1
|
Eisen C, Ge L, Santini E, Chin JM, Woodward RT, Reithofer MR. Hyper crosslinked polymer supported NHC stabilized gold nanoparticles with excellent catalytic performance in flow processes. NANOSCALE ADVANCES 2023; 5:1095-1101. [PMID: 36798502 PMCID: PMC9926895 DOI: 10.1039/d2na00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Highly active and selective heterogeneous catalysis driven by metallic nanoparticles relies on a high degree of stabilization of such nanomaterials facilitated by strong surface ligands or deposition on solid supports. In order to tackle these challenges, N-heterocyclic carbene stabilized gold nanoparticles (NHC@AuNPs) emerged as promising heterogeneous catalysts. Despite the high degree of stabilization obtained by NHCs as surface ligands, NHC@AuNPs still need to be loaded on support structures to obtain easily recyclable and reliable heterogeneous catalysts. Therefore, the combination of properties obtained by NHCs and support structures as NHC bearing "functional supports" for the stabilization of AuNPs is desirable. Here, we report the synthesis of hyper-crosslinked polymers containing benzimidazolium as NHC precursors to stabilize AuNPs. Following the successful synthesis of hyper-crosslinked polymers (HCP), a two-step procedure was developed to obtain HCP·NHC@AuNPs. Detailed characterization not only revealed the successful NHC formation but also proved that the NHC functions as a stabilizer to the AuNPs in the porous polymer network. Finally, HCP·NHC@AuNPs were evaluated in the catalytic decomposition of 4-nitrophenol. In batch reactions, a conversion of greater than 99% could be achieved in as little as 90 s. To further evaluate the catalytic capability of HCP·NHC@AuNP, the catalytic decomposition of 4-nitrophenol was also performed in a flow setup. Here the catalyst not only showed excellent catalytic conversion but also exceptional recyclability while maintaining the catalytic performance.
Collapse
Affiliation(s)
- Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Lingcong Ge
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Elena Santini
- Institute of Material Chemistry and Research, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Jia Min Chin
- Institute of Inorganic Chemistry - Functional Materials, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Robert T Woodward
- Institute of Material Chemistry and Research, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| |
Collapse
|
2
|
Schukraft GEM, Itskou I, Woodward RT, Van Der Linden B, Petit C, Urakawa A. Evaluation of CO 2 and H 2O Adsorption on a Porous Polymer Using DFT and In Situ DRIFT Spectroscopy. J Phys Chem B 2022; 126:8048-8057. [PMID: 36170038 PMCID: PMC9574916 DOI: 10.1021/acs.jpcb.2c03912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous hyper-cross-linked polymers (HCPs) have been developed as CO2 adsorbents and photocatalysts. Yet, little is known of the CO2 and H2O adsorption mechanisms on amorphous porous polymers. Gaining a better understanding of these mechanisms and determining the adsorption sites are key to the rational design of improved adsorbents and photocatalysts. Herein, we present a unique approach that combines density functional theory (DFT), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and multivariate spectral analysis to investigate CO2 and H2O adsorption sites on a triazine-biphenyl HCP. We found that CO2 and H2O adsorb on the same HCP sites albeit with different adsorption strengths. The primary amines of the triazines were identified as favoring strong CO2 binding interactions. Given the potential use of HCPs for CO2 photoreduction, we also investigated CO2 and H2O adsorption under transient light irradiation. Under irradiation, we observed partial CO2 and H2O desorption and a redistribution of interactions between the H2O and CO2 molecules that remain adsorbed at HCP adsorption sites.
Collapse
Affiliation(s)
- Giulia E M Schukraft
- Barrer Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
| | - Ioanna Itskou
- Barrer Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
| | - Robert T Woodward
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Bart Van Der Linden
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Camille Petit
- Barrer Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
| | - Atsushi Urakawa
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
3
|
Laffafchi F, Tajbakhsh M, Sarrafi Y, Maleki B, Ghani M. Cu-Modified Magnetic Creatine as an Efficient Catalyst for Regioselective Preparation of 1,2,3-Triazoles Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2070224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Farin Laffafchi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
4
|
Huang XY, Zheng Q, Zou LM, Gu Q, Tu T, You SL. Hyper-Crosslinked Porous Chiral Phosphoric Acids: Robust Solid Organocatalysts for Asymmetric Dearomatization Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xian-Yun Huang
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lei-Ming Zou
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shu-Li You
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
5
|
Convenient synthesis of a hyper-cross-linked polymer via knitting strategy for high-performance solid phase microextraction of polycyclic aromatic hydrocarbons. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Khashei Siuki H, Ghamari Kargar P, Bagherzade G. New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Sci Rep 2022; 12:3771. [PMID: 35260647 PMCID: PMC8904776 DOI: 10.1038/s41598-022-07674-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
In this project, the new catalyst copper defines as Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, FESEM, EDX, VSM, TGA, and ICP analysis. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. One of the most important properties of a catalyst is the ability to be prepared from simple materials such as pectin that's a biopolymer that is widely found in nature. The catalytic activity of Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was examined in a classical, one pot, and the three-component reaction of terminal alkynes, alkyl halides, and sodium azide in water and observed, proceeding smoothly and completed in good yields and high regioselectivity. The critical potential interests of the present method include high yields, recyclability of catalyst, easy workup, using an eco-friendly solvent, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. The capability of the nanocomposite was compared with previous works, and the nanocomposite was found more efficient, economical, and reproducible. Also, the catalyst can be easily removed from the reaction solution using an external magnet and reused for five runs without reduction in catalyst activity.
