1
|
Wu S, Khan MA, Zhang L, Zhao H, Huang T, Cao H, Ye D. Paper-based colorimetric sensor using a single-atom nanozyme for the ultrasensitive detection of Cr(VI) in short-necked clams. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7333-7340. [PMID: 39329181 DOI: 10.1039/d4ay00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Single-atom nanozymes (SAzymes) as a class of highly active nanozymes with the advantages of high atom utilization, high catalytic activity and stability have attracted great attention. In this work, Fe-N-C SAzymes with exceptional oxidase (OXD)-like activity were achieved utilizing polyvinylpyrrolidone (PVP) as a template. The Fe-N-C SAzymes with remarkable OXD-like activity could oxidize TMB to blue oxTMB, but 8-hydroxyquinoline (8-HQ) as a metal chelator is capable of discoloring oxTMB. Thus, the addition of 8-HQ decolorized the solution. However, upon the introduction of Cr(VI) ions, 8-HQ preferentially chelated with the Cr(VI) ions, reversing the inhibition of the color reaction and restoring the blue color. Based on this phenomenon, we constructed a novel paper-based analytical device (PAD) that exhibited a linear range of 5-1000 μM and an LOD of 1.2 μM. Importantly, the PAD used in this study shows the merits of simplicity, low preparation costs, and rapid reaction times. When combined with smartphone RGB analysis, it enables the simultaneous analysis of eight different Cr(VI) concentrations without the need for large-scale instrumentation. Moreover, the proposed PAD displays high selectivity, accuracy and utility in testing actual short-necked clam samples. This work not only provides a simple and cost-effective method to detect Cr(VI) but also makes a contribution to rapid food testing.
Collapse
Affiliation(s)
- Shuo Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Muhammad Arif Khan
- Materials Science and Engineering, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lifan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hongbin Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Tianzeng Huang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, PR China
| | - Daixin Ye
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
2
|
Dai X, Song C, Ma S, Cao F, Dong D. Rapid Determination of Cr 3+ and Mn 2+ in Water Using Laser-Induced Breakdown Spectroscopy Combined with Filter Paper Modified with Gold Nanoclusters. BIOSENSORS 2024; 14:267. [PMID: 38920571 PMCID: PMC11202032 DOI: 10.3390/bios14060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Excessive emissions of heavy metals not only cause environmental pollution but also pose a direct threat to human health. Therefore, rapid and accurate detection of heavy metals in the environment is of great significance. Herein, we propose a method based on laser-induced breakdown spectroscopy (LIBS) combined with filter paper modified with bovine serum albumin-protected gold nanoclusters (LIBS-FP-AuNCs) for the rapid and sensitive detection of Cr3+ and Mn2+. The filter paper modified with AuNCs was used to selectively enrich Cr3+ and Mn2+. Combined with the multi-element detection capability of LIBS, this method achieved the simultaneous rapid detection of Cr3+ and Mn2+. Both elements showed linear ranges for concentrations of 10-1000 μg L-1, with limits of detection of 7.5 and 9.0 μg L-1 for Cr3+ and Mn2+, respectively. This method was successfully applied to the determination of Cr3+ and Mn2+ in real water samples, with satisfactory recoveries ranging from 94.6% to 105.1%. This method has potential application in the analysis of heavy metal pollution.
Collapse
Affiliation(s)
- Xuan Dai
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China; (X.D.); (D.D.)
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Changbo Song
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Shixiang Ma
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Fengjing Cao
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Daming Dong
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China; (X.D.); (D.D.)
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| |
Collapse
|
3
|
Guan M, Li H, Tu M, Fu C, Yang X, Wang F. A novel fluorescent "Off-On" probe based on phenanthro[9,10-d]imidazole conjugated polymers (PIPF) for Cr 3+ detection with high selectivity and sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123988. [PMID: 38324948 DOI: 10.1016/j.saa.2024.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Trivalent chromium (Cr3+) causes serious environmental pollution, degradation of the quality of edible agricultural products and human diseases. A novel phenanthro[9,10-d]imidazole-derived conjugated polymers (PIPF) was obtained from 4-(5,10-dibromo-1H-phenanthro[9,10-d]imidazol-2-yl)phenol and diethyl 4,4'-(2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-9,9-diyl)dibutyrate by Suzuki polymerization reaction, which was reasonably demonstrated by 1H NMR spectroscopy, infrared spectroscopy and quantum chemical calculations. The PIPF exhibits a "turn-on" fluorescence response to Cr3+ in DMSO/H2O (98:2, v/v) with naked-eye detection. The limit of detection for Cr3+ was calculated to be 0.073 μM with a linear range of 3-9 μM. The possible mechanism of the PIPF-based Cr3+ fluorescence "turn-on" sensor is due to the inhibition of the PET process by the coordination of Cr3+ to the hexaalkyl ester carbon chain of PIPF (RCOO-). The high sensitivity, good selectivity, and utility of this sensor indicated that PIPF-based "turn-on" fluorescence sensor is a potential fluorescence application for measuring Cr3+ in environmental samples.
Collapse
Affiliation(s)
- Mingyi Guan
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Man Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China; Jing Brand Research Institute, Jing Brand Co.Ltd, Huangshi 435100, PR China
| | - Chenchen Fu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiyu Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| |
Collapse
|
4
|
Izadi S, Tashkhourian J, Alireza Hosseini Hafshejani S. Ecofriendly ratiometric colorimetric determination of mercury(II) ion in environmental water samples using gallic acid-capped gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123778. [PMID: 38134657 DOI: 10.1016/j.saa.2023.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Today, the monitoring and determination of heavy metal pollutants in the environment is an essential requirement for the environmental and research communities. Mercury ion is one of the most hazardous heavy metals, and scientists are trying to develop new methods for its detection. In this study, a new colorimetric sensor based on aggregation gallic acid-capped gold nanoparticles (GA-AuNPs) for the determination of mercury ions in environmental water samples was presented. The green synthesized GA-AuNPs exhibited a sharp surface plasmon resonance peak at 515 nm. The addition of mercury ions changed the surface properties of GA-AuNPs, resulting in the formation of a new peak near 670 nm due to the aggregation of GA-AuNPs, and an obvious color change from red to purple occurred. Thus, mercury ions were detected based on the change in the absorbance ratio (A670/A515). The developed sensor can determine the mercury ions in the concentration range of 78.0 nM to 8.3 µM with a detection limit of 5.5 nM. Based on the Environmental Protection Agency (EPA) and the World Health Organization (WHO) reports, the amount of Hg2+ ions in fresh water should be between 10.0 and 30.0 nM. The results indicate that the developed sensor can detect and determine trace amounts of Hg2+ ions in environmental water samples.
Collapse
Affiliation(s)
- Sepehr Izadi
- Department of Chemistry, Faculty of Science, Shiraz University, Shiraz, Iran
| | - Javad Tashkhourian
- Department of Chemistry, Faculty of Science, Shiraz University, Shiraz, Iran.
| | | |
Collapse
|
5
|
Sun Y, Ma J, Ahmad F, Xiao Y, Guan J, Shu T, Zhang X. Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine. BIOSENSORS 2024; 14:117. [PMID: 38534224 DOI: 10.3390/bios14030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
Bimetallic coordination polymers (CPs) have two different metal ions as connecting nodes in their polymer structure. The synthesis methods of bimetallic CPs are mainly categorized into the one-pot method and post-synthesis modifications according to various needs. Compared with monometallic CPs, bimetallic CPs have synergistic effects and excellent properties, such as higher gas adsorption rate, more efficient catalytic properties, stronger luminescent properties, and more stable loading platforms, which have been widely applied in the fields of gas adsorption, catalysis, energy storage as well as conversion, and biosensing. In recent years, the study of bimetallic CPs synergized with cancer drugs and functional nanomaterials for the therapy of cancer has increasingly attracted the attention of scientists. This review presents the research progress of bimetallic CPs in biosensing and biomedicine in the last five years and provides a perspective for their future development.
