1
|
Sander S, Cosgrove EJ, Müller R, Kaupp M, Braun T. Hydrogen Bonding in Platinum Indolylphosphine Polyfluorido and Fluorido Complexes. Chemistry 2023; 29:e202202768. [PMID: 36327144 PMCID: PMC10107128 DOI: 10.1002/chem.202202768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
The reaction of the Pt complexes cis-[Pt(CH3 )(Ar){Ph2 P(Ind)}2 ] (Ind=2-(3-methyl)indolyl, Ar=4-tBuC6 H4 (1 a), 4-CH3 C6 H4 (1 b), Ph (1 c), 4-FC6 H4 (1 d), 4-ClC6 H4 (1 e), 4-CF3 C6 H4 (1 f)) with HF afforded the polyfluorido complexes trans-[Pt(F(HF)2 )(Ar){Ph2 P(Ind)}2 ] 2 a-f, which can be converted into the fluoride derivatives trans-[Pt(F)(Ar){Ph2 P(Ind)}2 ] (3 a-f) by treatment with CsF. The compounds 2 a-f and 3 a-f were characterised thoroughly by multinuclear NMR spectroscopy. The data reveal hydrogen bonding of the fluorido ligand with HF molecules and the indolylphosphine ligand. Polyfluorido complexes 2 a-f show larger |1 J(F,Pt)|, but lower 1 J(H,F) coupling constants when compared to the fluorido complexes 3 a-f. Decreasing 1 J(P,Pt) coupling constants in 2 a-f and 3 a-f suggest a cis influence of the aryl ligands in the following order: 4-tBuC6 H4 (a) ≈4-CH3 C6 H4 (b)
Collapse
Affiliation(s)
- Stefan Sander
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Elizabeth J. Cosgrove
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Robert Müller
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Martin Kaupp
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
2
|
Rachor SG, Ahrens M, Braun T. Conversion of a Au I Fluorido Complex into an N-Fluoroamido Derivative: N-F versus Au-N Reactivity. Angew Chem Int Ed Engl 2022; 61:e202212858. [PMID: 36279190 PMCID: PMC10099710 DOI: 10.1002/anie.202212858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/06/2022]
Abstract
The AuI complex [Au{N(F)SO2 Ph}(SPhos)] (SPhos=dicyclohexyl(2',6'-dimethoxy[1,1'-biphenyl]-2-yl)phosphane) (2) bearing a fluoroamido ligand has been synthesized by reaction of the fluorido complex [Au(F)(SPhos)] (1) with NFSI (NFSI=N-fluorobenzenesulfonimide). A reaction with CO resulted in an unprecedented insertion into the N-F bond at 2. With the carbene precursor N2 CH(CO2 Et) N-F bond cleavage gave the Au-F bond insertion product [Au{CHF(CO2 C2 H5 )}(SPhos)] (7). The presence of CNtBu led to Au-N cleavage at 2 and concomitant amide formation to give the cationic complex [Au(CNtBu)(SPhos)][N(F)SO2 Ph)] (5), which reacted further to give FtBu as well as the cyanido complex [Au(CN)(SPhos)] (6). These results led to the development of a process for the amination of electrophilic organic substrates by transfer of the fluoroamido group NF(SO2 Ph)- .
Collapse
Affiliation(s)
- Simon G Rachor
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Mike Ahrens
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Sander S, Braun T. Platinum-Catalyzed Hydrofluorination of Alkynes: Hydrogen Bonding to Indolylphosphine Ligands to Provide Fluoride Reactivity. Angew Chem Int Ed Engl 2022; 61:e202204678. [PMID: 35420731 PMCID: PMC9401575 DOI: 10.1002/anie.202204678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/20/2022]
Abstract
The reaction of the Pt complexes cis-[Pt(CH3 )2 {R2 P(Ind)}2 ] (Ind=2-(3-methyl)indolyl, R=Ph (1 a), 4-FC6 H4 (1 b), 4-CF3 C6 H4 (1 c)) with HF afforded the fluorido complexes trans-[Pt(F(HF)2 )(CH3 ){R2 P(Ind)}2 ] 2 a-c, which can be converted into trans-[Pt(F)(CH3 ){R2 P(Ind)}2 ] (3 a-c) by treatment with CsF. Addition of 3-hexyne to 2 a-c gave alkyne complexes trans-[Pt(C,C-η2 -C2 H5 C≡CC2 H5 )(CH3 ){R2 P(Ind)}2 {F(HF)2 }] (4 a-c) at which a fluoride is stabilised as polyfluoride in the coordination sphere by hydrogen bonding to the indolyl-substituted phosphine ligands. Subsequent heating of a solution of 4 a in the presence of PVPHF led to fluoroalkene formation. Selective catalytic hydrofluorination of alkynes to yield (Z)-fluoroalkenes were developed. The ability of hydrogen bonding to polyfluoride favours the fluorination step as demonstrated by studies with complexes bearing no indolyl groups at the phosphine ligands.