Collapse
Affiliation(s)
- Hossein Khashei Siuki
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran.
| |
Collapse
|
7
|
Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, Alemán J, Luque R, Garcia H. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem Soc Rev 2022; 51:7810-7882. [DOI: 10.1039/d1cs00976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review summarizes the state-of-the-art of C–H active transformations over crystalline and amorphous porous materials as new emerging heterogeneous (photo)catalysts.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Yong Peng
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, EdificioMarie Curie (C-3), CtraNnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
8
|
Wang Y, Chang JP, Xu R, Bai S, Wang D, Yang GP, Sun LY, Li P, Han YF. N-Heterocyclic carbenes and their precursors in functionalised porous materials. Chem Soc Rev 2021; 50:13559-13586. [PMID: 34783804 DOI: 10.1039/d1cs00296a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Though N-heterocyclic carbenes (NHCs) have emerged as diverse and powerful discrete functional molecules in pharmaceutics, nanotechnology, and catalysis over decades, the heterogenization of NHCs and their precursors for broader applications in porous materials, like metal-organic frameworks (MOFs), porous coordination polymers (PCPs), covalent-organic frameworks (COFs), porous organic polymers (POPs), and porous organometallic cages (POMCs) was not extensively studied until the last ten years. By de novo or post-synthetic modification (PSM) methods, myriads of NHCs and their precursors containing building blocks were designed and integrated into MOFs, PCPs, COFs, POPs and POMCs to form various structures and porosities. Functionalisation with NHCs and their precursors significantly expands the scope of the potential applications of porous materials by tuning the pore surface chemical/physical properties, providing active sites for binding guest molecules and substrates and realizing recyclability. In this review, we summarise and discuss the recent progress on the synthetic methods, structural features, and promising applications of NHCs and their precursors in functionalised porous materials. At the end, a brief perspective on the encouraging future prospects and challenges in this contemporary field is presented. This review will serve as a guide for researchers to design and synthesize more novel porous materials functionalised with NHCs and their precursors.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Jin-Ping Chang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Rui Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Dong Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Li-Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Peng Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| |
Collapse
|
9
|
Lin H, Yao H, Gao X, Zhang L, Luo Q, Ouyang Y, Xiang B, Liu S, Xiang D. Efficient and Economical Preparation of Hypercrosslinked Polymers-palladium Based on Schiff Base as Recyclable Catalyst for Suzuki-Miyaura Reactions. CHEM LETT 2021. [DOI: 10.1246/cl.210301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hongwei Lin
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, College of Chemical and Materials Engineering, Key Laboratory of Research and Utilization of Ethno-medicinal Plant Resources of Hunan Province, Huaihua Key Laboratory of New Fiber Materials and Products, Huaihua University, Huaihua 418000, P. R. China
| | - Huan Yao
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, College of Chemical and Materials Engineering, Key Laboratory of Research and Utilization of Ethno-medicinal Plant Resources of Hunan Province, Huaihua Key Laboratory of New Fiber Materials and Products, Huaihua University, Huaihua 418000, P. R. China
| | - Xiyue Gao
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, College of Chemical and Materials Engineering, Key Laboratory of Research and Utilization of Ethno-medicinal Plant Resources of Hunan Province, Huaihua Key Laboratory of New Fiber Materials and Products, Huaihua University, Huaihua 418000, P. R. China
| | - Li Zhang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, College of Chemical and Materials Engineering, Key Laboratory of Research and Utilization of Ethno-medicinal Plant Resources of Hunan Province, Huaihua Key Laboratory of New Fiber Materials and Products, Huaihua University, Huaihua 418000, P. R. China
| | - Qionglin Luo
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, College of Chemical and Materials Engineering, Key Laboratory of Research and Utilization of Ethno-medicinal Plant Resources of Hunan Province, Huaihua Key Laboratory of New Fiber Materials and Products, Huaihua University, Huaihua 418000, P. R. China
| | - Yuejun Ouyang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, College of Chemical and Materials Engineering, Key Laboratory of Research and Utilization of Ethno-medicinal Plant Resources of Hunan Province, Huaihua Key Laboratory of New Fiber Materials and Products, Huaihua University, Huaihua 418000, P. R. China
| | - Bailin Xiang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, College of Chemical and Materials Engineering, Key Laboratory of Research and Utilization of Ethno-medicinal Plant Resources of Hunan Province, Huaihua Key Laboratory of New Fiber Materials and Products, Huaihua University, Huaihua 418000, P. R. China
| | - Shasha Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, College of Chemical and Materials Engineering, Key Laboratory of Research and Utilization of Ethno-medicinal Plant Resources of Hunan Province, Huaihua Key Laboratory of New Fiber Materials and Products, Huaihua University, Huaihua 418000, P. R. China