Collapse
Affiliation(s)
- Yanping Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jianxin Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jingyang Guan
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
He JY, Bi HX, Liu YQ, Guo MS, An WT, Ma YY, Han ZG. Bridging Component Strategy in Phosphomolybdate-Based Sensors for Electrochemical Determination of Trace Cr(VI). Inorg Chem 2024; 63:842-851. [PMID: 38100035 DOI: 10.1021/acs.inorgchem.3c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid and sensitive electrochemical determination of trace carcinogenic Cr(VI) pollutants remains an urgent and important task, which requires the development of active sensing materials. Herein, four cases of reduced phosphomolybdates with formulas of the (H2bib)3[Zn(H2PO4)]2{Mn[P4Mo6O31H7]2}·6H2O (1), (H2bib)2[Na(H2O)]2[Mn(H2O)]2{Mn[P4Mo6O31H6]2}·5H2O (2), (H2bib)3[Mo2(μ2-O)2(H2O)4]2{Ni[P4Mo6O31H2]2}·4H2O (3), and (H2bib)2{Ni[P4Mo6O31H9]2}·9H2O (4) (bib = 4,4'-bis(1-imidazolyl)-biphenyl) were hydrothermally synthesized under the guidance of a bridging component strategy, which function as effective electrochemical sensors to detect trace Cr(VI). The difference of hybrids 1-4 is in the inorganic moiety, in which the reduced phosphomolybdates {M[P4MoV6O31]2} (M{P4Mo6}2) exhibited different arrangements bridged by different cationic components ({Zn(H2PO4)} subunit for 1, [Mn2(H2O)2]4+ dimer for 2, and [MoV2(μ2-O)2(H2O)4]6+ for 3). As a result, hybrids 1 and 3 display noticeable Cr(VI) detection activity with low detection limits of 14.3 nM (1.48 ppb) for 1 and 6.61 nM (0.69 ppb) for 3 and high sensitivities of 97.3 and 95.3 μA·mM-1, respectively, which are much beyond the World Health Organization's detection threshold (0.05 ppm) and superior to those of the contrast samples (inorganic Mn{P4Mo6}2 salt and hybrid 4), even the most reported noble-metal catalysts. This work supplies a prospective pathway to build effective electrochemical sensors based on phosphomolybdates for environmental pollutant treatment.
Collapse
Affiliation(s)
- Jing-Yan He
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Hao-Xue Bi
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yu-Qing Liu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Meng-Si Guo
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Wen-Ting An
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
7
|
Wang S, Shi Y, Zhang H, Sun Y, Wang F, Zeng L, Li X, Wu A, Zhang Y. Colorimetric sensor for Cr (VI) by oxidative etching of gold nanotetrapods at room temperature. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122589. [PMID: 36930834 DOI: 10.1016/j.saa.2023.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Hexavalent chromium (Cr(VI)) is highly carcinogenic and mutagenic, which is seriously harmful to human health. Hence, it is important to create a probe that can detect Cr(VI) effectively. In this work, gold nanotetrapods (Au NTPs) were applied in colorimetric detection for the first time. Based on the oxidative etching principle of Cr(VI) on Au NTPs, a sensitive and multicolor response detection method for Cr(VI) was established. The oxidative etching of Au NTPs by Cr(VI) resulted in the blue shift of plasmon resonance absorption peak of Au NTPs with the change of morphology. As the etching progress processed, Au NTPs solution exhibited obvious color changes from gray-green to blue-violet and then to pink. This multicolor response design is very convenient for naked-eye detection. The limit of detection (LOD) of Cr(VI) is 3 nM for the naked eyes and 0.5 nM for UV-vis spectrum, both of which are lower than the toxicity level of Cr(VI) (0.2 μM) set by United States Environmental Protection Agency. This sensing method exhibits good linearity between the wavelength shift and Cr(VI) concentration in the range of 0.5 nM to 8 nM. The detection results of Cr(VI) in actual environmental samples demonstrate that the Au NTPs colorimetric probe (Au-N-Probe) is expected to be applied to the detection of Cr(VI) in water environmental samples such as lake water and industrial wastewater.
Collapse
Affiliation(s)
- Shengwen Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Yu Shi
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, China
| | - Hao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| | - Yufeng Sun
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| | - Fangfang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, China
| | - Xing Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Feke K, Tadele Alula M. Colorimetric detection of chromium (VI) via its instigation of oxidase-mimic activity of CuO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122539. [PMID: 36827865 DOI: 10.1016/j.saa.2023.122539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Extensive use of chromium makes it one of the major pollutants of water resources. Chromium (VI) in particular is toxic and has detrimental health effects. Because of its high toxicity a tolerable concentration limit of chromium (VI) in drinking water has been recommended. Here we report a colorimetric method for determination of chromium (VI) in water based on the oxidase-like activity of solvothermal synthesized copper oxide. The particles have been characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). Using 3, 3', 5, 5'- tetramethylbenzidine (TMB) as a chromogenic substrate, CuO exhibited a pronounced oxidase-like activity in the presence of chromium (VI). This method enables successful colorimetric detection of chromium (VI). It demonstrated excellent selectivity for detection of chromium (VI) ions against potentially interfering ions. The method's feasibility to real sample analysis has been proven by testing tap water. Hence, we anticipate that the method can be successfully applied for analysis of chromium (VI) in environmental samples.
Collapse
Affiliation(s)
- Kuda Feke
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag, 16, Palapye, Botswana
| | - Melisew Tadele Alula
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag, 16, Palapye, Botswana.
| |
Collapse
|
9
|
Kundu S, Kar P. Selective Colorimetric Sensing of Fluoride Ion in Water by 4-Quinonimine Functionalized Gold Nanoparticles. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
10
|
Manjubaashini N, Daniel Thangadurai T. Unaided-eye detection of diverse Metal ions by AuNPs-based Nanocomposites: A Review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Dewi IR, Rujiralai T, Putson C, Cheewasedtham W. A novel double metal-dithizone functionalized polyurethane electrospun nanofiber and film for colorimetric determination of hexavalent chromium. RSC Adv 2023; 13:2852-2859. [PMID: 36756414 PMCID: PMC9846713 DOI: 10.1039/d2ra07636e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/08/2023] [Indexed: 01/19/2023] Open
Abstract
This work proposes a highly specific method of Cr6+ determination based on the double reactions of two metals, Co2+ with dithizone to form a (DTZ)-Co2+ complex, and the replacement of Co2+ in the formed complex with Cr6+. The fast degradation of DTZ in solution in wet analysis was overcome by preparing dithizone functionalized polyurethane nanofibers that were electrospun into a membrane (DTZ/PU-NF) and a microwell plate film (DTZ/PU-MPF). For comparison, the performance of diphenylcarbazide (DPC), a currently used complexing agent for Cr6+, was also investigated. Colour changes were detected as red-green-blue values. The DTZ/PU-NF was smooth, with an average diameter of 384.09 nm and no bead appeared. A dense network structure was formed. The best formulation of DTZ, PU and Co2+ was also applied as a microwell plate film. In the presence of Cr6+, the colour of DTZ-Co2+ changed from red to magenta. Among the three studied methods, the colorimetric DTZ-Co2+/PU-NF presented the best results. Its linearity range was 0.001-1.0 mg L-1, with a regression equation of Cr6+ = -0.189 + (0.0056 × red) + (0.0086 × green) - (0.0129 × blue), R 2 of 0.990. The limit of detection was 0.001 mg L-1 and the precision was 1.7%. The applicability of DTZ/PU-NF was validated for Cr6+ in vegetable oils with recoveries of 89.5-116.8%. The sensitivity of DTZ/PU-NF was ten times higher than that of DTZ/PU-MPF. The methods based on DTZ-Co2+/PU-NF and DTZ-Co2+/PU-MPF proved to be highly selective, rapid, user-friendly, simple and reliable.