Collapse
Affiliation(s)
- Stefan Sander
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
4
|
Sander S, Braun T. Platinum‐Catalyzed Hydrofluorination of Alkynes: Hydrogen Bonding to Indolylphosphine Ligands to Provide Fluoride Reactivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Sander
- Humboldt-Universität zu Berlin: Humboldt-Universitat zu Berlin chemistry GERMANY
| | - Thomas Braun
- Humboldt University Chemistry Brook-Taylor Str. 2 12489 Berlin GERMANY
| |
Collapse
|
5
|
Easy Csp2–Csp2 Reductive Elimination from Organoplatinum Complexes by Electrophilic Fluorinating Reagents. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Rachor SG, Müller R, Wittwer P, Kaupp M, Braun T. Synthesis, Reactivity, and Bonding of Gold(I) Fluorido-Phosphine Complexes. Inorg Chem 2021; 61:357-367. [PMID: 34913690 DOI: 10.1021/acs.inorgchem.1c02959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gold(I) fluorido complexes with phosphine ligands have been synthesized from their respective iodido precursors. The bonding situation in comparison between complexes bearing phosphines and N-heterocyclic carbenes (NHCs) was explored quantum-chemically, obtaining similar results for both. Calculations of the 19F NMR chemical shifts match the experimental values well, including the approximately 40 ppm low-field shifts for the phosphine complexes compared to the NHC complexes, in spite of similar negative charges on fluorine. The reactivity of the highly water-sensitive gold(I) fluorido complexes was studied, resulting in substitution at the metal using trimethylsilyl reagents. The compounds studied were characterized using NMR as well as X-ray diffraction methods.
Collapse
Affiliation(s)
- Simon G Rachor
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Robert Müller
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Philipp Wittwer
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
7
|
Dirican D, Talavera M, Braun T. Fluorination Reactions at a Platinum Carbene Complex: Reaction Routes to SF 3 , S(=O)F and Fluorido Complexes. Chemistry 2021; 27:17707-17712. [PMID: 34634177 PMCID: PMC9298267 DOI: 10.1002/chem.202103311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 01/10/2023]
Abstract
The electron-rich Pt complex [Pt(IMes)2 ] (IMes: [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolinylidine]) can be used as precursor for the syntheses of a variety of fluorido ligand containing compounds. The sulfur fluoride SF4 undergoes a rapid oxidative addition at Pt0 to yield trans-[Pt(F)(SF3 )(IMes)2 ]. A photolytic reaction of SF6 at [Pt(IMes)2 ] in the presence of IMes gave the fluorido complexes trans-[Pt(F)2 (IMes)2 ] and trans-[Pt(F)(SF3 )(IMes)2 ] along with trans-[Pt(F)(SOF)(IMes)2 ] and trans-[Pt(F)(IMes')(IMes)] (IMes': cyclometalated IMes ligand), the latter being products produced by reaction with adventitious water. trans-[Pt(F)(SOF)(IMes)2 ] and trans-[Pt(F)2 (IMes)2 ] were synthesized independently by treatment of [Pt(IMes)2 ] with SOF2 or XeF2 . A reaction of [Pt(IMes)2 ] with a HF source gave trans-[Pt(H)(F)(IMes)2 ], and an intermediate bifluorido complex trans-[Pt(H)(FHF)(IMes)2 ] was identified. Compound trans-[Pt(H)(F)(IMes)2 ] converts in the presence of CsF into trans-[Pt(F)(IMes')(IMes)].