| | - Dexuan Xiang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, College of Chemical and Materials Engineering, Key Laboratory of Research and Utilization of Ethno-medicinal Plant Resources of Hunan Province, Huaihua Key Laboratory of New Fiber Materials and Products, Huaihua University, Huaihua 418000, P. R. China
| |
Collapse
|
10
|
Ma L, Jiang P, Wang K, Huang X, Yang M, Gong L, Li R. High‐efficiency catalyst for copper nanoparticles attached to porous nitrogen‐doped carbon materials: Applied to the coupling reaction of alkyne groups under mild conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Pengbo Jiang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Kaizhi Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Xiaokang Huang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Li Gong
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Rong Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| |
Collapse
|
11
|
Wei Z, Chen Q, Liu H. Hydroxyl modified hypercrosslinked polymers: targeting high efficient adsorption separation towards aniline. NEW J CHEM 2021. [DOI: 10.1039/d1nj00914a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The removal of aniline from aqueous solution has a major environmental impact and attracted increasing attention in last few years.
Collapse
Affiliation(s)
- Zishuai Wei
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Qibin Chen
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
12
|
Lin H, Gao X, Yao H, Luo Q, Xiang B, Liu C, Ouyang Y, Zhou N, Xiang D. Immobilization of a Pd(ii)-containing N-heterocyclic carbene ligand on porous organic polymers: efficient and recyclable catalysts for Suzuki–Miyaura reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00021g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two NHC–Pd(ii) complexes immobilized on porous organic polymers were successfully prepared via Scholl reactions and metallization. These complexes were applied in Suzuki–Miyaura reaction as heterogeneous catalysts with excellent yield and TON.
Collapse
Affiliation(s)
- Hongwei Lin
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
- College of chemical and materials engineering
- Huaihua University
- Huaihua 418000
| | - Xiyue Gao
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
- College of chemical and materials engineering
- Huaihua University
- Huaihua 418000
| | - Huan Yao
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
- College of chemical and materials engineering
- Huaihua University
- Huaihua 418000
| | - Qionglin Luo
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
- College of chemical and materials engineering
- Huaihua University
- Huaihua 418000
| | - Bailin Xiang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
- College of chemical and materials engineering
- Huaihua University
- Huaihua 418000
| | - Cijie Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
- College of chemical and materials engineering
- Huaihua University
- Huaihua 418000
| | - Yuejun Ouyang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
- College of chemical and materials engineering
- Huaihua University
- Huaihua 418000
| | - Nonglin Zhou
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
- College of chemical and materials engineering
- Huaihua University
- Huaihua 418000
| | - Dexuan Xiang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province
- College of chemical and materials engineering
- Huaihua University
- Huaihua 418000
| |
Collapse
|
13
|
Lei Y, Fan M, Lan G, Li G. Copper supported on N‐heterocyclic carbene‐functionalized porous organic polymer for efficient oxidative carbonylation of methanol. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yizhu Lei
- School of Chemistry and Materials EngineeringLiupanshui Normal University Liupanshui Guizhou 553004 China
- Guizhou Key Laboratory of Coal Clean Utilization, Liupanshu Guizhou 553004 China
| | - Meitao Fan
- School of Chemistry and Materials EngineeringLiupanshui Normal University Liupanshui Guizhou 553004 China
- Guizhou Key Laboratory of Coal Clean Utilization, Liupanshu Guizhou 553004 China
| | - Guosong Lan
- School of Chemistry and Materials EngineeringLiupanshui Normal University Liupanshui Guizhou 553004 China
- Guizhou Key Laboratory of Coal Clean Utilization, Liupanshu Guizhou 553004 China
| | - Guangxing Li
- Jingchu University of Technology Jingmen Hubei 448000 China
| |
Collapse
|
14
|
Lei Y, Lan G, Fan M, Li G. Palladium coordinated in N-heterocyclic carbene-functionalized porous organic polymer for efficient oxidative carbonylation of glycerol. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Liu C, Zheng L, Xiang D, Liu S, Xu W, Luo Q, Shu Y, Ouyang Y, Lin H. Palladium supported on triazolyl-functionalized hypercrosslinked polymers as a recyclable catalyst for Suzuki-Miyaura coupling reactions. RSC Adv 2020; 10:17123-17128. [PMID: 35521468 PMCID: PMC9053621 DOI: 10.1039/d0ra01190h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
A novel hypercrosslinked polymers-palladium (HCPs-Pd) catalyst was successfully prepared via the external cross-linking reactions of substituted 1,2,3-triazoles with benzene and formaldehyde dimethyl acetal. The preparation of HCPs-Pd has the advantages of low cost, mild conditions, simple procedure, easy separation and high yield. The catalyst structure and composition were characterized by N2 sorption, TGA, FT-IR, SEM, EDX, TEM, XPS and ICP-AES. The HCPs were found to possess high specific surface area, large micropore volume, chemical and thermal stability, low skeletal bone density and good dispersion for palladium chloride. The catalytic performance of HCPs-Pd was evaluated in Suzuki-Miyaura coupling reactions. The results show that HCPs-Pd is a highly active catalyst for the Suzuki-Miyaura coupling reaction in H2O/EtOH solvent with TON numbers up to 1.66 × 104. The yield of biaryls reached 99%. In this reaction, the catalyst was easily recovered and reused six times without a significant decrease in activity.
