to the use of MOFs in asymmetric heterogeneous catalysis are highlighted and categorized.
Collapse
Affiliation(s)
- Shravan Kousik
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| |
Collapse
|
22
|
Freire C, Nunes M, Pereira C, Fernandes DM, Peixoto AF, Rocha M. Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Palladium nanoparticles encapsulated in MIL-101-NH2 catalyzed one-pot reaction of Suzuki-Knoevenagel reaction. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Cobalt imine–pyridine–carbonyl complex functionalized metal–organic frameworks as catalysts for alkene epoxidation. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00319-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Huang K, Guo LL, Wu DF. Synthesis of Metal Salen@MOFs and Their Catalytic Performance for Styrene Oxidation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing 211189, China
| | - Lin Lin Guo
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing 211189, China
| | - Dong Fang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing 211189, China
| |
Collapse
|
26
|
Wang S, Hou S, Wu C, Zhao Y, Ma X. RuCl3 anchored onto post-synthetic modification MIL-101(Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.06.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Chong SY, Wang TT, Cheng LC, Lv HY, Ji M. Metal-Organic Framework MIL-101-NH 2-Supported Acetate-Based Butylimidazolium Ionic Liquid as a Highly Efficient Heterogeneous Catalyst for the Synthesis of 3-Aryl-2-oxazolidinones. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:495-503. [PMID: 30580528 DOI: 10.1021/acs.langmuir.8b03153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel heterogeneous catalyst, the ionic liquid (IL) of 1-butyl-3-methylimidazolium acetate (BmimOAc) immobilized on MIL-101-NH2, denoted as IL(OAc-)-MIL-101-NH2, was prepared by the "ship-in-a-bottle" strategy. The IL of BmimOAc was prepared in the MIL-101-NH2 nanocages primordially, in which the condensation product of MIL-101-NH2's amine group with 1,1'-carbonyldiimidazole (CDI) reacted with 1-bromo butane, and then the intermediate exchanged with potassium acetate. The structure and physicochemical properties of IL(OAc-)-MIL-101-NH2 were characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, DRS UV-vis, nitrogen adsorption-desorption, and elemental analysis. The results indicated that BmimOAc was anchored in the MIL-101-NH2 skeleton via the acylamino group and confined in the nanocages in the form of a single molecule. The composite material of IL(OAc-)-MIL-101-NH2 exhibited excellent catalytic activity and catalytically synthesized 3-aryl-2-oxazolone in an excellent yield of 92%. It can be reused up to six times without noteworthy loss of its activity and demonstrated distinct size-selective property for substrates. It was conjectured that the diffusion kinetics of reactants could be controlled by the aperture size of the metal-organic framework support.
Collapse
Affiliation(s)
- S Y Chong
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology , Dalian University of Technology , Dalian 116023 , China
| | - T T Wang
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology , Dalian University of Technology , Dalian 116023 , China
| | - L C Cheng
- Department of Pharmacy , The Second Affiliation Hospital of Dalian Medical University , Dalian 116027 , China
| | - H Y Lv
- Department of Pharmacy , The Second Affiliation Hospital of Dalian Medical University , Dalian 116027 , China
| | - M Ji
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology , Dalian University of Technology , Dalian 116023 , China
| |
Collapse
|
28
|
Solid-phase microextraction of antibiotics from fish muscle by using MIL-101(Cr)NH2-polyacrylonitrile fiber and their identification by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2019; 1047:62-70. [DOI: 10.1016/j.aca.2018.09.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
|
29
|
Wei YP, Liu Y, Guo F, Dao XY, Sun WY. Different functional group modified zirconium frameworks for the photocatalytic reduction of carbon dioxide. Dalton Trans 2019; 48:8221-8226. [DOI: 10.1039/c9dt01767d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UiO-68-PSMs of UiO-68-F, UiO-68-CH3 and UiO-68-OCH3 achieved by post-synthetic modification were found to show different activity for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yuan-Ping Wei
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Yi Liu
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Fan Guo
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Xiao-Yao Dao
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Wei-Yin Sun
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| |
Collapse
|
30
|
Catalytic (ep)oxidation and corrosion inhibition potentials of CuII and CoII pyridinylimino phenolate complexes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Zhao J, Wang W, Tang H, Ramella D, Luan Y. Modification of Cu2+ into Zr-based metal–organic framework (MOF) with carboxylic units as an efficient heterogeneous catalyst for aerobic epoxidation of olefins. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Saghian M, Dehghanpour S, Sharbatdaran M. “Ship in a bottle” Porph@MOMs as highly efficient catalysts for selective controllable oxidation and insights into different mechanisms in heterogeneous and homogeneous environments. NEW J CHEM 2018. [DOI: 10.1039/c8nj00315g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D “ship in a bottle” Porph@MOMs with selectivity control capability and interesting catalytic properties were used as biomimetic oxidation catalysts for different reactions.