Collapse
Affiliation(s)
- Dilcan Dirican
- Humboldt-Universität zu Berlin Institut für ChemieBrook-Taylor-Straße 212489BerlinGermany
| | - Maria Talavera
- Humboldt-Universität zu Berlin Institut für ChemieBrook-Taylor-Straße 212489BerlinGermany
| | - Thomas Braun
- Humboldt-Universität zu Berlin Institut für ChemieBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
8
|
Sander S, Müller R, Ahrens M, Kaupp M, Braun T. Platinum Indolylphosphine Fluorido and Polyfluorido Complexes: An Interplay between Cyclometallation, Fluoride Migration, and Hydrogen Bonding. Chemistry 2021; 27:14287-14298. [PMID: 34337795 PMCID: PMC8596594 DOI: 10.1002/chem.202102451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/06/2022]
Abstract
The reaction of [PtCl2 (COD)] (COD=1,5-cyclooctadiene) with diisopropyl-2-(3-methyl)indolylphosphine (iPr2 P(C9 H8 N)) led to the formation of the platinum(ii) chlorido complexes, cis-[PtCl2 {iPr2 P(C9 H8 N)}2 ] (1) and trans-[PtCl2 {iPr2 P(C9 H8 N)}2 ] (2). The cis-complex 1 reacted with NEt3 yielding the complex cis-[PtCl{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}] (3) bearing a cyclometalated κ2 -(P,N)-phosphine ligand, while the isomer 2 with a trans-configuration did not show any reactivity towards NEt3 . Treatment of 1 or 3 with (CH3 )4 NF (TMAF) resulted in the formation of the twofold cyclometalated complex cis-[Pt{κ2 -(P,N)-iPr2 P(C9 H7 N)}2 ] (4). The molecular structures of the complexes 1-4 were determined by single-crystal X-ray diffraction. The fluorido complex cis-[PtF{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}] ⋅ (HF)4 (5 ⋅ (HF)4 ) was formed when complex 4 was treated with different hydrogen fluoride sources. The Pt(ii) fluorido complex 5 ⋅ (HF)4 exhibits intramolecular hydrogen bonding in its outer coordination sphere between the fluorido ligand and the NH group of the 3-methylindolyl moiety. In contrast to its chlorido analogue 3, complex 5 ⋅ (HF)4 reacted with CO or the ynamide 1-(2-phenylethynyl)-2-pyrrolidinone to yield the complexes trans-[Pt(CO){κ2 -(P,C)-iPr2 P(C9 H7 NCO)}{iPr2 P(C9 H8 N)}][F(HF)4 ] (7) and a complex, which we suggest to be cis-[Pt{C=C(Ph)OCN(C3 H6 )}{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}][F(HF)4 ] (9), respectively. The structure of 9 was assigned on the basis of DFT calculations as well as NMR and IR data. Hydrogen bonding of HF and NH to fluoride was proven to be crucial for the existence of 7 and 9.