Collapse
Affiliation(s)
- Cijie Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University Huaihua 418000 China
| | - Lijuan Zheng
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University Huaihua 418000 China
| | - Dexuan Xiang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University Huaihua 418000 China
| | - Shasha Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University Huaihua 418000 China
| | - Wei Xu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University Huaihua 418000 China
| | - Qionglin Luo
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University Huaihua 418000 China
| | - You Shu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University Huaihua 418000 China
| | - Yuejun Ouyang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University Huaihua 418000 China
| | - Hongwei Lin
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University Huaihua 418000 China
| |
Collapse
|
16
|
Wang R, Qin L, Wang X, Chen B, Zhao Y, Gao G. Polymer supported N-heterocyclic carbene ruthenium complex catalyzed transfer hydrogenation of ketones. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
Liu C, Xu W, Xiang D, Luo Q, Zeng S, Zheng L, Tan Y, Ouyang Y, Lin H. Palladium Immobilized on 2,2′-Dipyridyl-Based Hypercrosslinked Polymers as a Heterogeneous Catalyst for Suzuki–Miyaura Reaction and Heck Reaction. Catal Letters 2020. [DOI: 10.1007/s10562-020-03165-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Shen Y, Zheng Q, Zhu H, Tu T. Hierarchical Porous Organometallic Polymers Fabricated by Direct Knitting: Recyclable Single-Site Catalysts with Enhanced Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905950. [PMID: 31808591 DOI: 10.1002/adma.201905950] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Porous organometallic polymers (POMPs) with hierarchical pore structures, high specific surface areas, and atomically dispersed metal (Ir, Pd, Ru) centers are successfully fabricated by a facile one-pot method through direct knitting of diverse N-heterocyclic carbene metal (NHC-M) complexes. These polymers can function as recyclable solid single-site catalysts and exhibit excellent catalytic activity and selectivity in both dehydrogenation and hydrogenation reactions even at ppm-level catalyst loadings. Remarkably, a record turnover number (TON) of 1.01 × 106 is achieved in the hydrogenation of levulinic acid to γ-valerolactone, which is 750 times higher than that attained with corresponding bis-NHC-Ir complex.
Collapse
Affiliation(s)
- Yajing Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Haibo Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Norouzi F, Javanshir S. Magnetic γFe 2O 3@Sh@Cu 2O: an efficient solid-phase catalyst for reducing agent and base-free click synthesis of 1,4-disubstituted-1,2,3-triazoles. BMC Chem 2020; 14:1. [PMID: 31922150 PMCID: PMC6945398 DOI: 10.1186/s13065-019-0657-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
A hybrid magnetic material γFe2O3@Sh@cu2O was easily prepared from Shilajit (Sh) decorated Fe3O4 and copper acetate. The prepared magnetic hybrid material was fully characterized using different analysis, including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), inductively coupled plasma (ICP), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) thermal gravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET). All these analysis revealed that during coating of Fe3O4@Sh using copper salt (II), synchronized redox sorption of CuII to CuI occurs at the same time as the oxidation of Fe3O4 to γFe2O3. This magnetic catalyst exhibited excellent catalytic activity for regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles via one pot three-component click reaction of sodium azide, terminal alkynes and benzyl halides in the absence of any reducing agent. High yields, short reaction time, high turnover number and frequency (TON = 3.5 * 105 and TOF = 1.0 * 106 h−1 respectively), easy separation, and efficient recycling of the catalyst are the strengths of the present method.![]()
Collapse
Affiliation(s)
- Fereshteh Norouzi
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Shahrzad Javanshir
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| |
Collapse
|
20
|
Niakan M, Asadi Z, Zare S. Preparation, Characterization and Application of Copper Schiff base Complex Supported on MCM‐41 as a Recyclable Catalyst for the Ullmann‐type N‐arylation Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.201903807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mahsa Niakan
- College of ScienceDepartment of Chemistry Shiraz University Shiraz Iran
| | - Zahra Asadi
- College of ScienceDepartment of Chemistry Shiraz University Shiraz Iran
| | - Sayeh Zare
- College of ScienceDepartment of Chemistry Shiraz University Shiraz Iran
| |
Collapse
|
21
|
Shi Z, Ying Z, Yang L, Meng X, Wu L, Yu L, Huang S, Xiong L. Sulfoxidation inside a hypercrosslinked microporous network nanotube catalyst. NEW J CHEM 2020. [DOI: 10.1039/c9nj04324a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, a kind of efficient heterogeneous catalyst was synthesized from amine-functionalized hypercrosslinked bottlebrush copolymers of microporous network nanotubes (amine-MNNs) and Na2WO4.