Collapse
Affiliation(s)
- Indiah Ratna Dewi
- Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
| | - Thitima Rujiralai
- Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Chatchai Putson
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Center of Excellence in Nanotechnology for Energy (CENE) Hat Yai Songkhla 90112 Thailand
| | - Wilairat Cheewasedtham
- Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
| |
Collapse
|
12
|
Chen F, Xu H, Cai Y, Zhang W, Shen P, Zhang W, Xie H, Bai G, Xu S, Gao J. Multi-Responsive Sensor Based on Porous Hydrogen-Bonded Organic Frameworks for Selective Sensing of Ions and Dopamine Molecules. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248750. [PMID: 36557883 PMCID: PMC9781585 DOI: 10.3390/molecules27248750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen-bonded organic frameworks (HOFs), as an emerging porous material, have attracted increasing research interest in fluorescence sensing due to their inherent fluorescence emission units with unique physicochemical properties. Herein, based on the organic building block 3,3',5,5'-tetrakis-(4-carboxyphenyl)-1,1'-biphenyl (H4TCBP), the porous material HOF-TCBP was successfully synthesized using hydrogen bond self-assembly in a DMF solution. The fluorescence properties of the HOF-TCBP solution showed that when the concentration was high, excimers were easily formed, the PL emission was red-shifted, and the fluorescence intensity became weaker. HOF-TCBP showed good sensitivity and selectivity to metal ions Fe3+, Cr3+, and anion Cr2O72-. In addition, HOF-TCBP can serve as a label-free fluorescent sensor material for the sensitive and selective detection of dopamine (DA). HOF-based DA sensing is actually easy, low-cost, simple to operate, and highly selective for many potential interfering substances, and it has been successfully applied to the detection of DA in biological samples with satisfactory recoveries (101.1-104.9%). To our knowledge, this is the first report of HOF materials for efficient detection of the neurotransmitter dopamine in biological fluids. In short, this work widely broadens the application of HOF materials as fluorescent sensors for the sensing of ions and biological disease markers.
Collapse
Affiliation(s)
- Faqiang Chen
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Hui Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- Correspondence: (H.X.); (J.G.); Tel.: +86-0571-86843618 (J.G.)
| | - Youlie Cai
- Institute of Functional Porous Materials, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Penglei Shen
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Wenhua Zhang
- Technical Center of Hangzhou Customs, Hangzhou 310016, China
| | - Hangqing Xie
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Gongxun Bai
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (H.X.); (J.G.); Tel.: +86-0571-86843618 (J.G.)
| |
Collapse
|
13
|
Cheng Z, Fan Y, Zhang L, Wang C. Preparation of co-enhanced gold nanoclusters and its application in the detections of 4-hexylresorcinol and Cr6++. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Kathuria D, Bhattu M, Sharma A, Sareen S, Verma M, Kumar S. Catalytic Reduction of Water Contaminants Using Green Gold Nanoparticles Mediated by Stem Extract of Nepeta Leucophylla. Top Catal 2022. [DOI: 10.1007/s11244-022-01704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Diana FRM, Suratman A, Wahyuni ET, Mudasir M, Suherman S. Development of N,S-CDs fluorescent probe method for early detection of Cr(VI) in the environment. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Goswami J, Saikia L, Hazarika P. Carbon Dots‐Decorated g‐C
3
N
4
as Peroxidase Nanozyme for Colorimetric Detection of Cr(VI) in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202201963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juri Goswami
- Jorhat Institute of Science and Technology Jorhat 785010 Assam India
- Assam Science and Technology University, Jalukbari Guwahati 781013 Assam India
| | - Lakshi Saikia
- Advanced Materials Group Materials Sciences and Technology Division CSIR- North-East Institute of Science and Technology Jorhat 785006 Assam India
| | - Parasa Hazarika
- Jorhat Institute of Science and Technology Jorhat 785010 Assam India
- Assam Science and Technology University, Jalukbari Guwahati 781013 Assam India
| |
Collapse
|
17
|
Fluorescent Azamonardine Probe for “Turn-off” Detection of Chromium (VI) and “Turn-on” Detection of Ascorbic Acid Based on Inner Filter Effect. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Kundu S, Bage N, Dasgupta Ghosh B, Kar P. Easy synthesis of 4-quinonimine functionalized gold nanoparticles in stable aqueous colloidal state. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2078253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sadhana Kundu
- Department of Chemistry, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Nirgaman Bage
- Department of Chemistry, Birla Institute of Technology, Ranchi, Jharkhand, India
| | | | - Pradip Kar
- Department of Chemistry, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
19
|
Hyder A, Buledi JA, Nawaz M, Rajpar DB, Shah ZUH, Orooji Y, Yola ML, Karimi-Maleh H, Lin H, Solangi AR. Identification of heavy metal ions from aqueous environment through gold, Silver and Copper Nanoparticles: An excellent colorimetric approach. ENVIRONMENTAL RESEARCH 2022; 205:112475. [PMID: 34863692 DOI: 10.1016/j.envres.2021.112475] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 05/25/2023]
Abstract
Heavy metal pollution has become a severe threat to human health and the environment for many years. Their extensive release can severely damage the environment and promote the generation of many harmful diseases of public health concerns. These toxic heavy metals can cause many health problems such as brain damage, kidney failure, immune system disorder, muscle weakness, paralysis of the limbs, cardio complaint, nervous system. For many years, researchers focus on developing specific reliable analytical methods for the determination of heavy metal ions and preventing their acute toxicity to a significant extent. The modern researchers intended to utilize efficient and discerning materials, e.g. nanomaterials, especially the metal nanoparticles to detect heavy metal ions from different real sources rapidly. The metal nanoparticles have been broadly utilized as a sensing material for the colorimetric detection of toxic metal ions. The metal nanoparticles such as Gold (Au), Silver (Ag), and Copper (Cu) exhibited localized plasmon surface resonance (LPSR) properties which adds an outstanding contribution to the colorimetric sensing field. Though, the stability of metal nanoparticles was major issue to be exploited colorimetric sensing of heavy emtal ions, but from last decade different capping and stabilizing agents such as amino acids, vitmains, acids and ploymers were used to functionalize the metal surface of metal nanoparticles. These capping agents prevent the agglomeration of nanoparticles and make them more active for prolong period of time. This review covers a comprehensive work carried out for colorimetric detection of heavy metals based on metal nanoparticles from the year 2014 to onwards.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Muhammad Nawaz
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Dhani B Rajpar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Zia-Ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan.
| |
Collapse
|
20
|
Chen Y, Cui H, Wang M, Yang X, Pang S. N and S doped carbon dots as novel probes with fluorescence enhancement for fast and sensitive detection of Cr(VI). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Rajamanikandan R, Ilanchelian M. Simple smartphone merged rapid colorimetric platform for the environmental monitoring of toxic sulfide ions by cysteine functionalized silver nanoparticles. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Wu W, Tan Z, Chen X, Chen X, Cheng L, Wu H, Li P, Zhang Z. Carnation-like Morphology of BiVO 4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment. BIOSENSORS 2022; 12:130. [PMID: 35200390 PMCID: PMC8870108 DOI: 10.3390/bios12020130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Hexavalent chromium, namely, Cr(VI), is a significant threat to ecological and food safety. Current detection methods are not sensitive to Cr(VI). A photoelectrochemical (PEC) sensor based on bismuth vanadate (BiVO4) was developed for sensitive detection of Cr(VI). First, BiVO4-X (X: the pH of the reaction precursor solution) was synthesized using a facile surfactant-free hydrothermal method. The BiVO4-X morphology was well controlled according to pH values, showing rock-like (X = 1), wrinkled bark-like (X = 4), carnation-like (X = 7), and the collapsed sheet-like morphologies (X = 9, 12). BiVO4-7 exhibited excellent photoelectric performance due to a proper band structure under visible light and a large specific surface area. Then, BiVO4-7 was used to construct a PEC sensor to detect Cr(VI), which was demonstrated to have a low detection limit (10 nM) and wide detection range (2-210 μM). The BiVO4-7 PEC sensor had a stable output signal, as well as excellent reproducibility, repeatability, and selectivity. We used the BiVO4-7 PEC sensor to detect Cr(VI) in real environmental and food samples, resulting in a satisfactory recovery of 90.3-103.0%, as determined by comparison with results obtained using a spectrophotometric method. The BiVO4-7 PEC sensor is promising for practical application to heavy metal detection in the food and environment.
