1
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
2
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Gearing HB, Söhnel T, Young P, Lisboa L, Wright LJ, Crowley JD, Hartinger CG. Modulating the guest binding ability within mixed-coordination geometry [Pd(μ-L) 4RuCl 2] 2+ and [Pd(μ-L) 4Pt] 4+ cage architectures. Chem Commun (Camb) 2024; 60:10950-10953. [PMID: 39258460 DOI: 10.1039/d4cc03613a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Heterobimetallic cages built from Pd and either octahedral Ru or square-planar Pt moieties and bridged by ligands with H bonding-accepting or -donating properties are reported. They showed stimulus-responsive dis- and reassembly, while guest binding was found to be dependent on the complementary properties of the guest to the host in terms of charge, size and H bonding properties.
Collapse
Affiliation(s)
- Hayden B Gearing
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Paul Young
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lynn Lisboa
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - James D Crowley
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Black M, Bhattacharyya S, Argent SP, Pilgrim BS. Structural Transformations of Metal-Organic Cages through Tetrazine-Alkene Reactivity. J Am Chem Soc 2024; 146. [PMID: 39236092 PMCID: PMC11487605 DOI: 10.1021/jacs.4c08591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The assembly of metal-organic cages is governed by metal ion coordination preferences and the geometries of the typically rigid and planar precursor ligands. PdnL2n cages are among the most structurally diverse, with subtle differences in the metal-ligand coordination vectors resulting in drastically different assemblies, however almost all rely on rigid aromatic linkers to avoid the formation of intractable mixtures. Here we exploit the inverse electron-demand Diels-Alder (IEDDA) reaction between tetrazine linker groups and alkene reagents to trigger structural changes induced by post-assembly modification. The structure of the 1,4-dihydropyridazine produced by IEDDA (often an afterthought in click chemistry) is crucial; its two sp3 centers increase flexibility and nonplanarity, drastically changing the range of accessible coordination vectors. This triggers an initial Pd4L8 tetrahedral cage to transform into different Pd2L4 lantern cages, with both the transformation extent (thermodynamics) and rate (kinetics) dependent on the alkene dienophile selected. With cyclopentene, the unsymmetrical 1,4-dihydropyridazine ligands undergo integrative sorting in the solid state, with both head-to-tail orientation and enantiomer selection, leading to a single isomer from the 39 possible. This preference is rationalized through entropy, symmetry, and hydrogen bonding. Subsequent oxidation of the 1,4-dihydropyridazine to the aromatic pyridazine rigidifies the ligands, restoring planarity. The oxidized ligands no longer fit in the lantern structure, inducing further structural transformations into Pd4L8 tetrahedra and Pd3L6 double-walled triangles. The concept of controllable addition of limited additional flexibility and then its removal through well-defined reactivity we envisage being of great interest for structural transformations of any class of supramolecular architecture.
Collapse
Affiliation(s)
- Martin
R. Black
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Soumalya Bhattacharyya
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Stephen P. Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Ben S. Pilgrim
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
5
|
Montà-González G, Bastante-Rodríguez D, García-Fernández A, Lusby PJ, Martínez-Máñez R, Martí-Centelles V. Comparing organic and metallo-organic hydrazone molecular cages as potential carriers for doxorubicin delivery. Chem Sci 2024; 15:10010-10017. [PMID: 38966373 PMCID: PMC11220577 DOI: 10.1039/d4sc02294g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Molecular cages are three-dimensional supramolecular structures that completely wrap guest molecules by encapsulation. We describe a rare comparative study between a metallo-organic cage and a fully organic analogous system, obtained by hydrazone bond formation self-assembly. Both cages are able to encapsulate the anticancer drug doxorubicin, with the organic cage forming a 1 : 1 inclusion complex with μM affinity, whereas the metallo-organic host experiences disassembly by interaction with the drug. Stability experiments reveal that the ligands of the metallo-organic cage are displaced in buffer at neutral, acidic, and basic pH, while the organic cage only disassembles under acidic conditions. Notably, the organic cage also shows minimal cell toxicity, even at high doses, whilst the doxorubicin-cage complex shows in vitro anti-cancer activity. Collectively, these results show that the attributes of the pure organic molecular cage are suitable for the future challenges of in vivo drug delivery using molecular cages.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- Departamento de Química, Universitat Politècnica de València Camí de Vera s/n 46022 Valencia Spain
- EaStCHEM, School of Chemistry Joseph Black Building, David Brewster Road EH93FJ Edinburgh UK
| | - David Bastante-Rodríguez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Avenida Eduardo Primo Yúfera, 3 46012 Valencia Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Avenida Eduardo Primo Yúfera, 3 46012 Valencia Spain
| | - Paul J Lusby
- EaStCHEM, School of Chemistry Joseph Black Building, David Brewster Road EH93FJ Edinburgh UK
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Avenida Eduardo Primo Yúfera, 3 46012 Valencia Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE) Avenida Fernando Abril Martorell, 106 46026 Valencia Spain
- Departamento de Química, Universitat Politècnica de València Camí de Vera s/n 46022 Valencia Spain
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Departamento de Química, Universitat Politècnica de València Camí de Vera s/n 46022 Valencia Spain
| |
Collapse
|
6
|
van Hilst QVC, Pearcy AC, Preston D, Wright LJ, Hartinger CG, Brooks HJL, Crowley JD. A dynamic covalent approach to [Pt nL 2n] 2n+ cages. Chem Commun (Camb) 2024; 60:4302-4305. [PMID: 38530770 DOI: 10.1039/d4cc00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A dynamic covalent approach was exploited to generate a family of homometallic [PtnL2n]2n+ cage (predominantly [Pt2L4]4+ systems) architectures. The family of platinum(II) architectures were characterized using 1H nuclear magnetic resonance (NMR) and diffusion ordered spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI-MS) and the molecular structures of two cages were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Quinn V C van Hilst
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| | - Aston C Pearcy
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| | - Dan Preston
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Heather J L Brooks
- Department of Pathology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| |
Collapse
|
7
|
Bobylev EO, Knol RA, Mathew S, Poole DA, Kotsogianni I, Martin NI, de Bruin B, Kros A, Reek JNH. In vivo biodistribution of kinetically stable Pt 2L 4 nanospheres that show anti-cancer activity. Chem Sci 2023; 14:6943-6952. [PMID: 37389250 PMCID: PMC10306072 DOI: 10.1039/d3sc01086d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
There is an increasing interest in the application of metal-organic cages (MOCs) in a biomedicinal context, as they can offer non-classical distribution in organisms compared to molecular substrates, while revealing novel cytotoxicity mechanisms. Unfortunately, many MOCs are not sufficiently stable under in vivo conditions, making it difficult to study their structure-activity relationships in living cells. As such, it is currently unclear whether MOC cytotoxicity stems from supramolecular features or their decomposition products. Herein, we describe the toxicity and photophysical properties of highly-stable rhodamine functionalized platinum-based Pt2L4 nanospheres as well as their building blocks under in vitro and in vivo conditions. We show that in both zebrafish and human cancer cell lines, the Pt2L4 nanospheres demonstrate reduced cytotoxicity and altered biodistribution within the body of zebrafish embryos compared to the building blocks. We anticipate that the composition-dependent biodistribution of Pt2L4 spheres together with their cytotoxic and photophysical properties provides the fundament for MOC application in cancer therapy.
