1
|
Diyali S, Saha S, Diyali N, Bhattacharjee A, Mallick A, Agrawalla SK, Purohit CS, Biswas B. Deciphering Electrocatalytic Hydrogen Production in Water Through a Bioinspired Water-Stable Copper(II) Complex Adorned with (N 2S 2)-Donor Sites. CHEMSUSCHEM 2024:e202401089. [PMID: 39365613 DOI: 10.1002/cssc.202401089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Electrocatalytic hydrogen production stands as a pivotal cornerstone in ushering the revolutionary era of the hydrogen economy. With a keen focus on emulating the significance of hydrogenase-like active sites in sustainable H2 generation, a meticulously designed and water-stable copper(II) complex, [Cl-Cu-LN2S2]ClO4, featuring the N,S-type ligand, LN2S2 (2,2'-((butane-2,3-diylbis(sulfanediyl))bis(methylene))dipyridine), has been crafted and assessed for its prowess in electrocatalytic H2 production in water, leveraging acetic acid as a proton source. The molecular catalyst, adopting a square pyramidal coordination geometry, undergoes -Cl substitution by H2O during electrochemical conditions yielding [H2O-Cu-LN2S2]2+ as the true catalyst, showcases outstanding activity in electrochemical proton reduction in acidic water, achieving an impressive rate of 241.75 s-1 for hydrogen generation. Controlled potential electrolysis at -1.2 V vs. Ag/AgCl for 1.6 h reveals a high turnover number of 73.06 with a commendable Faradic efficiency of 94.2 %. A comprehensive analysis encompassing electrochemical, spectroscopic, and analytical methods reveals an insignificant degradation of the molecular catalyst. However, the post-CPE electrocatalyst, present in the solution domain, signifies the coveted stability and effective activity under the specified electrochemical conditions. The synergy of electrochemical, spectroscopic, and computational studies endorses the proton-electron coupling mediated catalytic pathways, affirming the viability of sustainable hydrogen production.
Collapse
Affiliation(s)
- Sangharaj Diyali
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Subhajit Saha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Nilankar Diyali
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | | | - Abhishek Mallick
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Suraj Kumar Agrawalla
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050, India
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| |
Collapse
|
2
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
3
|
Dolganov AV, Knyazev AV. Photochemical Production of Molecular Hydrogen in the Presence of Substituted Acridine Salts. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Droghetti F, Lucarini F, Molinari A, Ruggi A, Natali M. Recent findings and future directions in photosynthetic hydrogen evolution using polypyridine cobalt complexes. Dalton Trans 2022; 51:10658-10673. [PMID: 35475511 PMCID: PMC9936794 DOI: 10.1039/d2dt00476c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022]
Abstract
The production of hydrogen gas using water as the molecular substrate currently represents one of the most challenging and appealing reaction schemes in the field of artificial photosynthesis (AP), i.e., the conversion of solar energy into fuels. In order to be efficient, this process requires a suitable combination of a light-harvesting sensitizer, an electron donor, and a hydrogen-evolving catalyst (HEC). In the last few years, cobalt polypyridine complexes have been discovered to be competent molecular catalysts for the hydrogen evolution reaction (HER), showing enhanced efficiency and stability with respect to previously reported molecular species. This perspective collects information about all relevant cobalt polypyridine complexes employed for the HER in aqueous solution under light-driven conditions in the presence of Ru(bpy)32+ (where bpy = 2,2'-bipyridine) as the photosensitizer and ascorbate as the electron donor, trying to highlight promising chemical motifs and aiming towards efficient catalytic activity in order to stimulate further efforts to design molecular catalysts for hydrogen generation and allow their profitable implementation in devices. As a final step, a few suggestions for the benchmarking of HECs employed under light-driven conditions are introduced.