Collapse
Affiliation(s)
- Wenqin Wu
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhao Tan
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Xiao Chen
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Xiaomei Chen
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ling Cheng
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huimin Wu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Peiwu Li
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhaowei Zhang
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, National Reference Lab for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.W.); (Z.T.); (X.C.); (X.C.); (L.C.); (P.L.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
23
|
Bhatt S, Vyas G, Paul P. Microwave-assisted synthesis of nitrogen-doped carbon dots using prickly pear as the carbon source and its application as a highly selective sensor for Cr(VI) and as a patterning agent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:269-277. [PMID: 34985051 DOI: 10.1039/d1ay01274f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Preparation of water-dispersible carbon dots from inexpensive natural carbon precursors and its application for purposes such as sensing, bio-imaging and patterning agents is showing growing interest in recent years. In this study, we have reported the preparation of nitrogen-doped carbon dots (N-CDs) using prickly pear as the carbon source and m-xylylenediamine as the nitrogen source using a one-step microwave-assisted synthetic process. The N-CDs prepared were characterized on the basis of elemental analysis, XPS, powder-XRD, FT-IR, Raman, TEM, UV-vis and fluorescence spectroscopy. Doping of nitrogen in the N-CDs made them highly fluorescent and the study on their ion-recognition property revealed that they detect highly toxic Cr(VI) with high selectivity and sensitivity (LOD, 0.04 μM) and without interference from the other ions used in this study. By immobilizing these N-CDs onto filter paper, sensor strips were prepared for on-site monitoring/field applications and they were successfully used for the detection of Cr(VI) in water. Detailed spectral analysis revealed that the mechanism of Cr(VI) sensing involved a phenomenon called the "inner filter effect" and analysis of the fluorescence lifetime data suggested the "static quenching" of fluorescence intensity. These N-CDs were used to prepare fluorescent carbon ink and were successfully used as patterning agents.
Collapse
Affiliation(s)
- Shreya Bhatt
- Analytical and Environmental Science Division, Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gaurav Vyas
- Analytical and Environmental Science Division, Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parimal Paul
- Analytical and Environmental Science Division, Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
24
|
Tsai MJ, Liao KS, Wu JY. A Water-Stable 2-Fold Interpenetrating cds Net as a Bifunctional Fluorescence-Responsive Sensor for Selective Detection of Cr(III) and Cr(VI) Ions. NANOMATERIALS 2022; 12:nano12010158. [PMID: 35010108 PMCID: PMC8746465 DOI: 10.3390/nano12010158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 02/07/2023]
Abstract
Reactions of ZnSO4∙7H2O, N-(pyridin-3-ylmethyl)-4-(pyridin-4-yl)-1,8-naphthalimide (NI-mbpy-34), and 5-bromobenzene-1,3-dicarboxylic acid (Br-1,3-H2bdc) afforded a luminescent coordination polymer, [Zn(Br-1,3-bdc)(NI-mbpy-34)]n (1), under hydro(solvo)thermal conditions. Single-crystal X-ray structure analysis revealed that 1 features a three-dimensional (3-D) 2-fold interpenetrating cds (or CdSO4) net topology with the point symbol of (65·8), where the Zn(II) centers are considered as 4-connected square-planar nodes. X-ray powder diffraction (XRPD) patterns and thermogravimetric (TG) analysis confirmed that 1 shows high chemical and thermal stabilities. Notably, 1 displayed solvent dependent photoluminescence properties; the fluorescence intensity and emission maximum of 1 in different solvent suspensions varied when a solvent was changed. Furthermore, the H2O suspension of 1 exhibited blue fluorescence emission and thus can be treated as a selective and sensitive fluorescent probe for turn-on detection of Cr3+ cations through absorbance caused enhancement (ACE) mechanism and turn-off detection of Cr2O72−/CrO42− anions through collaboration of the absorption competition and energy transfer process, with limit of detection (LOD) as low as μM scale.
Collapse
|
25
|
Mahata P, Sarkar S, Singha DK, Majee P, Daga P, Mondal SK. Stabilization of CO2 as Zwitterionic Carbamate within a Coordination Polymer (CP): Synthesis, Structure and Anions Sensing Behaviour of Tb-CP composite. CrystEngComm 2022. [DOI: 10.1039/d2ce00711h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new gadolinium (III) based coordination polymer (CP), [Gd(3,5-pydc)1.5(CO2)0.5(H2O)4].3H2O (where 3,5-pydc =3,5-pyridinedicarboxylate) , 1, has been successfully synthesized using slow diffusion method at room temperature. Single crystal X-ray diffraction study...
Collapse
|
26
|
Liao KS, Tsai MJ, Hsu LJ, Wang CM, Wu JY. A Cd(II) Luminescent Coordination Grid as a Multiresponsive Fluorescence Sensor for Cr(VI) Oxyanions and Cr(III), Fe(III), and Al(III) in Aqueous Medium. Molecules 2021; 26:molecules26237103. [PMID: 34885689 PMCID: PMC8659225 DOI: 10.3390/molecules26237103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Hydro(solvo)thermal reactions of Cd(NO3)2, N-(pyridin-3-ylmethyl)-4-(pyridin-4-yl)-1,8-naphthalimide (NI-mbpy-34), and 5-bromobenzene-1,3-dicarboxylic acid (Br-1,3-H2bdc) afforded a luminescent coordination polymer, {[Cd(Br-1,3-bdc)(NI-mbpy-34)(H2O)]∙2H2O}n (1). Single-crystal X-ray diffraction analysis showed that 1 features a two-dimensional (2-D) gridlike sql layer with the point symbol of (44·62), where the Cd(II) center adopts a {CdO5N2} pentagonal bipyramidal geometry. Thermogravimetric (TG) analysis confirmed the thermal stability of 1 up to about 340 °C, whereas XRPD patterns proved the maintenance of crystallinity and framework integrity of 1 in CH2Cl2, H2O, CH3OH, and toluene. Photoluminescence studies indicated that 1 displayed intense blue fluorescence emissions in both solid-state and H2O suspension-phase. Owing to the good fluorescent properties, 1 could serve as an excellent turn-off fluorescence sensor for selective and sensitive Cr(VI) detection in water, with LOD = 15.15 μM for CrO42- and 14.91 μM for Cr2O72-, through energy competition absorption mechanism. In addition, 1 could also sensitively detect Cr3+, Fe3+, and Al3+ ions in aqueous medium via fluorescence-enhancement responses, with LOD = 2.81 μM for Cr3+, 3.82 μM for Fe3+, and 3.37 μM for Al3+, mainly through an absorbance-caused enhancement (ACE) mechanism.
Collapse
Affiliation(s)
- Kuo-Shun Liao
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan; (K.-S.L.); (M.-J.T.); (L.-J.H.)
| | - Meng-Jung Tsai
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan; (K.-S.L.); (M.-J.T.); (L.-J.H.)
| | - Li-Jen Hsu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan; (K.-S.L.); (M.-J.T.); (L.-J.H.)
| | - Chih-Min Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
- General Education Center, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: or (C.-M.W.); (J.-Y.W.)
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan; (K.-S.L.); (M.-J.T.); (L.-J.H.)