Collapse
Affiliation(s)
- Eduard O Bobylev
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Renzo A Knol
- Dept. of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Simon Mathew
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - David A Poole
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden The Netherlands
| | - Bas de Bruin
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Alexander Kros
- Dept. of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Joost N H Reek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
8
|
Sarkar M, Hey-Hawkins E, Boomishankar R. Encapsulation Studies on closo-Dicarbadodecaborane Isomers in Neutral Tetrahedral Palladium(II) Cages. Inorg Chem 2023; 62:4035-4042. [PMID: 36857772 DOI: 10.1021/acs.inorgchem.2c04207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The encapsulation of icosahedral closo-dicarbadodecaborane (o-, m-, and p-carboranes, Cb) as guest molecules at the intrinsic cavities of the three isostructural tetrahedral cages [{Pd3(NiPr)3PO}4(Cl-AN)6] (1), [{Pd3(NiPr)3PO}4(Br-AN)6] (2), and [{Pd3(NiPr)3PO}4(H-AN)6] (3) was studied. The formation of definite host-guest assemblies was probed with mass spectrometry, IR, and NMR spectral analysis. 2D DOSY 1H NMR of the Cb⊂Cage systems showed similar diffusion coefficient (D) values for the host and guest species, signifying the encapsulation of these guests inside the cage assemblies. The hydrodynamic radius (RH) derived from the D values of the host and guest species further confirmed the encapsulation of the Cb isomers at the cage pockets. The single-molecule energy optimization of the host-guest assemblies indicated the preferential binding of o-Cb as a guest inside the cages (1-3). The stabilization of these Cb guests inside these cages was further attributed to various possible nonclassical C-H···X-type interactions.
Collapse
Affiliation(s)
- Meghamala Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India.,Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
9
|
Bloch WM, Horiuchi S, Holstein JJ, Drechsler C, Wuttke A, Hiller W, Mata RA, Clever GH. Maximized axial helicity in a Pd 2L 4 cage: inverse guest size-dependent compression and mesocate isomerism. Chem Sci 2023; 14:1524-1531. [PMID: 36794203 PMCID: PMC9906678 DOI: 10.1039/d2sc06629g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Helicity is an archetypal structural motif of many biological systems and provides a basis for molecular recognition in DNA. Whilst artificial supramolecular hosts are often helical, the relationship between helicity and guest encapsulation is not well understood. We report a detailed study on a significantly coiled-up Pd2L4 metallohelicate with an unusually wide azimuthal angle (∼176°). Through a combination of NMR spectroscopy, single-crystal X-ray diffraction, trapped ion mobility mass spectrometry and isothermal titration calorimetry we show that the coiled-up cage exhibits extremely tight anion binding (K of up to 106 M-1) by virtue of a pronounced oblate/prolate cavity expansion, whereby the Pd-Pd separation decreases for mono-anionic guests of increasing size. Electronic structure calculations point toward strong dispersion forces contributing to these host-guest interactions. In the absence of a suitable guest, the helical cage exists in equilibrium with a well-defined mesocate isomer that possesses a distinct cavity environment afforded by a doubled Pd-Pd separation distance.
Collapse
Affiliation(s)
- Witold M Bloch
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide South Australia 5042 Australia
| | - Shinnosuke Horiuchi
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University Bunkyo-machi Nagasaki 852-8521 Japan
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Christoph Drechsler
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Axel Wuttke
- Institute of Physical Chemistry, Georg-August University Göttingen Tammannstraße 6 37077 Göttingen Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Ricardo A Mata
- Institute of Physical Chemistry, Georg-August University Göttingen Tammannstraße 6 37077 Göttingen Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
10
|
Luo M, Zhang JC, Yin H, Wang CM, Xie L, Li KP, Goto M, Morris-Natschke SL, Lee KH, Zhang JH, Zhang YM, Zhang XR. Palladium (II), platinum (II) and silver (I) complexes with oxazolines: Their synthesis, characterization, DFT calculation, molecular docking and antitumour effects. J Inorg Biochem 2023; 239:112048. [PMID: 36496289 DOI: 10.1016/j.jinorgbio.2022.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Six new Pd(II), Pt(II) and Ag(I) complexes, (1);{Pd (L1)]2C6H4}2Cl4} (2); Pt(L2)(DMSO)Cl; 3; {PtL5]2C6H4}2·PhCOO-⋅11NO3-; 4; {[Pt(L4)]2C6H4}; the binuclear cyclometalated complex the polymer chain (5); {[PtL5]C6H4}·NO3-}; and the polymeric silver species (6); Zn(L6)2·AgNO3·CHCl3 were synthesized and thoroughly characterized using X-ray diffraction and spectroscopic techniques (L1=(S,S)-1,4-i-PrOx]2C6H4}2Cl4, L2=Di(2,2-bis(4R-isopropyl-4,5-dihydro-oxazol-2-yl)acetonitrile) zinc (II) (BR1);L3= 1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)benzene (AR2); L4= 1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)benzene,L5=1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)-benzene,L6=Di(2,2-bis(4S-isopropyl-4,5-dihydrooxazol-2-yl)acetonitrile) zinc (II). Complexes 1-6 showed cytotoxic effects against human tumour cell lines, including a multidrug-resistant subline. Oxazoline and Pd complex 1 induced apoptosis in A549 cells. DFT calculations were also performed to exhibit the excellent bioactivity of complex 1 against A549, MDA-MB-231, and KB cells. Complex 1, with the best docking score and a stable interaction network within the binding site of the G-quadruplex, could stably interact with the G-quadruplex. Additionally, complex 1 was further used in the animal experiment of human lung adenocarcinoma cells in nude mice. By comparing with the model control group, the tumour volume, relative tumour volume and relative tumour proliferation rate T/C decreased significantly in the cisplatin group and compound 1 (complex 1) group.