Collapse
Affiliation(s)
- Stefan Sander
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Robert Müller
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Mike Ahrens
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Martin Kaupp
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
9
|
Hu J, Nikravesh M, Shahsavari HR, Babadi Aghakhanpour R, Rheingold AL, Alshami M, Sakamaki Y, Beyzavi H. A C^N Cycloplatinated(II) Fluoride Complex: Photophysical Studies and C sp3-F Bond Formation. Inorg Chem 2020; 59:16319-16327. [PMID: 33135890 DOI: 10.1021/acs.inorgchem.0c02115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This work reports the synthesis and characterization of a new C^N-based cycloplatinated(II) fluoride complex, [Pt(ppy)(PPh3)F] (2; ppy = 2-phenylpyridinate), involving a Pt-F bond. The new complex is highly luminescent in the green area with a high quantum yield of 94.6% at 77 K. A comparison study of the heavier halogen derivatives reveals a descending emission quantum yield order of F > Cl > Br > I. Time-dependent density functional theory calculations ascribe the decreased emission efficiency to the decreasing trend of an intraligand (IL) transition from F to I, which accounts for the major radiative pathway. In addition, 2 is capable of the fluorinating alkyl halides, leading to Csp3-F bond formation at room temperature.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahshid Nikravesh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Hamid R Shahsavari
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Reza Babadi Aghakhanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Arnold L Rheingold
- Department of Chemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Mia Alshami
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
10
|
Gross JH. From the discovery of field ionization to field desorption and liquid injection field desorption/ionization-mass spectrometry-A journey from principles and applications to a glimpse into the future. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:241-273. [PMID: 32605392 PMCID: PMC7383431 DOI: 10.1177/1469066720939399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The discovery of the ionizing effect of strong electric fields in the order of volts per Ångstrom in the early 1950s eventually led to the development of field ionization-mass spectrometry (FI-MS). Due to the very low ion currents, and thus, limited by the instrumentation of the 1960s, it took some time for the, by then, new technique to become adopted for analytical applications. In FI-MS, volatile or at least vaporizable samples mainly deliver molecular ions, and consequently, mass spectra showing no or at least minor numbers of fragment ion signals. The next major breakthrough was achieved by overcoming the need to evaporate the analyte prior to ionization. This was accomplished in the early 1970s by simply depositing the samples onto the field emitter and led to field desorption-mass spectrometry (FD-MS). With FD-MS, a desorption ionization method had become available that paved the road to the mass spectral analysis of larger molecules of low to high polarity and even of organic salts. In FD-MS, all of these analytes deliver spectra with no or at least few fragment ion peaks. The last milestone was the development of liquid injection field desorption/ionization (LIFDI) in the early 2000s that allows for sample deposition under the exclusion of atmospheric oxygen and water. In addition to sampling under inert conditions, LIFDI also enables more robust and quicker operation than classical FI-MS and FD-MS procedures. The development and applications of FI, FD, and LIFDI had mutual interference with the mass analyzers that were used in combination with these methods. Vice versa, the demand for using these techniques on other than magnetic sector instruments has effectuated their adaptation to different types of modern mass analyzers. The journey started with magnetic sector instruments, almost skipped quadrupole analyzers, encompassed Fourier transform ion cyclotron resonance (FT-ICR) and orthogonal acceleration time-of-flight (oaTOF) analyzers, and finally arrived at Orbitraps. Even interfaces for continuous-flow LIFDI have been realized. Even though being niche techniques to some degree, one may be confident that FI, FD, and LIFDI have a promising future ahead of them. This Account takes you on the journey from principles and applications of the title methods to a glimpse into the future.
Collapse
Affiliation(s)
- Jürgen H Gross
- Jürgen H Gross, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Hall LM, Milner LM, Hart SJ, Whitwood AC, Lynam JM, Slattery JM. Solvent- and anion-dependent rearrangement of fluorinated carbene ligands provides access to fluorinated alkenes. Dalton Trans 2019; 48:17655-17659. [DOI: 10.1039/c9dt04307a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The construction of fluorocarbene ligands using sequential nucleophilic and electrophilic addition to a ruthenium vinylidene complex is described. These undergo solvent- and anion-dependent rearrangement to liberate free fluorinated alkenes.
Collapse
Affiliation(s)
| | | | - Sam J. Hart
- Department of Chemistry
- University of York
- York
- UK
| | | | | | | |
Collapse
|
12
|
|
13
|
Ellwanger MA, Steinhauer S, Golz P, Braun T, Riedel S. Stabilization of Lewis Acidic AuF 3 as an N-Heterocyclic Carbene Complex: Preparation and Characterization of [AuF 3 (SIMes)]. Angew Chem Int Ed Engl 2018; 57:7210-7214. [PMID: 29645333 DOI: 10.1002/anie.201802952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Indexed: 11/06/2022]
Abstract
Two different reaction routes are described to access the unprecedented trifluoridoorganogold(III) complex [AuF3 (SIMes)]. The compound bears the N-heterocyclic carbene SIMes (1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) as a ligand for a molecular Lewis acidic AuF3 unit and was characterized by NMR spectroscopy as well as X-ray crystallography. Apart from the use of a [AuF4 ]- salt as precursor, the strong oxidizing compound AuF3 can be employed neat as starting material. The reaction proceeded even in organic solvents in the presence of SIMes as the ligand precursor. Decomposition reactions with the solvent can, therefore, be prevented by using this strategy.