- Correspondence: or (C.-M.W.); (J.-Y.W.)
| |
Collapse
|
27
|
Babazadeh S, Bisauriya R, Carbone M, Roselli L, Cecchetti D, Bauer EM, Sennato S, Prosposito P, Pizzoferrato R. Colorimetric Detection of Chromium(VI) Ions in Water Using Unfolded-Fullerene Carbon Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2021; 21:6353. [PMID: 34640679 PMCID: PMC8512488 DOI: 10.3390/s21196353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/05/2022]
Abstract
Water pollution caused by hexavalent chromium (Cr(VI)) ions represents a serious hazard for human health due to the high systemic toxicity and carcinogenic nature of this metal species. The optical sensing of Cr(VI) through specifically engineered nanomaterials has recently emerged as a versatile strategy for the application to easy-to-use and cheap monitoring devices. In this study, a one-pot oxidative method was developed for the cage opening of C60 fullerene and the synthesis of stable suspensions of N-doped carbon dots in water-THF solutions (N-CDs-W-THF). The N-CDs-W-THF selectively showed variations of optical absorbance in the presence of Cr(VI) ions in water through the arising of a distinct absorption band peaking at 550 nm, i.e., in the transparency region of pristine material. Absorbance increased linearly, with the ion concentration in the range 1-100 µM, thus enabling visual and ratiometric determination with a limit of detection (LOD) of 300 nM. Selectivity and possible interference effects were tested over the 11 other most common heavy metal ions. The sensing process occurred without the need for any other reactant or treatment at neutral pH and within 1 min after the addition of chromium ions, both in deionized and in real water samples.
Collapse
Affiliation(s)
- Saeedeh Babazadeh
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Mechanical Engineering of Biosystems, Agriculture Faculty, Urmia University, Urmia 5756151818, Iran
| | - Ramanand Bisauriya
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ludovica Roselli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniele Cecchetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elvira Maria Bauer
- Institute of Structure of Matter (ISM), Italian National Research Council (CNR), 00015 Rome, Italy
| | - Simona Sennato
- Institute for Complex Systems (ISC), Italian National Research Council (CNR) and Physics Department, Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Prosposito
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Pizzoferrato
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
28
|
Zhou X, Liu L, Kou H, Zheng S, Song M, Lu J, Tai X. A Multifunctional 3D Supermolecular Co Coordination Polymer With Potential for CO 2 Adsorption, Antibacterial Activity, and Selective Sensing of Fe 3+/Cr 3+ Ions and TNP. Front Chem 2021; 9:678993. [PMID: 34336785 PMCID: PMC8321245 DOI: 10.3389/fchem.2021.678993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
A 3D supermolecular structure [Co3(L)2 (2,2′-bipy)2](DMF)3(H2O)3 1) (H3L = 4,4′,4″-nitrilotribenzoic acid) has been constructed based on H3L, and 2,2′-bipy ligands under solvothermal conditions. Compound 1 can be described as a (3, 6)-connected kgd topology with a Schläfli symbol (43)2(46.66.83) formed by [Co3(CO2)6] secondary building units. The adsorption properties of the activated sample 1a has been studied; the result shows that 1a has a high adsorption ability: the CO2 uptakes were 74 cm3·g−1 at 273 K, 50 cm3·g−1 at 298 K, the isosteric heat of adsorption (Qst) is 25.5 kJ mol−1 at zero loading, and the N2 adsorption at 77 K, 1 bar is 307 cm3 g−1. Magnetic measurements showed the existence of an antiferromagnetic exchange interaction in compound 1, besides compound 1 exhibits effective luminescent performance for Fe3+/Cr3+ and TNP.
Collapse
Affiliation(s)
- Xiaojing Zhou
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Lili Liu
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Hang Kou
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Shimei Zheng
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Mingjun Song
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Jitao Lu
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Xishi Tai
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| |
Collapse
|
29
|
Bahadoran A, Liu Q, Liu B, Gu J, Zhang D, Fakhri A, Kumar Gupta V. Preparation of Sn/Fe nanoparticles for Cr (III) detection in presence of leucine, photocatalytic and antibacterial activities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119592. [PMID: 33640626 DOI: 10.1016/j.saa.2021.119592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
In this project, Sn-Fe bimetallic nanoparticles were prepared by a facile method. The bimetallic nanoparticles of it could be well established by a field emission scanning electron microscope micrographs. Due to the excellent synergistic influence between Sn-Fe nanoparticles and leucine indicated a great performance for determination of Cr3+. The material was characterized using the XRD, DLS, and zetasizer for theevaluation of crystal structure and morphologyinformation.The potential and effective size of Sn-Fe NPs was -29.10 mV and 30 nm, respectively. Cr3+ ions interaction with the Sn-Fe NPs-leucine probe was carried out in 1 min as response time. The limit of detection of Sn-Fe NPs for Cr(III) colorimetric method was 0.25 nM. The prepared nanoparticles showed impressive photocatalysis efficiency for degradation of MO was about 95.1% in 35 min, thus the prepared nanoparticles may be developed for the detoxification of pollution. The prepared nanoparticles depicted effective antibacterial activity againstC. botulinum and, H. pylori bacteria.
Collapse
Affiliation(s)
- Ashkan Bahadoran
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bowen Liu
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - JiaJun Gu
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ali Fakhri
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Chemistry, Nano Smart Science Institute (NSSI), Tehran, Iran
| | - Vinod Kumar Gupta
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Singh M, Kumar G, Neogi S. Devising Mixed-Ligand Based Robust Cd(II)-Framework From Bi-Functional Ligand for Fast Responsive Luminescent Detection of Fe 3+ and Cr(VI) Oxo-Anions in Water With High Selectivity and Recyclability. Front Chem 2021; 9:651866. [PMID: 34026722 PMCID: PMC8131680 DOI: 10.3389/fchem.2021.651866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental issue related applications have globally surfaced as hottest areas of research, wherein luminescent metal-organic frameworks (LMOFs) with functionalized pores put unique signature in real-time monitoring of multiple classes of toxic compounds, and overcome many of the challenges of conventional materials. We report a two-fold interpenetrated, mixed-ligand Cd(II)-organic framework (CSMCRI-11) [Cd1.5(L)2(bpy)(NO3)]·DMF·2H2O (CSMCRI = Central Salt and Marine Chemical Research Institute, HL = 4- (1H-imidazol-1-yl)benzoic acid, bpy = 4,4'-bipyridine) that exemplifies bipillar-layer structure with two different Cd(II) nodes, and displays notable robustness in diverse organic solvents and water. Intense luminescence signature of the activated MOF (11a) is harnessed in extremely selective and fast responsive sensing of Fe3+ ions in aqueous phase with notable quenching constant (1.91 × 104 M-1) and impressive 166 ppb limit of detection (LOD). The framework further serves as a highly discriminative and quick responsive scaffold for turn-off detection of two noxious oxo-anions (Cr2O7 2- and CrO4 2-) in water, where individual quenching constants (CrO4 2-: 1.46 × 104 M-1; Cr2O7 2-: 2.18 × 104 M-1) and LOD values (CrO4 2-: 179 ppb; Cr2O7 2-: 114 ppb) rank among best sensory MOFs for aqueous phase detection of Cr(VI) species. It is imperative to stress the outstanding reusability of the MOF towards detection of all these aqueous pollutants, besides their vivid monitoring by colorimetric changes under UV-light. Mechanism of selective quenching is comprehensively investigated in light of absorption of the excitation/emission energy of the host framework by individual studied analyte.