Collapse
Affiliation(s)
- Zhaocheng Shi
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Zhong Ying
- Shangrao Polyvstar Science and Technology Ltd
- P. R. China
| | - Liusai Yang
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Xiaoyan Meng
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Lidan Wu
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Leshu Yu
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Sen Huang
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Linfeng Xiong
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| |
Collapse
|
22
|
Pazoki F, Salamatmanesh A, Bagheri S, Heydari A. Synthesis and Characterization of Copper(I)‐Cysteine Complex Supported on Magnetic Layered Double Hydroxide as an Efficient and Recyclable Catalyst System for Click Chemistry Using Choline Azide as Reagent and Reaction Medium. Catal Letters 2019. [DOI: 10.1007/s10562-019-03011-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Havránková E, Csöllei J, Pazdera P. New Approach for the One-Pot Synthesis of 1,3,5-Triazine Derivatives: Application of Cu(I) Supported on a Weakly Acidic Cation-Exchanger Resin in a Comparative Study. Molecules 2019; 24:molecules24193586. [PMID: 31590377 PMCID: PMC6804075 DOI: 10.3390/molecules24193586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022] Open
Abstract
An efficient and simple methodology for Ullmann Cu(I)-catalyzed synthesis of di- and trisubstituted 1,3,5-triazine derivatives from dichlorotriazinyl benzenesulfonamide and corresponding nucleophiles is reported. Cations Cu(I) supported on macroporous and weakly acidic, low-cost industrial resin of polyacrylate type were used as a catalyst. The reaction times and yields were compared with traditional synthetic methods for synthesis of substituted 1,3,5-triazine derivatives via nucleophilic substitution of chlorine atoms in dichlorotriazinyl benzenesulfonamide. It was found that Ullmann-type reactions provide significantly shortened reaction times and, in some cases, also higher yields. Finally, trisubstituted s-triazine derivatives were effectively prepared via Ullmann-type reaction in a one-pot synthetic design. Six new s-triazine derivatives with potential biological activity were prepared and characterized.
Collapse
Affiliation(s)
- Eva Havránková
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic.
| | - Jozef Csöllei
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic.
| | - Pavel Pazdera
- Department of Chemistry, Faculty of Science, Centre for Syntheses at Sustainable Conditions and Their Management, Masaryk University, Brno 625 00, Czech Republic.
| |
Collapse
|
24
|
Pan Y, Zhai X, Yin J, Zhang T, Ma L, Zhou Y, Zhang Y, Meng J. Hierarchical Porous and Zinc-Ion-Crosslinked PIM-1 Nanocomposite as a CO 2 Cycloaddition Catalyst with High Efficiency. CHEMSUSCHEM 2019; 12:2231-2239. [PMID: 30851144 DOI: 10.1002/cssc.201803066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/24/2019] [Indexed: 06/09/2023]
Abstract
CO2 cycloaddition to epoxides is an effective and economical utilization method to alleviate the current excessive CO2 emission situation. The development of catalysts with both high catalytic efficiency and high recyclability is necessary but challenging. In this context, a heterogeneous catalyst was synthesized based on a zinc-ion-crosslinked polymer with intrinsic microporosity (PIM-1). The high microporosity of PIM-1 promoted a high Zn2+ loading rate. Additionally, the relatively stable ionic bond formed between Zn2+ and the PIM-1 framework through electrostatic interaction ensured high loading stability. In the process of CO2 cycloaddition with propylene epoxide, an optimized conversion of 90 % with a turnover frequency as high as 9533 h-1 could be achieved within 0.5 h at 100 °C and 2 MPa. After 15 cycles, the catalytic efficiency did not demonstrate a significant decline, and the catalyst was able to recover most of its activity after Zn2+ reloading. This work thereby provides a strategically designed CO2 conversion catalyst based on an ionic crosslinked polymer with intrinsic microporosity.