Collapse
Affiliation(s)
- Mei Luo
- College of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Intelligent Manufacturing Institute of HFUT, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jing-Cheng Zhang
- College of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Hao Yin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, China
| | - Cheng-Ming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, China
| | - Lan Xie
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Kang-Po Li
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40447, Taiwan.
| | - Jia-Hai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yan-Min Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xue-Ru Zhang
- College of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| |
Collapse
|
11
|
Lisboa LS, Riisom M, Dunne HJ, Preston D, Jamieson SMF, Wright LJ, Hartinger CG, Crowley JD. Hydrazone- and imine-containing [PdPtL 4] 4+ cages: a comparative study of the stability and host-guest chemistry. Dalton Trans 2022; 51:18438-18445. [PMID: 36416449 DOI: 10.1039/d2dt02720h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new [PdPtL4]4+ heterobimetallic cage containing hydrazone linkages has been synthesised using the sub-component self-assembly approach. 1H and DOSY nuclear magnetic resonance (NMR) spectroscopy and electrospray ionisation mass spectrometry (ESIMS) data were consistent with the formation of the [PdPtL4]4+ architecture. The cage was stimulus-responsive and could be partially disassembled and reassembled by the addition of dimethylaminopyridine (DMAP) and p-tolenesulfonic acid (TsOH), respectively. Additionally, the stability of the hydrazone cage against hydrolysis in the presence of water and nucleophilic decomposition in the presence of guest molecules was compared to a previously synthesised imine-containing [PdPtL4]4+ cage. It was established that the hydrazone linkage was more resistant to hydrolysis. Furthermore, the host-guest (HG) chemistry with a series of drug and drug-like molecules was examined. The hydrazone cage was shown to interact with cisplatin while the smaller imine cage was shown to interact with 5-fluorouracil and oxaliplatin in CD3CN. No HG interactions were observed in the more polar d6-DMSO. In vitro antiproliferative activity studies demonstrated both cages were active against the cancer cell lines tested and displayed half-maximal inhibitory (IC50) values in the range of 25-35 μM. Most [PdPtL4]4+-drug mixtures tested had higher IC50 values than the hosts. However, the [PdPtL4]4+ cages, and [PdPtL4]4+:drug mixtures were less cytotoxic than the well established anticancer drugs cisplatin, oxaliplatin and 5-fluorouracil.
Collapse
Affiliation(s)
- Lynn S Lisboa
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Mie Riisom
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Henry J Dunne
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Dan Preston
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - L James Wright
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
12
|
Wang L, Geng Z, Ho YYL, Zhou J, Judge N, Li Y, Wang W, Liu J, Wang Y. Block Co-PolyMOC Micelles and Structural Synergy as Composite Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30546-30556. [PMID: 35748507 DOI: 10.1021/acsami.2c06205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional micelles of amphiphilic block copolymers (BCPs) disassemble into individual polymer chains upon dilution to a critical concentration, which causes the premature release of the encapsulated drugs and reduces the drug's bioavailability. Here, by integrating the emerging metal-organic cage (MOC) materials with BCPs, we introduce a new type of composite micellar nanoparticles, block co-polyMOC micelles (or BCPMMs), that are self-assembled in essence yet remarkably stable against dilution. BCPMMs are fabricated via a stepwise assembly strategy that combines MOCs and BCPs in a well-defined, unimolecular core-shell structure. The synergistical interplay between the two components accounts for the particle stability: the MOC core holds BCPs firmly in place and the BCPs increase the MOC's bioavailability. When used as nanocarriers for anticancer drugs, BCPMMs showed an extended blood circulation, a favorable biodistribution, and eventually an improved treatment efficacy in vivo. Given the versatility in designing MOCs and BCPs, we envision that BCPMMs can serve as a modular platform for robust, multifunctional, and tunable nanomedicine.
Collapse
Affiliation(s)
- Lang Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yannis Y L Ho
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Jiayu Zhou
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Nicola Judge
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yafei Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Golding TM, Mbaba M, Smith GS. Modular synthesis of antimalarial quinoline-based PGM metallarectangles. Dalton Trans 2021; 50:15274-15286. [PMID: 34633398 DOI: 10.1039/d1dt02842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ditopic, quinoline-based ligand L (7-chloro-4-(pyridin-4-yl)quinoline) was synthesized via a Suzuki cross-coupling reaction. The ligand was utilized to synthesize the corresponding half-sandwich iridium(III) and ruthenium(II) binuclear complexes (1c and 1d) and the subsequent metallarectangles (2c, 2d, 3c, and 3d), via [2 + 2] coordination-driven self-assembly. Single-crystal X-ray diffraction confirmed the proposed molecular structure of the binuclear complex [{IrCl2(Cp*)}2(μ-L)] (1c) and DFT calculations were used to predict the optimized geometry of the rectangular nature of [{Ir(μ-Cl)(Cp*)}4(μ-L)2](CF3SO3)4 (2c). All of the metallarectangles were isolated as their triflate salts and characterized using various spectroscopic (1H, 13C{1H}, DOSY NMR, and IR spectroscopy) and analytical techniques (ESI-MS). The synthesized compounds were screened against the NF54 chloroquine-sensitive (CQS) and K1 chloroquine-resistant (CQR) strains of Plasmodium falciparum. Incorporation of the ubiquitous quinoline core and metal complexation significantly enhanced the in vitro biological activity, with an increase in the nuclearity correlating with an increase in the resultant antiplasmodial activity. This was observed across both parasitic strains, alluding to the potential of supramolecular metallarectangles to act as antiplasmodial agents. Inhibition of haemozoin formation was considered a potential mechanism of action and selected metallarectangles exhibit β-haematin inhibition activity with near comparable activity to chloroquine.
Collapse
Affiliation(s)
- Taryn M Golding
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
14
|
Sarkar M, Dasary H, Chand DK. Helicity induction by innocent anion in a quadruple stranded cage. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Li RJ, Marcus A, Fadaei-Tirani F, Severin K. Orientational self-sorting: formation of structurally defined Pd 4L 8 and Pd 6L 12 cages from low-symmetry dipyridyl ligands. Chem Commun (Camb) 2021; 57:10023-10026. [PMID: 34505600 DOI: 10.1039/d1cc03828a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetra- and hexanuclear coordination cages were obtained in reactions of [Pd(CH3CN)4](BF4)2 with low-symmetry dipyridyl ligands. In both cases, only one structurally defined complex was formed out of a vast pool of potential isomers.