Collapse
Affiliation(s)
- Manpreet Singh
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gaurav Kumar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subhadip Neogi
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
31
|
Solid-phase extraction of Cr(VI) with magnetic melamine–formaldehyde resins, followed by its colorimetric sensing using gold nanoparticles modified with p-amino hippuric acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Ejeta SY, Imae T. Selective colorimetric and electrochemical detections of Cr(III) pollutant in water on 3-mercaptopropionic acid-functionalized gold plasmon nanoparticles. Anal Chim Acta 2021; 1152:338272. [PMID: 33648639 DOI: 10.1016/j.aca.2021.338272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Gold plasmon nanoparticle (AuNP) was applied to the detection and the quantification of pollutant Cr(III) in water. It was synthesized by the chemical reduction of tetrachloroauric(III) acid with sodium citrate as a reducing and capping agent and was modified with 3-mercaptopropanoic acid (3-mpa) to improve the sensing recognition for the metal ion in the colorimetric detection. The 3-mpa-deposited AuNP selectively bound Cr(III) among the other 14 metal cations, resulting in the redshift of the gold plasmon band from 521 nm to 670 nm. The colorimetric quantification examination of the Cr(III) using the plasmon intensity approved the high sensitivity with the low limit of detection (0.34 ppb). Meanwhile, for the electrochemical detection, AuNP was electrochemically deposited on indium tin oxide glass substrate, modified with 3-mpa, attached Cr(III), and subsequently capped with 3-mpa-deposited AuNP. The cathodic current peak at -0.84 V versus the metal ion concentration revealed the linearity at a wide concertation range of 200-5000 ppb. As a result, the proposed colorimetric and electrochemical sensing techniques, which are the simple and facile detectors, can be complementarily employed with a high selectivity, sensitivity and wide analyte concentration range for the quantification of Cr(III) in aqueous solutions.
Collapse
Affiliation(s)
- Shibiru Yadeta Ejeta
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC; Department of Chemical Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC.
| |
Collapse
|
33
|
Yang Y, Aqeel Ashraf M, Fakhri A, Kumar Gupta V, Zhang D. Facile synthesis of gold-silver/copper sulfide nanoparticles for the selective/sensitive detection of chromium, photochemical and bactericidal application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119324. [PMID: 33385971 DOI: 10.1016/j.saa.2020.119324] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
In this project, bimetallic Au-Agnanoparticles/CuS nanoparticles were prepared via simple hydrothermal methods, which were used as highly efficient material for Cr (III) detection, photocatalytic, and biological process. The Au-Ag/CuS nanoparticles was studied via UV-visible spectroscopy, field-emission scanning electron microscopy, Dynamic light scattering, and X-ray diffraction. The zeta potential and effective size of Au-Ag/CuS nanoparticles was -32.1 mV and 25 nm respectively. The response time of Cr (III) ions interaction was 2 min. The lowest detection of Cr (III) by Au-Ag/CuS nanoparticles was 0.5 nM. The Au-Ag/CuS nano catalyst was applied to decomposition of drug under visible lamp irradiation. The photo degradation response of drug was 100.0% in 30 min irradiation. The particles exhibited excellent antibacterial activities.
Collapse
Affiliation(s)
- Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Aqeel Ashraf
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Ali Fakhri
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Chemistry, Nano Smart Science Institute (NSSI), Tehran, Iran.
| | - Vinod Kumar Gupta
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
34
|
Zhao L, Zhao L, Li H, Ma J, Bian L, Wang X, Pu Q. Controlled synthesis of fluorescent carbon materials with the assistance of capillary electrophoresis. Talanta 2021; 228:122224. [PMID: 33773729 DOI: 10.1016/j.talanta.2021.122224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/01/2023]
Abstract
Carbon nanodots (CNDs) have been widely applied in variety of fields, while some evidences indicate their components may be complicated. In this work, capillary electrophoresis (CE) was used to evaluate the effect of synthetic conditions of fluorescent CNDs prepared through the hydrothermal method using citric acid (CA) and Triaminoguanidinium chloride (TGCl) as the starting materials. The results indicated that the fluorescent components of the products were affected by the ratio of the starting materials, the reaction temperature and reaction time. Under selected conditions, a ratio of TGCl to CA of 1:6, the reaction at 180 °C for 3 h, the product contains more than 4 fluorescent components with similar optical properties. CNDs were used for the determination of Cr(VI) in environmental samples with recoveries ranging in 95.3-107%, and the mechanism was also confirmed.
Collapse
Affiliation(s)
- Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Lei Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Hongli Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Jie Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China; College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, China.
| | - Lei Bian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing, 100124, China.
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
35
|
Montes-García V, Squillaci MA, Diez-Castellnou M, Ong QK, Stellacci F, Samorì P. Chemical sensing with Au and Ag nanoparticles. Chem Soc Rev 2021; 50:1269-1304. [PMID: 33290474 DOI: 10.1039/d0cs01112f] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noble metal nanoparticles (NPs) are ideal scaffolds for the fabrication of sensing devices because of their high surface-to-volume ratio combined with their unique optical and electrical properties which are extremely sensitive to changes in the environment. Such characteristics guarantee high sensitivity in sensing processes. Metal NPs can be decorated with ad hoc molecular building blocks which can act as receptors of specific analytes. By pursuing this strategy, and by taking full advantage of the specificity of supramolecular recognition events, highly selective sensing devices can be fabricated. Besides, noble metal NPs can also be a pivotal element for the fabrication of chemical nose/tongue sensors to target complex mixtures of analytes. This review highlights the most enlightening strategies developed during the last decade, towards the fabrication of chemical sensors with either optical or electrical readout combining high sensitivity and selectivity, along with fast response and full reversibility, with special attention to approaches that enable efficient environmental and health monitoring.
Collapse
Affiliation(s)
- Verónica Montes-García
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
36
|
Chen N, Pan B. Tributylhexadecylphosphonium Modification Strategy to Construct Gold Nanoprobes for the Detection of Aqueous Cr(III)-Organic Complexes. Anal Chem 2021; 93:1811-1817. [PMID: 33334097 DOI: 10.1021/acs.analchem.0c04688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most metal probes based on gold nanoparticles (AuNPs) are designed for free metal ions in synthetic waters, and very few are applicable in the detection of metal-organic complexes ubiquitous in real water samples. In this study, we proposed a novel colorimetric nanoprobe strategy for complexed Cr(III) species based on the analyte-induced aggregation of AuNPs, as coated by a cationic surfactant tributylhexadecylphosphonium bromide (THPB) instead of traditional carboxyl modifiers. Such a detection system could be realized via both naked eye and/or UV-vis spectroscopy with detection limits of 8.0 and 0.29 μM, respectively, much lower than its allowable maximum level in industrial effluent as regulated by China EPA (1.5 mg Cr/L, ∼30 μM). The proposed detection system also exhibits high selectivity against various interfering substances including free ions, small organic molecules, and other metal-citrate complexes. The unique hydrolysis and extremely slow decomplexation of Cr(III) are believed to favor the formation of the specific interaction between Cr(III)-citrate and THPB-AuNPs, as verified by X-ray photoelectron spectroscopy characterization, thus endowing the nanoprobe with specific discrimination of the complexed Cr(III) via the aggregation of THPB-AuNPs. Also, the THPB-AuNPs could be stored at room temperature for 30 days and maintain constant detection performance. Moreover, the quantitative detection of Cr(III)-organic complexes with the background of various real water samples agreed well with that based on inductively coupled plasma atomic emission spectrometry, making it an attractive alternative for on-site detection of authentic samples containing Cr(III)-organic species.
Collapse
Affiliation(s)
- Ningyi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.,Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Ghayyem S, Swaidan A, Barras A, Dolci M, Faridbod F, Szunerits S, Boukherroub R. Colorimetric detection of chromium (VI) ion using poly(N-phenylglycine) nanoparticles acting as a peroxidase mimetic catalyst. Talanta 2021; 226:122082. [PMID: 33676645 DOI: 10.1016/j.talanta.2021.122082] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
This paper reports on enzyme-like catalytic properties of polyethylene glycol-functionalized poly(N-phenylglycine) (PNPG-PEG) nanoparticles, which have not been explored to date. The developed nanoparticles have the ability to display great inherent peroxidase-like activity at very low concentrations, and are able to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) substrate in presence of hydrogen peroxide (H2O2). The oxidized product of TMB has a deep blue color with a maximum absorbance at ~655 nm. The PNPG-PEG nanoparticles exhibit Km values of 0.2828 for TMB and 0.0799 for H2O2, indicating that TMB oxidation takes place at lower concentration of H2O2 in comparison to other nanozymes. Based on the known mechanism of H2O2 oxidation by hexavalent chromium [Cr(VI)] ions to generate hydroxyl radicals (•OH), these nanoparticles were successfully applied for the colorimetric sensing of Cr(VI) ions. The sensor achieved good performance for Cr(VI) sensing with detection limits of 0.012 μM (0.01-0.1 μM linear range) and 0.52 μM (0.05-12.5 μM linear range). The detection scheme was highly selective, and successfully applied for the detection of Cr(VI) in real water samples.