Collapse
Affiliation(s)
- M. Saghian
- Department of Chemistry
- Alzahra University
- Tehran
- Iran
| | | | - M. Sharbatdaran
- Physics and Accelerators School
- Nuclear Science and Technology Research Institute
- Karaj
- Iran
| |
Collapse
|
33
|
Espín J, Garzón-Tovar L, Boix G, Imaz I, Maspoch D. The photothermal effect in MOFs: covalent post-synthetic modification of MOFs mediated by UV-Vis light under solvent-free conditions. Chem Commun (Camb) 2018; 54:4184-4187. [DOI: 10.1039/c8cc01593g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photothermal effect can be used to perform covalent post-synthetic modifications on metal–organic frameworks under solvent-free conditions.
Collapse
Affiliation(s)
- Jordi Espín
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Luis Garzón-Tovar
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Gerard Boix
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
- ICREA
| |
Collapse
|
34
|
Two-fold interpenetrating btc based cobaltous coordination polymer: A promising catalyst for solvent free oxidation of 1-hexene. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Garai M, Dey D, Yadav HR, Maji M, Choudhury AR, Biswas B. Synthesis and phosphatase activity of a Cobalt(II) phenanthroline complex. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1355-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Du Y, Li X, Lv X, Jia Q. Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal-Organic Frameworks-Based Energy Transfer Process. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30925-30932. [PMID: 28831805 DOI: 10.1021/acsami.7b09091] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Free bilirubin, a key biomarker for jaundice, was detected with a newly designed fluorescent postsynthetically modified metal organic framework (MOF) (UIO-66-PSM) sensor. UiO-66-PSM was prepared based on the aldimine condensation reaction of UiO-66-NH2 with 2,3,4-trihydroxybenzaldehyde. The fluorescence of UIO-66-PSM could be effectively quenched by free bilirubin via a fluorescent resonant energy transfer process, thus achieving its recognition of free bilirubin. It was the first attempt to design a MOF-based fluorescent probe for sensing free bilirubin. The probe exhibited fast response time, low detection limit, wide linear range, and high selectivity toward free bilirubin. The sensing system enabled the monitor of free bilirubin in real human serum. Hence, the reported free bilirubin sensing platform has potential applications for clinical diagnosis of jaundice.
Collapse
Affiliation(s)
- Yaran Du
- College of Chemistry, Jilin University , Changchun 130012, China
| | - Xiqian Li
- China-Japan Hospital of Jilin University , Changchun 130033, China
| | - Xueju Lv
- College of Chemistry, Jilin University , Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University , Changchun 130012, China
| |
Collapse
|
37
|
Ni XL, Liu J, Liu YY, Leus K, Depauw H, Wang AJ, Van Der Voort P, Zhang J, Hu YK. Synthesis, characterization and catalytic performance of Mo based metal- organic frameworks in the epoxidation of propylene by cumene hydroperoxide. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Sankaralingam M, Lee YM, Nam W, Fukuzumi S. Selective Oxygenation of Cyclohexene by Dioxygen via an Iron(V)-Oxo Complex-Autocatalyzed Reaction. Inorg Chem 2017; 56:5096-5104. [DOI: 10.1021/acs.inorgchem.7b00220] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yong-Min Lee
- Department of Chemistry
and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry
and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry
and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
39
|
Highly Site-Selective Epoxidation of Polyene Catalyzed by Metal–Organic Frameworks Assisted by Polyoxometalate. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0507-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Garzón-Tovar L, Rodríguez-Hermida S, Imaz I, Maspoch D. Spray Drying for Making Covalent Chemistry: Postsynthetic Modification of Metal–Organic Frameworks. J Am Chem Soc 2017; 139:897-903. [DOI: 10.1021/jacs.6b11240] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Luis Garzón-Tovar
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Sabina Rodríguez-Hermida
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
41
|
Sadeghi S, Jafarzadeh M, Reza Abbasi A, Daasbjerg K. Incorporation of CuO NPs into modified UiO-66-NH2 metal–organic frameworks (MOFs) with melamine for catalytic C–O coupling in the Ullmann condensation. NEW J CHEM 2017. [DOI: 10.1039/c7nj02114c] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UiO-66-NH2 is initially modified with melamine via a post-synthetic approach. CuO NPs are then anchored via the available functional groups on the surface of the modified MOF.