Collapse
Affiliation(s)
- Ru-Jin Li
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Adam Marcus
- Institute of Mathematics, EPFL, 1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Kay Severin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
16
|
Tarzia A, Lewis JEM, Jelfs KE. High‐Throughput Computational Evaluation of Low Symmetry Pd
2
L
4
Cages to Aid in System Design**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus, Wood Lane London W12 0BZ UK
| | - James E. M. Lewis
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus, Wood Lane London W12 0BZ UK
| | - Kim E. Jelfs
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|
17
|
Tarzia A, Lewis JEM, Jelfs KE. High-Throughput Computational Evaluation of Low Symmetry Pd 2 L 4 Cages to Aid in System Design*. Angew Chem Int Ed Engl 2021; 60:20879-20887. [PMID: 34254713 PMCID: PMC8518684 DOI: 10.1002/anie.202106721] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Unsymmetrical ditopic ligands can self-assemble into reduced-symmetry Pd2 L4 metallo-cages with anisotropic cavities, with implications for high specificity and affinity guest-binding. Mixtures of cage isomers can form, however, resulting in undesirable system heterogeneity. It is paramount to be able to design components that preferentially form a single isomer. Previous data suggested that computational methods could predict with reasonable accuracy whether unsymmetrical ligands would preferentially self-assemble into single cage isomers under constraints of geometrical mismatch. We successfully apply a collaborative computational and experimental workflow to mitigate costly trial-and-error synthetic approaches. Our rapid computational workflow constructs unsymmetrical ligands and their Pd2 L4 cage isomers, ranking the likelihood for exclusively forming cis-Pd2 L4 assemblies. From this narrowed search space, we successfully synthesised four new, low-symmetry, cis-Pd2 L4 cages.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, Wood LaneLondonW12 0BZUK
| | - James E. M. Lewis
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, Wood LaneLondonW12 0BZUK
| | - Kim E. Jelfs
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, Wood LaneLondonW12 0BZUK
| |
Collapse
|
18
|
Lisboa LS, Riisom M, Vasdev RAS, Jamieson SMF, Wright LJ, Hartinger CG, Crowley JD. Cavity-Containing [Fe 2L 3] 4+ Helicates: An Examination of Host-Guest Chemistry and Cytotoxicity. Front Chem 2021; 9:697684. [PMID: 34307299 PMCID: PMC8292671 DOI: 10.3389/fchem.2021.697684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
Two new di(2,2′-bipyridine) ligands, 2,6-bis([2,2′-bipyridin]-5-ylethynyl)pyridine (L1) and bis(4-([2,2′-bipyridin]-5-ylethynyl)phenyl)methane (L2) were synthesized and used to generate two metallosupramolecular [Fe2(L)3](BF4)4 cylinders. The ligands and cylinders were characterized using elemental analysis, electrospray ionization mass spectrometry, UV-vis, 1H-, 13C and DOSY nuclear magnetic resonance (NMR) spectroscopies. The molecular structures of the [Fe2(L)3](BF4)4 cylinders were confirmed using X-ray crystallography. Both the [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 complexes crystallized as racemic (rac) mixtures of the ΔΔ (P) and ΛΛ (M) helicates. However, 1H NMR spectra showed that in solution the larger [Fe2(L2)3](BF4)4 was a mixture of the rac-ΔΔ/ΛΛ and meso-ΔΛ isomers. The host-guest chemistry of the helicates, which both feature a central cavity, was examined with several small drug molecules. However, none of the potential guests were found to bind within the helicates. In vitro cytotoxicity assays demonstrated that both helicates were active against four cancer cell lines. The smaller [Fe2(L1)3](BF4)4 system displayed low μM activity against the HCT116 (IC50 = 7.1 ± 0.5 μM) and NCI-H460 (IC50 = 4.9 ± 0.4 μM) cancer cells. While the antiproliferative effects against all the cell lines examined were less than the well-known anticancer drug cisplatin, their modes of action would be expected to be very different.
Collapse
Affiliation(s)
- Lynn S Lisboa
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Roan A S Vasdev
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Li RJ, Fadaei-Tirani F, Scopelliti R, Severin K. Tuning the Size and Geometry of Heteroleptic Coordination Cages by Varying the Ligand Bent Angle. Chemistry 2021; 27:9439-9445. [PMID: 33998736 DOI: 10.1002/chem.202101057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Spherical assemblies of the type [Pdn L2n ]2n+ can be obtained from PdII salts and curved N-donor ligands, L. It is well established that the bent angle, α, of the ligand is a decisive factor in the self-assembly process, with larger angles leading to complexes with a higher nuclearity, n. Herein, we report heteroleptic coordination cages of the type [Pdn Ln L'n ]2n+ , for which a similar correlation between the ligand bent angle and the nuclearity is observed. Tetranuclear cages were obtained by combining [Pd(CH3 CN)4 ](BF4 )2 with 1,3-di(pyridin-3-yl)benzene and ligands featuring a bent angle of α=120°. The use of a dipyridyl ligand with α=149° led to the formation of a hexanuclear complex with a trigonal prismatic geometry; for linear ligands, octanuclear assemblies of the type [Pd8 L8 L'8 ]16+ were obtained. The predictable formation of heteroleptic PdII cages from 1,3-di(pyridin-3-yl)benzene and different dipyridyl ligands is evidence that there are entire classes of heteroleptic cage structures that are privileged from a thermodynamic point of view.
Collapse
Affiliation(s)
- Ru-Jin Li
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
20
|
Nayeem N, Contel M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chemistry 2021; 27:8891-8917. [PMID: 33857345 DOI: 10.1002/chem.202100438] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.
Collapse
Affiliation(s)
- Nazia Nayeem
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA
| | - Maria Contel
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, Hawaii, 96813, USA
| |
Collapse
|
21
|
Sudan S, Li RJ, Jansze SM, Platzek A, Rudolf R, Clever GH, Fadaei-Tirani F, Scopelliti R, Severin K. Identification of a Heteroleptic Pd 6L 6L' 6 Coordination Cage by Screening of a Virtual Combinatorial Library. J Am Chem Soc 2021; 143:1773-1778. [PMID: 33476512 DOI: 10.1021/jacs.0c12793] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design of structurally defined heteroleptic coordination cages is a challenging task, and only few examples are known to date. Here we describe a selection approach that allowed the identification of a novel hexanuclear Pd cage containing two types of dipyridyl ligands. A virtual combinatorial library of [PdnL2n](BF4)2n complexes was prepared by mixing six different dipyridyl ligands with substoichiometric amounts of [Pd(CH3CN)4](BF4)2. Analysis of the equilibrated reaction mixture revealed the preferential formation of a heteroleptic [Pd6L6L'6](BF4)12 assembly. The complex was prepared on a preparative scale by a targeted synthesis, and its structure was elucidated by single-crystal X-ray diffraction. It features an unprecedented trigonal-antiprismatic cage structure with two triangular Pd3L3 macrocycles bridged by six L' ligands. A related but significantly larger [Pd6L6L'6](BF4)12 cage was obtained by using metalloligands instead of organic dipyridyl ligands.
Collapse
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ru-Jin Li
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - André Platzek
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Robin Rudolf
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Guido H Clever
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Yu G, Jiang M, Huang F, Chen X. Supramolecular coordination complexes as diagnostic and therapeutic agents. Curr Opin Chem Biol 2020; 61:19-31. [PMID: 33147551 DOI: 10.1016/j.cbpa.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 01/27/2023]
Abstract
The metal-based drugs represented by cisplatin, carboplatin, and oxaliplatin, prevail in cancer treatment, whereas new therapeutics are extremely slow to step into the clinic. Poor pharmacokinetics, multidrug resistance, and severe side effects greatly limit the development of metal-based anticancer drugs. The robustness and modular composition of supramolecular coordination complexes allow for the incorporation of novel diagnostic and therapeutic modalities, showing promising potentials for precise cancer theranostics. In this mini review, we highlight the recent advances in the development of supramolecular coordination complexes as diagnostic and therapeutic agents. The key focuses of these reports lie in searching sophisticated coordination ligands and nanoformulations that can potentially solve the issues faced by current metal-based drugs including imaging, resistance, toxicity, and pharmacological deficiencies.