Collapse
Affiliation(s)
- Sena Ghayyem
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France; Analytical Chemistry Department, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Abir Swaidan
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France
| | - Mathias Dolci
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France
| | - Farnoush Faridbod
- Analytical Chemistry Department, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F-59000, France.
| |
Collapse
|
38
|
Wiwasuku T, Boonmak J, Burakham R, Hadsadee S, Jungsuttiwong S, Bureekaew S, Promarak V, Youngme S. Turn-on fluorescent probe towards glyphosate and Cr3+ based on Cd(ii)-metal organic framework with Lewis basic sites. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00947d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lewis basic site-functionalized porous Cd(ii)-MOF as a bi-functional fluorescent sensor of glyphosate and Cr3+ with exceptional LODs.
Collapse
Affiliation(s)
- Theanchai Wiwasuku
- Materials Chemistry Research Centre
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen
| | - Jaursup Boonmak
- Materials Chemistry Research Centre
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen
| | - Rodjana Burakham
- Materials Chemistry Research Centre
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen
| | - Sarinya Hadsadee
- Center for Organic
- Electronic
- and Alternative Energy
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
| | - Siriporn Jungsuttiwong
- Center for Organic
- Electronic
- and Alternative Energy
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
| | - Sareeya Bureekaew
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Vinich Promarak
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Wangchan
- Rayong
- Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Centre
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen
| |
Collapse
|
39
|
Naghdi T, Faham S, Mahmoudi T, Pourreza N, Ghavami R, Golmohammadi H. Phytochemicals toward Green (Bio)sensing. ACS Sens 2020; 5:3770-3805. [PMID: 33301670 DOI: 10.1021/acssensors.0c02101] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of numerous inherent and unique characteristics of phytochemicals as bioactive compounds derived from plants, they have been widely used as one of the most interesting nature-based compounds in a myriad of fields. Moreover, a wide variety of phytochemicals offer a plethora of fascinating optical and electrochemical features that pave the way toward their development as optical and electrochemical (bio)sensors for clinical/health diagnostics, environmental monitoring, food quality control, and bioimaging. In the current review, we highlight how phytochemicals have been tailored and used for a wide variety of optical and electrochemical (bio)sensing and bioimaging applications, after classifying and introducing them according to their chemical structures. Finally, the current challenges and future directions/perspective on the optical and electrochemical (bio)sensing applications of phytochemicals are discussed with the goal of further expanding their potential applications in (bio)sensing technology. Regarding the advantageous features of phytochemicals as highly promising and potential biomaterials, we envisage that many of the existing chemical-based (bio)sensors will be replaced by phytochemical-based ones in the near future.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Shadab Faham
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| |
Collapse
|
40
|
Hou J, Shui Z, Li J, Huo D, Tang X, Yu C, He Q, Qiao C. A novel colorimetric probe with positive correlation between toxicity and the reaction for the assessment of chromium ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4996-5003. [PMID: 33021259 DOI: 10.1039/d0ay01291b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Different valence states of chromium ions possess huge differences in toxicity. Hence, it is an innovative idea to design a reasonable probe to detect Cr according to the toxicity characteristics of different valence states. We report a novel, rapid, simple and accurate probe for the detection of Cr3+ and Cr6+ ions. As a probe, gold nanoparticles (Au NPs) are successfully modified using tartaric acid (TA) and 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES) via a two-step modification; the probe shows an increase in the sensitivity towards Cr6+ and decreases towards Cr3+, which is consistent with their toxicity characteristics, benefiting the assessment of total Cr toxicity. The proposed probe achieves considerable two-channel (ultraviolet absorption spectrum and naked eye vision) detection of Cr3+ and Cr6+ providing wide linearity regions and low detection limits. Meanwhile, the results of the interference experiments and analysis of the real samples showed high selectivity and accuracy of the proposed method. With popularization, this method possesses great potential in environmental monitoring and control.
Collapse
Affiliation(s)
- Jingzhou Hou
- Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sengan M, Kamlekar RK, Veerappan A. Highly selective rapid colorimetric sensing of Pb 2+ ion in water samples and paint based on metal induced aggregation of N-decanoyltromethamine capped gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118485. [PMID: 32450540 DOI: 10.1016/j.saa.2020.118485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Lead is highly toxic. The detection of lead in the environmental bodies is difficult, because it is colourless and odourless. Herein, we report the synthesis of gold nanoparticles (AuNPs) using the interdigitized vesicles formed by N-decanoyltromethamine (NDTM). AuNPs stabilized by NDTM was pink in colour with spherical shape and the size is 29 ± 7 nm. The optical property of the NDTM-AuNPs was explored for the first time to detect toxic chemical, Pb2+. The addition of toxic metal ion Pb2+ to NDTM-AuNPs rapidly (< 1 min) alters the colour from pink to violet due to aggregation, which was confirmed by particle size analyser and TEM. The aggregation induced colour changes were realized via broad spectra in UV-Vis spectroscopy. NDTM-AuNPs showed a selective and sensitive spectrophotometric signal with Pb2+ when compared with other metal ions. The colorimetric change as a function of Pb2+ concentration gave a linear response in the range of 0-30 μM (R2 = 0.9942). The detection limit was found at 10 μM by naked eye and 0.35 μM by spectrophotometry. The proposed method was successfully applied for the determination of Pb2+ ions in tap water and sewage water. Moreover, as a proof of concept, the NDTM-AuNPs sensor system was applied for the detection of lead in commercial paints. The results of the quantitative estimation of lead in paints by NDTM-AuNPs colorimetric sensor were as good as the standard method, atomic absorption spectroscopy.
Collapse
Affiliation(s)
- Megarajan Sengan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Ravi Kanth Kamlekar
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, Tamil Nadu 632014, India
| | - Anbazhagan Veerappan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
42
|
El-Shishtawy RM, Rahman MM, Sheikh TA, Nadeem Arshad M, Al-Zahrani FAM, Asiri AM. A New Cr 3+ Electrochemical Sensor Based on ATNA/Nafion/Glassy Carbon Electrode. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2695. [PMID: 32545677 PMCID: PMC7345133 DOI: 10.3390/ma13122695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 01/22/2023]
Abstract
A new electrochemical sensor of metal cation in an aqueous solution based on homobifunctional tridentate disulfide Schiff base and named 1,1'-(-((disulfanediylbis(2,1-phenylene))bis(azaneylylidene))bis(methaneylylidene))bis(naphthalene-2-ol) (ATNA) was easily obtained quantitatively from the condensation reaction of 2-hydroxy-1-naphthaldehyde and2-aminothiophenol, and then fully characterized by spectroscopic techniques for structure elucidation. The molecular structure of ATNA was also confirmed by a single-crystal X-ray diffraction study to reveal a new conformation in which the molecule was stabilized by the O-H…N type intramolecular hydrogen bonding interactions in both moieties. The ATNA was used as a selective electrochemical sensor for the detection of chromium ion (Cr3+). A thin film of ATNA was coated on to the flat surface of glassy carbon electrode (GCE) followed by 5 % ethanolic Nafion in order to make the modified GCE (ATNA/Nafion/GCE) as an efficient and sensitive electrochemical sensor. It was found to be very effective and selective against Cr3+ cations in the company of other intrusive heavy metal cations such as Al3+, Ce3+, Co2+, Cu2+, Ga3+, Hg2+, Mn2+, Pb2+, and Y3+. The detection limit at 3 S/N was found to be 0.013 nM for Cr3+ ions within the linear dynamic range (LDR) (0.1 nM-10.0 mM) of Cr3+ ions with r2 = 0.9579. Moreover; this work instigates a new methodology for developing the sensitive as well as selective electrochemical toxic cationic sensors in the field of environmental and health care.