Collapse
Affiliation(s)
- Ying Pan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Xiaofei Zhai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Jian Yin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Tianqi Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Liujia Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Yi Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Yufeng Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Jianqiang Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| |
Collapse
|
25
|
Ghosh S, Ghosh A, Biswas S, Sengupta M, Roy D, Islam SM. Palladium Grafted Functionalized Nanomaterial: An Efficient Catalyst for the CO
2
Fixation of Amines and Production of Organic Carbamates. ChemistrySelect 2019. [DOI: 10.1002/slct.201900138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Swarbhanu Ghosh
- Department of ChemistryUniversity of Kalyani, Kalyani, Nadia 741235, W.B. India
| | - Aniruddha Ghosh
- Department of ChemistryUniversity of Kalyani, Kalyani, Nadia 741235, W.B. India
| | - Surajit Biswas
- Department of ChemistryUniversity of Kalyani, Kalyani, Nadia 741235, W.B. India
| | - Manideepa Sengupta
- Department of ChemistryUniversity of Kalyani, Kalyani, Nadia 741235, W.B. India
| | - Dipanwita Roy
- Department of ChemistryUniversity of Kalyani, Kalyani, Nadia 741235, W.B. India
| | - Sk. Manirul Islam
- Department of ChemistryUniversity of Kalyani, Kalyani, Nadia 741235, W.B. India
| |
Collapse
|
26
|
Smith CA, Narouz MR, Lummis PA, Singh I, Nazemi A, Li CH, Crudden CM. N-Heterocyclic Carbenes in Materials Chemistry. Chem Rev 2019; 119:4986-5056. [PMID: 30938514 DOI: 10.1021/acs.chemrev.8b00514] [Citation(s) in RCA: 377] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have become one of the most widely studied class of ligands in molecular chemistry and have found applications in fields as varied as catalysis, the stabilization of reactive molecular fragments, and biochemistry. More recently, NHCs have found applications in materials chemistry and have allowed for the functionalization of surfaces, polymers, nanoparticles, and discrete, well-defined clusters. In this review, we provide an in-depth look at recent advances in the use of NHCs for the development of functional materials.
Collapse
Affiliation(s)
- Christene A Smith
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Mina R Narouz
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Paul A Lummis
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Ishwar Singh
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Ali Nazemi
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Chien-Hung Li
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Cathleen M Crudden
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6.,Institute of Transformative Bio-Molecules, ITbM-WPI , Nagoya University , Nagoya , Chikusa 464-8601 , Japan
| |
Collapse
|
27
|
Bi J, Dong Y, Meng D, Zhu D, Li T. The study and application of three highly porous hyper-crosslinked catalysts possessing similar catalytic centers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Liu X, Xu W, Xiang D, Zhang Z, Chen D, Hu Y, Li Y, Ouyang Y, Lin H. Palladium immobilized on functionalized hypercrosslinked polymers: a highly active and recyclable catalyst for Suzuki–Miyaura coupling reactions in water. NEW J CHEM 2019. [DOI: 10.1039/c9nj02444a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three palladium complexes were synthesized via an external cross-linking reaction and found to be effective heterogeneous catalysts for the Suzuki–Miyaura reaction.
Collapse
Affiliation(s)
- Xi Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Institute of Organic Synthesis
- Huaihua University
- Huaihua 418000
- China
| | - Wei Xu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Institute of Organic Synthesis
- Huaihua University
- Huaihua 418000
- China
| | - Dexuan Xiang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Institute of Organic Synthesis
- Huaihua University
- Huaihua 418000
- China
| | - Zaixing Zhang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Institute of Organic Synthesis
- Huaihua University
- Huaihua 418000
- China
| | - Dizhao Chen
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Institute of Organic Synthesis
- Huaihua University
- Huaihua 418000
- China
| | - Yangjian Hu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Institute of Organic Synthesis
- Huaihua University
- Huaihua 418000
- China
| | - Yuanxiang Li
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Institute of Organic Synthesis
- Huaihua University
- Huaihua 418000
- China
| | - Yuejun Ouyang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Institute of Organic Synthesis
- Huaihua University
- Huaihua 418000
- China
| | - Hongwei Lin
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material
- Institute of Organic Synthesis
- Huaihua University
- Huaihua 418000
- China
| |
Collapse
|
29
|
Salamatmanesh A, Kazemi Miraki M, Yazdani E, Heydari A. Copper(I)–Caffeine Complex Immobilized on Silica-Coated Magnetite Nanoparticles: A Recyclable and Eco-friendly Catalyst for Click Chemistry from Organic Halides and Epoxides. Catal Letters 2018. [DOI: 10.1007/s10562-018-2523-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Kang MY, Guo Y, Shi H, Ye MS, Zhang B. Synthesis and Characterization of Novel 1,4-Di(o
-thioaryl)benzene Buta-1,3-diynes. ChemistrySelect 2018. [DOI: 10.1002/slct.201800737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yujing Guo
- School of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 China
| | - Heping Shi
- School of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 China