Collapse
Affiliation(s)
- Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Meijuan Jiang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China; Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
23
|
Ahmedova A, Mihaylova R, Stoykova S, Mihaylova V, Paunova-Krasteva T, Mihaylov L, Stoitsova S, Nihtianova D, Momekov G, Momekova D, Yoshizawa M. Enhanced cellular uptake of platinum by a tetracationic Pt(II) nanocapsule and its implications to cancer treatment. Eur J Pharm Sci 2020; 155:105545. [PMID: 32927069 DOI: 10.1016/j.ejps.2020.105545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/09/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Abstract
Despite the known limitations of cisplatin chemotherapy, the treatment of cancer by platinum-based drugs remains the method of choice for many oncologists. The advancement in drug delivery formulations and protocols of combined treatments provided effective tools to ameliorate the side effects of platinum-based therapies. Another approach to improve the pharmacological profiles of anticancer platinum drugs is to properly modify their structure and composition, which has produced numerous platinum complexes with improved therapeutic effect. Recently, we have demonstrated the strong anticancer potency of supramolecular nanocapsules that form by self-assembly of four bis-anthracene ligands with two metal ions, either Pt(II) or Pd(II). Herein, we focus our study on the Pt(II) nanocapsule and its uptake by two types of cancer cells, suspension cultures of HL-60 cells and the adherent cancer cells HT-29. Comparison of the platinum uptake by cancer cells treated with the nanocapsule and with cisplatin evidenced superior uptake of platinum caused by the nanocapsule, which in HT-29 and HL-60 cells prevails by 21 and 31 times, respectively. Morphological changes in the HL-60 cells induced by the Pt(II) nanocapsule were studied by transmission electron microscopy (TEM) which provided plausible explanation of the uptake results. These data corroborate also with the known nanocapsule's very high cytotoxicity, better selectivity, and lack of cross-resistance with cisplatin. Additionally, our estimations of the drug-drug interactions in combined treatments established the propensity of the nanocapsule to exert supra-additive cytotoxicity in combination with cisplatin against the bladder cancer T-24 cells. All these findings define the scope for more detailed pharmacological characterization of the presented Pt(II) nanocapsule.
Collapse
Affiliation(s)
- Anife Ahmedova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria.
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University - Sofia, 2 Dunav Street, Sofia 1000, Bulgaria
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria
| | - Veronika Mihaylova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria
| | - Tsvetelina Paunova-Krasteva
- Department of General Microbiology, The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Lyuben Mihaylov
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria
| | - Stoyanka Stoitsova
- Department of General Microbiology, The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Diana Nihtianova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University - Sofia, 2 Dunav Street, Sofia 1000, Bulgaria
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University - Sofia, 2 Dunav Street, Sofia 1000, Bulgaria
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
24
|
Evaluating the electronic properties of ditopic and hetero-ditopic ligands derived from benzimidazole and pyrazole by 13C NMR spectroscopy. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
McNeill SM, Giles NM, Preston D, Jones PP, Crowley JD, Giles GI. Quadruply Stranded Metallo-Supramolecular Helicate [Pd 2(hextrz) 4] 4+ Acts as a Molecular Mimic of Cytolytic Peptides. Chem Res Toxicol 2020; 33:1822-1834. [PMID: 32347099 DOI: 10.1021/acs.chemrestox.0c00061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Pd2(hextrz)4]4+ is a quadruply stranded helicate, a novel bioinorganic complex designed to mimic the structure and function of proteins due to its high stability and supramolecular size. We have previously reported that [Pd2(hextrz)4]4+ exhibited cytotoxicity toward a range of cell lines, with IC50 values ranging from 3 to 10 μM. Here we demonstrate that [Pd2(hextrz)4]4+ kills cells by forming pores within the cell membrane, a mechanism of cell death analogous to the naturally occurring cytolytic peptides. [Pd2(hextrz)4]4+ induced cell death is characterized by an initial influx of Ca2+, followed by nuclear condensation and mitochondrial swelling. This is accompanied by progressive cell membrane damage that results in the formation of large blebs at the cell surface. This allows the efflux of molecules from the cell leading to loss of cell viability. These data suggest that it may be possible to design metallo-supramolecular complexes to mimic the cytotoxic action of pore forming proteins and peptides and so provide a new class of drug to treat cancer, autoimmune disorders, and microbial infection.
Collapse
Affiliation(s)
- Samantha M McNeill
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Niroshini M Giles
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Dan Preston
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Peter P Jones
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Gregory I Giles
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
26
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020; 59:11101-11107. [DOI: 10.1002/anie.202003220] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
27
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
28
|
Young TA, Martí-Centelles V, Wang J, Lusby PJ, Duarte F. Rationalizing the Activity of an “Artificial Diels-Alderase”: Establishing Efficient and Accurate Protocols for Calculating Supramolecular Catalysis. J Am Chem Soc 2019; 142:1300-1310. [DOI: 10.1021/jacs.9b10302] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tom A. Young
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Vicente Martí-Centelles
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Jianzhu Wang
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Paul J. Lusby
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
29
|
Evaluation of the stereoselectivity for titanium(IV)-based coordination entities induced by the enantiopure diphenylethene-1,2-diamine ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Lewis JEM, Tarzia A, White AJP, Jelfs KE. Conformational control of Pd 2L 4 assemblies with unsymmetrical ligands. Chem Sci 2019; 11:677-683. [PMID: 34123040 PMCID: PMC8146399 DOI: 10.1039/c9sc05534g] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
With increasing interest in the potential utility of metallo-supramolecular architectures for applications as diverse as catalysis and drug delivery, the ability to develop more complex assemblies is keenly sought after. Despite this, symmetrical ligands have been utilised almost exclusively to simplify the self-assembly process as without a significant driving foa mixture of isomeric products will be obtained. Although a small number of unsymmetrical ligands have been shown to serendipitously form well-defined metallo-supramolecular assemblies, a more systematic study could provide generally applicable information to assist in the design of lower symmetry architectures. Pd2L4 cages are a popular class of metallo-supramolecular assembly; research seeking to introduce added complexity into their structure to further their functionality has resulted in a handful of examples of heteroleptic structures, whilst the use of unsymmetrical ligands remains underexplored. Herein we show that it is possible to design unsymmetrical ligands in which either steric or geometric constraints, or both, can be incorporated into ligand frameworks to ensure exclusive formation of single isomers of three-dimensional Pd2L4 metallo-supramolecular assemblies with high fidelity. In this manner it is possible to access Pd2L4 cage architectures of reduced symmetry, a concept that could allow for the controlled spatial segregation of different functionalities within these systems. The introduction of steric directing groups was also seen to have a profound effect on the cage structures, suggesting that simple ligand modifications could be used to engineer structural properties.