Collapse
Affiliation(s)
- Mathias A Ellwanger
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Simon Steinhauer
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Paul Golz
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Thomas Braun
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Sebastian Riedel
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| |
Collapse
|
14
|
Ellwanger MA, Steinhauer S, Golz P, Braun T, Riedel S. Stabilisierung von Lewis-azidem AuF3
mithilfe eines N-heterocyclischen Carbens: Herstellung und Charakterisierung von [AuF3
(SIMes)]. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mathias A. Ellwanger
- Freie Universität Berlin; Institut für Chemie und Biochemie; Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Simon Steinhauer
- Freie Universität Berlin; Institut für Chemie und Biochemie; Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Paul Golz
- Freie Universität Berlin; Institut für Chemie und Biochemie; Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Thomas Braun
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Sebastian Riedel
- Freie Universität Berlin; Institut für Chemie und Biochemie; Fabeckstraße 34/36 14195 Berlin Deutschland
| |
Collapse
|
15
|
Berg C, Pfister N, Braun T, Braun-Cula B. Diverse Reactivity of Platinum SF3
and SF2
Complexes towards EtOH and Me3
SiOEt. Chemistry 2018. [DOI: 10.1002/chem.201800503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Claudia Berg
- Department of Chemistry; Humboldt Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Nils Pfister
- Department of Chemistry; Humboldt Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Thomas Braun
- Department of Chemistry; Humboldt Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Beatrice Braun-Cula
- Department of Chemistry; Humboldt Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
16
|
Synthesis and reactivity of a cationic palladium complex as possible intermediate in a Suzuki-Miyaura cross-coupling reaction. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Berger J, Braun T, Ahrens T, Kläring P, Laubenstein R, Braun-Cula B. The Versatile Behavior of Platinum Alkyne Complexes towards XeF 2 : Formation of Fluorovinyl and Fluorido Complexes. Chemistry 2017; 23:8886-8900. [PMID: 28472555 DOI: 10.1002/chem.201700403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Indexed: 12/31/2022]
Abstract
Reactions of platinum(0) tolane complexes, bearing a chelating ligand with P and N donor atoms, with the electrophilic fluorinating agent XeF2 give facile access to platinum(II) β-fluorovinyl fluorido complexes. A series of new platinum(II) β-fluorovinyl complexes have been synthesized and were structurally characterized. Further oxidation with XeF2 led to ortho-metalated platinum(IV) fluorido compounds. Additional reactions of platinum(0) tolane complexes, bearing a chelating P,P donor ligand, with XeF2 led to a variety of fluorido and fluorovinyl complexes.
Collapse
Affiliation(s)
- Josefine Berger
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - Theresia Ahrens
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - Paul Kläring
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - Reik Laubenstein
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - Beatrice Braun-Cula
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| |
Collapse
|
18
|
Berg C, Braun T, Ahrens M, Wittwer P, Herrmann R. Activation of SF6
at Platinum Complexes: Formation of SF3
Derivatives and Their Application in Deoxyfluorination Reactions. Angew Chem Int Ed Engl 2017; 56:4300-4304. [DOI: 10.1002/anie.201612417] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia Berg
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Thomas Braun
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Mike Ahrens
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Philipp Wittwer
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Roy Herrmann
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
19
|
Berg C, Braun T, Ahrens M, Wittwer P, Herrmann R. Activation of SF6
at Platinum Complexes: Formation of SF3
Derivatives and Their Application in Deoxyfluorination Reactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612417] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Claudia Berg
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Thomas Braun
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Mike Ahrens
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Philipp Wittwer
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Roy Herrmann
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
20
|
Milner LM, Hall LM, Pridmore NE, Skeats MK, Whitwood AC, Lynam JM, Slattery JM. Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C–F bond formation and activation. Dalton Trans 2016; 45:1717-26. [DOI: 10.1039/c5dt04596g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal fluorovinylidene complexes have been synthesised for the first time by direct electrophilic fluorination of metal alkynyls.
Collapse
|