| | - Master. Shanshan Ye
- School of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 China
| | - Bianxiang Zhang
- School of Chemistry and Chemical Engineering; Shanxi University; Taiyuan 030006 China
| |
Collapse
|
31
|
Roland S, Suarez JM, Sollogoub M. Confinement of Metal-N-Heterocyclic Carbene Complexes to Control Reactivity in Catalytic Reactions. Chemistry 2018; 24:12464-12473. [DOI: 10.1002/chem.201801278] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Sylvain Roland
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232; 4, place Jussieu 75005 Paris France
| | - Jorge Meijide Suarez
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232; 4, place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232; 4, place Jussieu 75005 Paris France
| |
Collapse
|
32
|
Misztalewska-Turkowicz I, Markiewicz K, Michalak M, Wilczewska A. NHC-copper complexes immobilized on magnetic nanoparticles: Synthesis and catalytic activity in the CuAAC reactions. J Catal 2018. [DOI: 10.1016/j.jcat.2018.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Wang W, Cui L, Sun P, Shi L, Yue C, Li F. Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chem Rev 2018; 118:9843-9929. [DOI: 10.1021/acs.chemrev.8b00057] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenlong Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lifeng Cui
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Peng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengtao Yue
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
34
|
Tan L, Tan B. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 2018; 46:3322-3356. [PMID: 28224148 DOI: 10.1039/c6cs00851h] [Citation(s) in RCA: 590] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypercrosslinked polymers (HCPs) are a series of permanent microporous polymer materials initially reported by Davankov, and have received an increasing level of research interest. In recent years, HCPs have experienced rapid growth due to their remarkable advantages such as diverse synthetic methods, easy functionalization, high surface area, low cost reagents and mild operating conditions. Judicious selection of monomers, appropriate length crosslinkers and optimized reaction conditions yielded a well-developed polymer framework with an adjusted porous topology. Post fabrication of the as developed network facilitates the incorporation of various chemical functionalities that may lead to interesting properties and enhance the selection toward a specific application. To date, numerous HCPs have been prepared by post-crosslinking polystyrene-based precursors, one-step self-polycondensation or external crosslinking strategies. The advent of these methodologies has prompted researchers to construct well-defined porous polymer networks with customized micromorphology and functionalities. In this review, we describe not only the basic synthetic principles and strategies of HCPs, but also the advancements in the structural and morphological study as well as the frontiers of potential applications in energy and environmental fields such as gas storage, carbon capture, removal of pollutants, molecular separation, catalysis, drug delivery, sensing etc.
Collapse
Affiliation(s)
- Liangxiao Tan
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology, Wuhan 430074, China.
| | | |
Collapse
|
35
|
Lim M, Lee H, Kang M, Yoo W, Rhee H. Azide–alkyne cycloaddition reactions in water via recyclable heterogeneous Cu catalysts: reverse phase silica gel and thermoresponsive hydrogels. RSC Adv 2018; 8:6152-6159. [PMID: 35539624 PMCID: PMC9078218 DOI: 10.1039/c8ra00306h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Functionalized reverse phase silica gel and thermoresponsive hydrogels were synthesized as heterogeneous catalysts supports. Cu(i) and Cu(ii) catalysts immobilized onto two types of supports were prepared and characterized. The copper catalyzed azide–alkyne cycloaddition was performed in water via a one-pot reaction and yielded good results. These catalysts are air stable and reusable over multiple uses. Azide–alkyne cycloaddition reactions were performed via copper catalysts immobilized onto two types of supports in water.![]()
Collapse
Affiliation(s)
- Minkyung Lim
- Department of Bionanotechnology
- Hanyang University
- Ansan
- South Korea
| | - Heejin Lee
- Department of Bionanotechnology
- Hanyang University
- Ansan
- South Korea
| | - Minseok Kang
- Department of Applied Chemistry
- Hanyang University
- Ansan
- South Korea
| | - Woncheol Yoo
- Department of Applied Chemistry
- Hanyang University
- Ansan
- South Korea
| | - Hakjune Rhee
- Department of Bionanotechnology
- Hanyang University
- Ansan
- South Korea
- Department of Applied Chemistry
| |
Collapse
|
36
|
Yu W, Zhou M, Wang T, He Z, Shi B, Xu Y, Huang K. “Click Chemistry” Mediated Functional Microporous Organic Nanotube Networks for Heterogeneous Catalysis. Org Lett 2017; 19:5776-5779. [DOI: 10.1021/acs.orglett.7b02682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| | - Minghong Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| | - Tianqi Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| | - Zidong He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| | - Buyin Shi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yang Xu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| | - Kun Huang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
37
|
Affiliation(s)
- Jing Huang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - S. Richard Turner
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
38
|
Ma CT, Wang JJ, Zhao AD, Wang QL, Zhang ZH. Magnetic copper ferrite catalyzed homo- and cross-coupling reaction of terminal alkynes under ambient atmosphere. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cui-Ting Ma