Collapse
Affiliation(s)
- James E M Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Andrew Tarzia
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| |
Collapse
|
31
|
Sepehrpour H, Fu W, Sun Y, Stang PJ. Biomedically Relevant Self-Assembled Metallacycles and Metallacages. J Am Chem Soc 2019; 141:14005-14020. [PMID: 31419112 PMCID: PMC6744948 DOI: 10.1021/jacs.9b06222] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diverse metal-organic complexes (MOCs), shaped as rectangles, triangles, hexagons, prisms, and cages, can be formed by coordination between metal ions (Pt, Pd, Ru, Rh, Ir, Zn, Co, and Cd) and organic ligands, with potential applications as alternatives to conventional biomedical materials for therapeutic, sensing, and imaging purposes. MOCs have been investigated as anticancer drugs in the treatment of malignant tumors in lung, cervical, breast, colon, liver, prostate, ovarian, brain, stomach, bone, skin, mouth, thyroid, and other cancers. MOCs with one, two, and three cavities have also been investigated as drug carriers and prepared for the loading and release of different drugs. In addition, MOCs can target proteins by the shape effect and recognize sugars and DNA by electrostatic interactions, as well as estradiol by host-guest interactions, etc. This Perspective mainly covers achievements in the biomedical application of MOCs. We aim to identify some key trends in the reported MOC structures in relation to their biomedical activity and potential applications.
Collapse
Affiliation(s)
- Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
| | - Wenxin Fu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Peter. J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
| |
Collapse
|
32
|
Bardhan D, Chand DK. Palladium(II)-Based Self-Assembled Heteroleptic Coordination Architectures: A Growing Family. Chemistry 2019; 25:12241-12269. [PMID: 31158303 DOI: 10.1002/chem.201900831] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/29/2019] [Indexed: 01/10/2023]
Abstract
Metal-driven self-assembly is one of the most effective approaches to lucidly design a large range of discrete 2D and 3D coordination architectures/complexes. Palladium(II)-based self-assembled coordination architectures are usually prepared by using suitable metal components, in either a partially protected form (PdL') or typical form (Pd; charges are not shown), and designed ligand components. The self-assembled molecules prepared by using a metal component and only one type of bi- or polydentate ligand (L) can be classified in the homoleptic series of complexes. On the other hand, the less explored heteroleptic series of complexes are obtained by using a metal component and at least two different types of non-chelating bi- or polydentate ligands (such as La and Lb ). Methods that allow the controlled generation of single, discrete heteroleptic complexes are less understood. A survey of palladium(II)-based self-assembled coordination cages that are heteroleptic has been made. This review article illustrates a systematic collection of such architectures and credible justification of their formation, along with reported functional aspects of the complexes. The collected heteroleptic assemblies are classified here into three sections: 1) [(PdL')m (La )x (Lb )y ]-type complexes, in which the denticity of La and Lb is equal; 2) [(PdL')m (La )x (Lb )y ]-type complexes, in which the denticity of La and Lb is different; and 3) [Pdm (La )x (Lb )y ]-type complexes, in which the denticity of La and Lb is equal. Representative examples of some important homoleptic architectures are also provided, wherever possible, to set a background for a better understanding of the related heteroleptic versions. The purpose of this review is to pave the way for the construction of several unique heteroleptic coordination assemblies that might exhibit emergent supramolecular functions.
Collapse
Affiliation(s)
- Devjanee Bardhan
- Department of Chemistry, Indian Institute of Technology Madras, Chennnai, 600036, India
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennnai, 600036, India
| |
Collapse
|
33
|
Avcu Altiparmak E, Ozen Eroglu G, Ozcelik E, Özdemir N, Erdem Kuruca S, Arsu N, Ülküseven B, Bal‐Demirci T. The formation of a metallosupramolecular porous helicate through salicylaldehydethiosemicarbazone: Synthesis, Characterization, Cytotoxic activity, DNA binding and DFT calculations. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elif Avcu Altiparmak
- Department of Chemistry, Engineering FacultyIstanbul University‐Cerrahpaşa 34320 Istanbul Turkey
| | - Guneş Ozen Eroglu
- Department of Molecular MedicineAziz Sancar Institute of Experimental Medicine, Istanbul University 34093 Istanbul Turkey
| | - Elif Ozcelik
- Chemistry DepartmentYildiz Technical University Davutpasa Campus 34220 Esenler, Istanbul Turkey
| | - Namık Özdemir
- Department of Mathematics and Science Education, Faculty of EducationOndokuz Mayıs University 55139 Samsun Turkey
| | - Serap Erdem Kuruca
- Department of Physiology, Faculty of MedicineIstanbul University 34093 Istanbul Turkey
| | - Nergis Arsu
- Chemistry DepartmentYildiz Technical University Davutpasa Campus 34220 Esenler, Istanbul Turkey
| | - Bahri Ülküseven
- Department of Chemistry, Engineering FacultyIstanbul University‐Cerrahpaşa 34320 Istanbul Turkey
| | - Tulay Bal‐Demirci
- Department of Chemistry, Engineering FacultyIstanbul University‐Cerrahpaşa 34320 Istanbul Turkey
| |
Collapse
|
34
|
Pöthig A, Casini A. Recent Developments of Supramolecular Metal-based Structures for Applications in Cancer Therapy and Imaging. Theranostics 2019; 9:3150-3169. [PMID: 31244947 PMCID: PMC6567972 DOI: 10.7150/thno.31828] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The biomedical application of discrete supramolecular metal-based structures, including supramolecular coordination complexes (SCCs), is still an emergent field of study. However, pioneering studies over the last 10 years demonstrated the potential of these supramolecular compounds as novel anticancer drugs, endowed with different mechanisms of action compared to classical small-molecules, often related to their peculiar molecular recognition properties. In addition, the robustness and modular composition of supramolecular metal-based structures allows for an incorporation of different functionalities in the same system to enable imaging in cells via different modalities, but also active tumor targeting and stimuli-responsiveness. Although most of the studies reported so far exploit these systems for therapy, supramolecular metal-based structures may also constitute ideal scaffolds to develop multimodal theranostic agents. Of note, the host-guest chemistry of 3D self-assembled supramolecular structures - within the metallacages family - can also be exploited to design novel drug delivery systems for anticancer chemotherapeutics. In this review, we aim at summarizing the pivotal concepts in this fascinating research area, starting with the main design principles and illustrating representative examples while providing a critical discussion of the state-of-the-art. A section is also included on supramolecular organometallic complexes (SOCs) whereby the (organic) linker is forming the organometallic bond to the metal node, whose biological applications are still to be explored. Certainly, the myriad of possible supramolecular metal-based structures and their almost limitless modularity and tunability suggests that the biomedical applications of such complex chemical entities will continue along this already promising path.