Collapse
Affiliation(s)
- Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.A.); (A.M.A.)
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.A.); (A.M.A.)
| | - Tahir Ali Sheikh
- Irrigation Research Institute, Irrigation Department, Government of the Punjab, Old Anarkali, Lahore-54000, Pakistan;
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.A.); (A.M.A.)
| | - Fatimah A. M. Al-Zahrani
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.A.); (A.M.A.)
| |
Collapse
|
43
|
Mousapour K, Hajizadeh S, Farhadi K. Colorimetric speciation analysis of chromium using 2-thiobarbituric acid capped silver nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2484-2490. [PMID: 32930238 DOI: 10.1039/d0ay00160k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present work, 2-thiobarbituric acid (TBA)-capped silver nanoparticles (AgNPs) have been introduced as a novel nanoprobe in the construction of a sensitive and selective colorimetric sensor for Cr(iii) and Cr(vi) ions. Cr(iii) can be linked to TBA on the AgNP surface via -N or -OH groups and form a bridge between two or more AgNPs causing their aggregation. This phenomenon leads to a dramatic color change in TBA-AgNPs from yellow to pinkish red. UV-Vis spectrophotometry, FT-IR and transmission electron microscopy (TEM) were utilized for quantitative analyses, characterization of modified AgNPs and determination of the interaction mechanism of TBA-AgNPs - Cr(iii). The color change depended on the concentration of Cr(iii) and the ratio of UV-Vis absorption intensity at 520 nm to that at 418 nm (A520/A418) was linearly proportional to the concentration of Cr(iii) from 0.012 to 3.25 mg L-1 (LOD = 8.4 µg L-1). To eliminate or reduce the interference of other cations in Cr(iii) determination, EDTA was used as a masking agent at pH 6.5. Moreover, the developed method was used for the determination of Cr(vi) in the presence of ascorbic acid (AA) (as a reducing agent) in the concentration range of 0.20 to 1.40 mg L-1. The proposed probe was successfully applied for the determination of Cr(iii) and Cr(vi) in cement factory wastewater.
Collapse
Affiliation(s)
| | - Salahaddin Hajizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Khalil Farhadi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
44
|
Chen N, Wang J. A serial of 2D Co‐Zn isomorphous metal–organic frameworks for photodegradation and luminescent detection properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ning‐Ning Chen
- School of Chemistry& Environmental EngineeringYancheng Teachers University Yancheng Jiangsu 224007 China
| | - Jun Wang
- School of Chemistry& Environmental EngineeringYancheng Teachers University Yancheng Jiangsu 224007 China
| |
Collapse
|
45
|
Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI). Mikrochim Acta 2020; 187:263. [PMID: 32270303 DOI: 10.1007/s00604-020-04232-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
A new and efficient assay is proposed for the photometric determination of Cr6+ by employing polyethylenimine-stabilized Ag nanoclusters (PEI-AgNCs) as an oxidoreductase mimic. Cr6+ with certain oxidicability is able to specifically react with 3,3',5,5'-tetramethylbenzidine (TMB), giving a color change from colorless to blue indicating the presence of Cr6+. However, the redox kinetics is so slow that the sensitivity obtained for Cr6+ determination is very poor. It is interestingly found that PEI-AgNCs can act as an oxidoreductase-like nanozyme to significantly promote the sluggish reaction, making it possible to rapidly detect toxic Cr6+ with remarkably enhanced performance. With the use of PEI-AgNCs, fast and convenient determination of Cr6+ was realized, with a limit of detection as low as 1.1 μM. Additionally, the proposed assay exhibited excellent selectivity; other ions, including Cr3+, hardly affected the determination of Cr6+. Graphical abstract Polyethylenimine-stabilized silver nanoclusters (PEI-AgNCs) act as an oxidoreductase mimic to catalyze the redox reaction of Cr6+ and 3,3',5,5'-tetramethylbenzidine (TMB), enabling the high-performance colorimetric determination of toxic Cr6+.
Collapse
|
46
|
Lazzarini Behrmann IC, Grattieri M, Minteer SD, Ramirez SA, Vullo DL. Online self-powered Cr(VI) monitoring with autochthonous Pseudomonas and a bio-inspired redox polymer. Anal Bioanal Chem 2020; 412:6449-6457. [DOI: 10.1007/s00216-020-02620-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
|
47
|
|
48
|
Minh PN, Hoang VT, Dinh NX, Van Hoang O, Van Cuong N, Thi Bich Hop D, Tuan TQ, Khi NT, Huy TQ, Le AT. Reduced graphene oxide-wrapped silver nanoparticles for applications in ultrasensitive colorimetric detection of Cr(vi) ions and the carbaryl pesticide. NEW J CHEM 2020. [DOI: 10.1039/d0nj00947d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ag@rGO nanohybrid can be used as a colorimetric sensing platform for ultrasensitive detection of Cr(vi) ions and the carbaryl pesticide.
Collapse
Affiliation(s)
- Phung Nhat Minh
- Advanced Institute for Science and Technology (AIST)
- Hanoi University of Science and Technology (HUST)
- Hanoi
- Vietnam
| | - Van-Tuan Hoang
- Advanced Institute for Science and Technology (AIST)
- Hanoi University of Science and Technology (HUST)
- Hanoi
- Vietnam
- Phenikaa University Nano Institute (PHENA)
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA)
- Phenikaa University
- Hanoi 12116
- Vietnam
- University of Transport Technology
| | - Ong Van Hoang
- University of Transport Technology
- Thanh Xuan District
- Hanoi 12116
- Vietnam
| | - Nguyen Van Cuong
- University of Transport Technology
- Thanh Xuan District
- Hanoi 12116
- Vietnam
| | - Dang Thi Bich Hop
- University of Transport Technology
- Thanh Xuan District
- Hanoi 12116
- Vietnam
| | - Tran Quoc Tuan
- University of Transport Technology
- Thanh Xuan District
- Hanoi 12116
- Vietnam
| | - Nguyen Tien Khi
- Phenikaa University Nano Institute (PHENA)
- Phenikaa University
- Hanoi 12116
- Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA)
- Phenikaa University
- Hanoi 12116
- Vietnam
- Faculty of Electric and Electronics
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA)
- Phenikaa University
- Hanoi 12116
- Vietnam
- Faculty of Materials Science and Engineering
| |
Collapse
|
49
|
Liu G, Lu YK, Ma YY, Wang XQ, Hou L, Wang YY. Syntheses of three new isostructural lanthanide coordination polymers with tunable emission colours through bimetallic doping, and their luminescence sensing properties. Dalton Trans 2019; 48:13607-13613. [PMID: 31460536 DOI: 10.1039/c9dt02733e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuning the emissive color changes of lanthanide (Ln) complexes is an important and appealing project for promoting the applications of Ln-complexes. A solvothermal reaction of 4-cyano-3-methylbenzoic acid (HL) and Ln(NO3)3·6H2O affords three isostructural Ln-complexes [Eu(L)3(H2O)2]n (1-Ln) (Ln = Eu, Gd and Tb) with one-dimensional chain structures. 1-Eu and 1-Tb show bright red and green emissions with absolute quantum yields of 3.06% and 11.96%, respectively, and the energy transfer was analyzed in detail through combined calculations. Interestingly, a series of heterometallic doped 1-TbxEu1-x coordination polymers were also obtained by mixing different ratios of Eu3+ and Tb3+ ions, which possess continuous luminescent color changes from green to yellow, orange and red. In addition, 1-Eu exhibits high quenching efficiency and low detection limit (∼10-4 M) for the simultaneous sensing of MnO4-, CrO42- and Cr2O72- ions in water.
Collapse
Affiliation(s)
- Ge Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | | | | | | | | | | |
Collapse
|
50
|
Thomas RK, Sukumaran S, Sudarsanakumar C. An insight into the comparative binding affinities of chlorogenic acid functionalized gold and silver nanoparticles with ctDNA along with its cytotoxicity analysis. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|