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 China
| | - Jiao-Jiao Wang
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 China
| | - Ai-Dong Zhao
- Analysis and Testing Center; Hebei Normal University; Shijiazhuang 050024 China
| | - Qing-Li Wang
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 China
| | - Zhan-Hui Zhang
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 China
| |
Collapse
|
39
|
Molla RA, Bhanja P, Ghosh K, Islam SS, Bhaumik A, Islam SM. Pd Nanoparticles Decorated on Hypercrosslinked Microporous Polymer: A Highly Efficient Catalyst for the Formylation of Amines through Carbon Dioxide Fixation. ChemCatChem 2017. [DOI: 10.1002/cctc.201700069] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rostam Ali Molla
- Department of Chemistry; University of Kalyani; Kalyani, Nadia 741235 W.B. India
| | - Piyali Bhanja
- Department of Material Science; Indian Association for the Cultivation of Science; Kolkata 700032 W.B. India
| | - Kajari Ghosh
- Department of Chemistry; University of Kalyani; Kalyani, Nadia 741235 W.B. India
- Department of Chemistry; University of Burdwan; Burdwan W.B. India
| | - Sk Safikul Islam
- Department of Chemistry; University of Kalyani; Kalyani, Nadia 741235 W.B. India
- Department of Chemistry; Aliah University; Kolkata 700156 W.B. India
| | - Asim Bhaumik
- Department of Material Science; Indian Association for the Cultivation of Science; Kolkata 700032 W.B. India
| | - Sk Manirul Islam
- Department of Chemistry; University of Kalyani; Kalyani, Nadia 741235 W.B. India
| |
Collapse
|
40
|
Jia Z, Wang K, Tan B, Gu Y. Hollow Hyper-Cross-Linked Nanospheres with Acid and Base Sites as Efficient and Water-Stable Catalysts for One-Pot Tandem Reactions. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03631] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhifang Jia
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, Hubei Key Laboratory of Material Chemistry
and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department
of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Kewei Wang
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, Hubei Key Laboratory of Material Chemistry
and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department
of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Bien Tan
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, Hubei Key Laboratory of Material Chemistry
and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanlong Gu
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, Hubei Key Laboratory of Material Chemistry
and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
| |
Collapse
|
41
|
Acid and base coexisted heterogeneous catalysts supported on hypercrosslinked polymers for one-pot cascade reactions. J Catal 2017. [DOI: 10.1016/j.jcat.2017.02.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Zhong R, Lindhorst AC, Groche FJ, Kühn FE. Immobilization of N-Heterocyclic Carbene Compounds: A Synthetic Perspective. Chem Rev 2017; 117:1970-2058. [DOI: 10.1021/acs.chemrev.6b00631] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rui Zhong
- Molecular Catalysis, Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Anja C. Lindhorst
- Molecular Catalysis, Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Florian J. Groche
- Molecular Catalysis, Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Fritz E. Kühn
- Molecular Catalysis, Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| |
Collapse
|
43
|
Jia Z, Wang K, Tan B, Gu Y. Ruthenium Complexes Immobilized on Functionalized Knitted Hypercrosslinked Polymers as Efficient and Recyclable Catalysts for Organic Transformations. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600816] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhifang Jia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
- Department of Chemistry and Chemical Engineering; Shanxi Datong University; Datong 037009 People's Republic of China
| | - Kewei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
- Department of Chemistry and Chemical Engineering; Shanxi Datong University; Datong 037009 People's Republic of China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Lanzhou 730000 People's Republic of China
| |
Collapse
|
44
|
Darbandizadeh Mohammad Abadi SSA, Karimi Zarchi MA. A novel route for the synthesis of 5-substituted 1-H tetrazoles in the presence of polymer-supported palladium nanoparticles. NEW J CHEM 2017. [DOI: 10.1039/c7nj02222k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel route for the synthesis of 5-substituted 1-Htetrazoles by one-pot multicomponent reactions in the presence of polymer-supported palladium nanoparticles.
Collapse
|
45
|
Mandoli A. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC). Molecules 2016; 21:molecules21091174. [PMID: 27607998 PMCID: PMC6273594 DOI: 10.3390/molecules21091174] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022] Open
Abstract
The explosively-growing applications of the Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between organic azides and alkynes (CuAAC) have stimulated an impressive number of reports, in the last years, focusing on recoverable variants of the homogeneous or quasi-homogeneous catalysts. Recent advances in the field are reviewed, with particular emphasis on systems immobilized onto polymeric organic or inorganic supports.
Collapse
Affiliation(s)
- Alessandro Mandoli
- Dipartimento di Chimica e Chimica Industriale Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy.
- ISTM-CNR, Via C. Golgi 19, Milano 20133, Italy.
| |
Collapse
|