Collapse
|
35
|
van Hilst QVC, Vasdev RAS, Preston D, Findlay JA, Scottwell SØ, Giles GI, Brooks HJL, Crowley JD. Synthesis, Characterisation and Antimicrobial Studies of some 2,6‐
bis
(1,2,3‐Triazol‐4‐yl)Pyridine Ruthenium(II) “Click” Complexes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Quinn V. C. van Hilst
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Roan A. S. Vasdev
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pharmacology and ToxicologyUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Dan Preston
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pharmacology and ToxicologyUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Synøve Ø. Scottwell
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
| | - Gregory I. Giles
- Department of Pharmacology and ToxicologyUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Heather J. L. Brooks
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| |
Collapse
|
36
|
Vojtek M, Marques MPM, Ferreira IMPLVO, Mota-Filipe H, Diniz C. Anticancer activity of palladium-based complexes against triple-negative breast cancer. Drug Discov Today 2019; 24:1044-1058. [PMID: 30849441 DOI: 10.1016/j.drudis.2019.02.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
Abstract
Treatment of triple-negative breast carcinoma (TNBC) remains an unmet medical need with no targeted therapy available to date. Accounting for 10-30% of all human breast cancer tumors, this mammary carcinoma subtype has a particularly poor prognosis owing to its high metastatic potential, aggressive biology and limited pharmacological treatment options. Platinum chemotherapeutics are the mainstay therapy in patients with TNBC but their clinical use is limited by severe toxicity and acquired resistance. Palladium-based complexes are appealing alternative metal-based drugs because of significant similarities regarding structure and coordination chemistry with the platinum agents. This review summarizes the knowledge gathered so far on 121 Pd(II) complexes, emphasizing their anticancer activity and putative pharmacological targets toward TNBC.
Collapse
Affiliation(s)
- Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria P M Marques
- Unidade de I&D "Química-Física Molecular", Department of Chemistry, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Hélder Mota-Filipe
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
37
|
Li PZ, Wang XJ, Zhao Y. Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Jana A, Bhowmick S, Kumar S, Singh K, Garg P, Das N. Self-assembly of Pt(II) based nanoscalar ionic hexagons and their anticancer potencies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
|
40
|
Ahmedova A. Biomedical Applications of Metallosupramolecular Assemblies-Structural Aspects of the Anticancer Activity. Front Chem 2018; 6:620. [PMID: 30619828 PMCID: PMC6302020 DOI: 10.3389/fchem.2018.00620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023] Open
Abstract
The design and development of metallosupramolecular systems has resulted in construction of a myriad of fascinating structures with highly diverse properties and potential applications. Assessment of the biomedical applications of metallosupramolecular assemblies is an emerging field of research that stems from the recently demonstrated promising results on such systems. After the pioneering works of Therrien and coworkers on organometallic Ru-cages with promising anticancer properties, this topic has evolved to the more recent studies on bioactivity of supramolecular coordination complexes built from different metal ions and various multidentate ligands. Sufficient amount of data on the anticancer activity of metallosupramolecules has already been reported and allows outlining some general tendencies in the structural aspects of the biological activity. The main structural properties of the complexes that can be readily modified to enhance their activity are the size, the shape and charge of the formed complexes. Moreover, the intrinsic properties of the building components could predetermine some of the main characteristics of the overall supramolecular complex, such as its optical properties, chemical reactivity, solubility, etc., and could, thereby, define the areas of its biomedical applications. The unique structural property of most of the metallosupramolecular assemblies, however, is the presence of a discrete cavity that renders a whole range of additional applications resulting from specific host-guest interactions. The encapsulations of small bioactive or fluorescent molecules have been employed for delivery or recognition purposes in many examples. On the other hand, metallosupramolecules have been imbedded into target-specific polymeric nanoparticles that resulted in a successful combination of their therapeutic and diagnostic properties, making them promising for theranostic application in cancer treatment. The aim of this review paper is to mark out some key tendencies in the reported metallosupramolecular structures in relation with their biological activity and potential areas of biomedical application. In this way, a useful set of guidelines can be delineated to help synthetic chemists broaden the application areas of their supramolecular systems by few structural changes.
Collapse
Affiliation(s)
- Anife Ahmedova
- Laboratory of Biocoordination and Bioanalytical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| |
Collapse
|
41
|
Taylor LLK, Riddell IA, Smulders MMJ. Selbstorganisation von funktionellen diskreten dreidimensionalen Architekturen in Wasser. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lauren L. K. Taylor
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen Niederlande
| |
Collapse
|
42
|
Taylor LLK, Riddell IA, Smulders MMJ. Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water. Angew Chem Int Ed Engl 2018; 58:1280-1307. [DOI: 10.1002/anie.201806297] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL UK
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen The Netherlands
| |
Collapse
|
43
|
Burke BP, Grantham W, Burke MJ, Nichol GS, Roberts D, Renard I, Hargreaves R, Cawthorne C, Archibald SJ, Lusby PJ. Visualizing Kinetically Robust Co III4L 6 Assemblies in Vivo: SPECT Imaging of the Encapsulated [ 99mTc]TcO 4- Anion. J Am Chem Soc 2018; 140:16877-16881. [PMID: 30485075 DOI: 10.1021/jacs.8b09582] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Noncovalent encapsulation is an attractive approach for modifying the efficacy and physiochemical properties of both therapeutic and diagnostic species. Abiotic self-assembled constructs have shown promise, yet many hurdles between in vitro and (pre)clinical studies remain, not least the challenges associated with maintaining the macromolecular, hollow structure under nonequilibrium conditions. Using a kinetically robust CoIII4L6 tetrahedron we now show the feasibility of encapsulating the most widely used precursor in clinical nuclear diagnostic imaging, the γ-emitting [99mTc]TcO4- anion, under conditions compatible with in vivo administration. Subsequent single-photon emission computed tomography imaging of the caged-anion reveals a marked change in the biodistribution compared to the thyroid-accumulating free oxo-anion, thus moving clinical applications of (metallo)supramolecular species a step closer.
Collapse
Affiliation(s)
- Benjamin P Burke
- Department of Chemistry , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - William Grantham
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , Scotland
| | - Michael J Burke
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , Scotland
| | - Gary S Nichol
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , Scotland
| | - David Roberts
- School of Life Sciences , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Isaline Renard
- Department of Chemistry , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Rebecca Hargreaves
- Department of Chemistry , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Christopher Cawthorne
- School of Life Sciences , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Stephen J Archibald
- Department of Chemistry , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Paul J Lusby
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , Scotland
| |
Collapse
|
44
|
Affiliation(s)
- Cheng‐Yi Zhu
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Mei Pan
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Cheng‐Yong Su
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 People's Republic of China
| |
Collapse
|
45
|
Vasdev RAS, Gaudin LF, Preston D, Jogy JP, Giles GI, Crowley JD. Anticancer Activity and Cisplatin Binding Ability of Bis-Quinoline and Bis-Isoquinoline Derived [Pd 2L 4] 4+ Metallosupramolecular Cages. Front Chem 2018; 6:563. [PMID: 30525025 PMCID: PMC6262750 DOI: 10.3389/fchem.2018.00563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022] Open
Abstract
New bis-quinoline (L q) and bis-isoquinoline-based (L iq) ligands have been synthesized, along with their respective homoleptic [Pd2(L q or L iq)4]4+ cages (C q and C iq). The ligands and cages were characterized by 1H, 13C and diffusion ordered (DOSY) NMR spectroscopies, high resolution electrospray ionization mass spectrometry (HR-ESIMS) and in the case of the bis-quinoline cage, X-ray crystallography. The crystal structure of the C q architecture showed that the [Pd2(L q)4]4+ cage formed a twisted meso isomer where the [Pd(quinoline)4]2+ units at either end of the cage architecture adopt the opposite twists (left and right handed). Conversely, Density Functional Theory (DFT) calculations on the C iq cage architecture indicated that a lantern shaped conformation, similar to what has been observed before for related [Pd2(L tripy)4]4+ systems (where L tripy = 2,6-bis(pyridin-3-ylethynyl)pyridine), was generated. The different cage conformations manifest different properties for the isomeric cages. The C iq cage is able to bind, weakly in acetonitrile, the anticancer drug cisplatin whereas the C q architecture shows no interaction with the guest under the same conditions. The kinetic robustness of the two cages in the presence of Cl- nucleophiles was also different. The C iq cage was completely decomposed into free L iq and [Pd(Cl)4]2- within 1 h. However, the C q cage was more long lived and was only fully decomposed after 7 h. The new ligands (L iq and L q) and the Pd(II) cage architectures (C iq and C q) were assessed for their cytotoxic properties against two cancerous cell lines (A549 lung cancer and MDA-MB-231 breast cancer) and one non-cancerous cell line (HDFa skin cells). It was found that L q and C q were both reasonably cytotoxic (IC50S ≈ 0.5 μM) against A549, while C iq was slightly less active (IC50 = 7.4 μM). L iq was not soluble enough to allow the IC50 to be determined against either of the two cancerous cell lines. However, none of the molecules showed any selectivity for the cancer cells, as they were all found to have similar cytotoxicities against HDFa skin cells (IC50 values ranged from 2.6 to 3.0 μM).