Collapse
Affiliation(s)
- Samira Sadeghi
- Faculty of Chemistry, Razi University
- Kermanshah 67149-67346
- Iran
| | | | | | - Kim Daasbjerg
- Department of Chemistry
- Aarhus University
- Langelandsgade 140
- 8000 Aarhus C
- Denmark
| |
Collapse
|
42
|
Nguyen KD, Doan SH, Ngo AN, Nguyen TT, Phan NT. Direct C–N coupling of azoles with ethers via oxidative C–H activation under metal–organic framework catalysis. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Amidation via ligand-free direct oxidative C(sp3)-H/NH coupling with Cu-CPO-27 metal-organic framework as a recyclable heterogeneous catalyst. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.10.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Dhakshinamoorthy A, Asiri AM, Garcia H. Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry 2016; 22:8012-24. [PMID: 27113486 DOI: 10.1002/chem.201505141] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/21/2016] [Indexed: 01/08/2023]
Abstract
This Concept is aimed at describing the current state of the art in metal-organic frameworks (MOFs) as heterogeneous catalysts for liquid-phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal-free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Tamil Nadu, 625 021, India. .,Instituto Universitario de Tecnología Química CSIC-UPV, Av. De los Naranjos s/n, 46022, Valencia, Spain.
| | - Abdullah M Asiri
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química CSIC-UPV, Av. De los Naranjos s/n, 46022, Valencia, Spain. .,Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
45
|
Vanoye L, Wang J, Pablos M, de Bellefon C, Favre-Réguillon A. Epoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidation. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00309e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mukaiyama reaction was performed G/L continuous-flow microreactor. In less than 5 minutes at room temperature, cyclooctene was efficiently transformed to the corresponding epoxide using O2 as oxidant and aldehyde as co-reductant.
Collapse
Affiliation(s)
- Laurent Vanoye
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Jiady Wang
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Mertxe Pablos
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Claude de Bellefon
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Alain Favre-Réguillon
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| |
Collapse
|
46
|
Andriamitantsoa RS, Wang J, Dong W, Gao H, Wang G. SO3H-functionalized metal organic frameworks: an efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Adv 2016. [DOI: 10.1039/c6ra02575g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The high dispersed –SO3H groups in the framework of MIL-101-Cr–NH–RSO3H ensure high catalytic activity for the condensation of 1,2-diamines with benzil. The catalyst exhibits good stability, general applicability and excellent recycling performance.
Collapse
Affiliation(s)
- Radoelizo S. Andriamitantsoa
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Jingjing Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Wenjun Dong
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Hongyi Gao
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| |
Collapse
|
47
|
Li YA, Yang S, Liu QK, Chen GJ, Ma JP, Dong YB. Pd(0)@UiO-68-AP: chelation-directed bifunctional heterogeneous catalyst for stepwise organic transformations. Chem Commun (Camb) 2016; 52:6517-20. [DOI: 10.1039/c6cc01194b] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A bifunctional heterogeneous catalyst Pd(0)@UiO-68-AP based on a chelation-directed post-synthetic approach is reported.
Collapse
Affiliation(s)
- Yan-An Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Song Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qi-Kui Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Gong-Jun Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jian-Ping Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yu-Bin Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|