Collapse
Affiliation(s)
- Roan A. S. Vasdev
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | | | - Dan Preston
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Jackmil P. Jogy
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Gregory I. Giles
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - James D. Crowley
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
46
|
Brissos RF, Korrodi-Gregório L, Pérez-Tomás R, Roubeau O, Gamez P. Antiproliferative properties of iron supramolecular cylinders. ACTA ACUST UNITED AC 2018. [DOI: 10.28954/2018.csq.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The use of metallohelicates as potential antiproliferative agents is mostly exemplified by one sole family of supramolecular compounds that is based on bis-iminopyridine ligands. In the present investigation, two other types of metallocylinders have been selected and their potential DNA-binding and cytotoxic properties have been investigated. Hence, two new neutral iron(III) metallosupramolecular compounds have been prepared from bis-β-diketone ligands, and a known cationic iron(II) helicate from bis-pyrazole ligands has been used for comparison purposes. DNA-interaction experiments and cell studies reveal remarkable biological properties for one of the neutral iron cylinders and the positively charged, pyrazole-based helicate, as illustrated by their antiproliferative behaviours, which are far better than those of two well-known compounds, i.e. the most studied metallohelicate in the field and cisplatin.
Collapse
|
47
|
Steel PJ, McMorran DA. Selective Anion Recognition by a Dynamic Quadruple Helicate. Chem Asian J 2018; 14:1098-1101. [PMID: 30209886 DOI: 10.1002/asia.201801262] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/04/2018] [Indexed: 01/06/2023]
Abstract
An M2 L4 quadruple helicate, formed by wrapping four molecules of 1,4-bis(3-pyridyloxy)benzene (L1 ) about two palladium(II) centers, is shown to bind anions within its internal cavity. 1 H NMR exchange experiments provide a quantitative measure of anion selectivity and reveal a preference for ClO4 - over the other tetrahedral anions BF4 - and ReO4 - and the octahedral anion PF6 - . X-ray crystal structures of [Pd2 (L1 )4 ]4+ helicates containing ClO4 , BF4 - and I- reveal that the cavity size can dynamically change in response to the size of the guest.
Collapse
Affiliation(s)
- Peter J Steel
- Department of Chemistry, University of Canterbury, Christchurch, 8140, New Zealand
| | - David A McMorran
- Department of Chemistry Te Tari Matauranga Mata, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
48
|
Zhu R, Bloch WM, Holstein JJ, Mandal S, Schäfer LV, Clever GH. Donor-Site-Directed Rational Assembly of Heteroleptic cis-[Pd 2 L 2 L' 2 ] Coordination Cages from Picolyl Ligands. Chemistry 2018; 24:12976-12982. [PMID: 29924444 PMCID: PMC6174927 DOI: 10.1002/chem.201802188] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 01/05/2023]
Abstract
A donor-site engineering approach facilitates the formation of heteroleptic [Pd2 L2 L'2 ]4+ cage structures through a favored cis-'in2 /out2 ' spatial configuration of the methyl groups of 5- and 3-substituted bis-monodentate picolyl ligands with flat acridone and bent phenothiazine backbones. The heteroleptic cages were confirmed by ESI-MS and 2D NMR experiments as well as DFT calculations, which pointed toward a cis-configuration being energetically favored. This was further supported by the synthesis and X-ray structure of a previously unreported cis-[Pd(2-picoline)4 ]2+ complex. The formation of homoleptic structures, however, was met with considerable steric hindrance at the PdII centers, as observed by the formation of [Pd2 L3 (solvent)2 ]4+ and [Pd2 L2 (solvent)4 ]4+ species when only one type of acridone-based ligand was offered. In contrast, bent phenothiazine ligands with outside-pointing methyl groups showed the ability to form interpenetrated double-cages, as revealed by X-ray crystallography. The general route presented herein enables the assembly of uniform cis-[Pd2 L2 L'2 ]4+ coordination cages, thus furthering the possibility to increase structural and functional complexity in supramolecular systems.
Collapse
Affiliation(s)
- Rongmei Zhu
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
- Current affiliation: School of Chemistry and Chemical EngineeringYangzhou University225002YangzhouJiangsuP.R. China
| | - Witold M. Bloch
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
- Current affiliation: Department of Chemistry and Centre for Advanced Nanomaterials, School of Physical SciencesThe University of AdelaideAdelaideAustralia
| | - Julian J. Holstein
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Soham Mandal
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and BiochemistryRuhr-University44780BochumGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
49
|
Czepa W, Fik MA, Witomska S, Kubicki M, Consiglio G, Pawluć P, Patroniak V. Simple Schiff-Base Cu(II) Complexes as Efficient Catalysts for Benzyl Alcohol Oxidation. ChemistrySelect 2018. [DOI: 10.1002/slct.201801550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Włodzimierz Czepa
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61614 Poznań Poland
- Center for Advanced Technologies; Adam Mickiewicz University, Umultowska 89c; 61614 Poznań Poland
| | - Marta A. Fik
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61614 Poznań Poland
| | - Samanta Witomska
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61614 Poznań Poland
- Center for Advanced Technologies; Adam Mickiewicz University, Umultowska 89c; 61614 Poznań Poland
| | - Maciej Kubicki
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61614 Poznań Poland
| | - Giuseppe Consiglio
- Department of Chemical Sciences; University of Catania, Viale Andrea Doria 6; I95125 Catania Italy
| | - Piotr Pawluć
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61614 Poznań Poland
- Center for Advanced Technologies; Adam Mickiewicz University, Umultowska 89c; 61614 Poznań Poland
| | - Violetta Patroniak
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61614 Poznań Poland
| |
Collapse
|
50
|
|