Collapse
Affiliation(s)
- Federico Droghetti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Fiorella Lucarini
- Département de Chimie, Université de Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Alessandra Molinari
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Mirco Natali
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
- Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem), sez. di Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Exploring the Potential of Water-Soluble Cu(II) Complexes with MPA–CdTe Quantum Dots for Photoinduced Electron Transfer. Catalysts 2022. [DOI: 10.3390/catal12040422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three water-soluble copper complexes based on the amine/pyridine functionalities were investigated, along with quantum dots, as a catalyst–photosensitizer assembly, respectively, for fundamental understanding of photoinduced electron transfer. Luminescence quenching and lifetime measurements were performed to try and establish the actual process that leads to the quenching, such as electron transfer, energy transfer, or complex formation (static quenching). Cyclic voltammetry and dynamic light scattering experiments were also performed. Irrespective of the similar reduction potentials of the three complexes, very different photoluminescence properties were observed.
Collapse
|
6
|
Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Guo X, Li C, Wang W, Hou Y, Zhang B, Wang X, Zhou Q. Polypyridyl Co complex-based water reduction catalysts: why replace a pyridine group with isoquinoline rather than quinoline? Dalton Trans 2021; 50:2042-2049. [PMID: 33475631 DOI: 10.1039/c9dt04767k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic effect of the substituent has been fully leveraged to improve the activity of molecular water reduction catalysts (WRCs). However, the steric effect of the substituents has received less attention. In this work, a steric hindrance effect was observed in a quinoline-involved polypyridyl Co complex-based water reduction catalyst (WRC), which impedes the formation of Co(iii)-H from Co(i), two pivotal intermediates for H2 evolution, leading to significantly impaired electrocatalytic and photocatalytic activity with respect to its parent complex, [Co(TPA)Cl]Cl (TPA = tris(2-pyridinylmethyl)-amine). In sharp contrast, two isoquinoline-involved polypyridyl Co complexes exhibited significantly improved H2 evolution efficiencies compared to [Co(TPA)Cl]Cl, benefitting mainly from the more basic and conjugated features of isoquinoline over pyridine. The dramatically different influences caused by the replacement of a pyridine group in the TPA ligand by quinoline and isoquinoline fully demonstrates the important roles of both the electronic and steric effects of a substituent. Our results may provide novel insights for designing more efficient WRCs.
Collapse
Affiliation(s)
- Xusheng Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Xu X, An Q, Sun H, Wang Y, Shang W, Bao L, Jia Z, Zhang Q. Cu 2O–reduced graphene oxide composite as a high-performance electrocatalyst for oxygen evolution reaction in alkaline media. NEW J CHEM 2021. [DOI: 10.1039/d1nj03286k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ethylene glycol was used as an inexpensive and nontoxic reducing agent to synthesize a Cu2O–reduced graphene oxide (Cu2O–rGO) composite. This material exhibited good electrocatalytic oxygen generation performance.
Collapse
Affiliation(s)
- Xiaomei Xu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qingqing An
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hao Sun
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yongchun Wang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenhui Shang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lixia Bao
- Analysis snd Testing Centre, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiyu Jia
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qiang Zhang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
9
|
Abudayyeh AM, Schott O, Feltham HLC, Hanan GS, Brooker S. Copper catalysts for photo- and electro-catalytic hydrogen production. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01247e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Square planar 1, square pyramidal 2 and trigonal bipyramidal 3 copper complexes are poor catalysts for hydrogen evolution (HER) under photocatalytic conditions, whereas 1 is, or forms, a good and enduring electrocatalyst for HER, but 2 and 3 do not.
Collapse
Affiliation(s)
- Abdullah M. Abudayyeh
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology
- University of Otago
- Dunedin 9054
- New Zealand
| | - Olivier Schott
- Départment de Chimie
- Université de Montréal
- Montréal
- Canada
| | - Humphrey L. C. Feltham
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology
- University of Otago
- Dunedin 9054
- New Zealand
| | - Garry S. Hanan
- Départment de Chimie
- Université de Montréal
- Montréal
- Canada
| | - Sally Brooker
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology
- University of Otago
- Dunedin 9054
- New Zealand
| |
Collapse
|
10
|
Reactivity and Mechanism of Photo- and Electrocatalytic Hydrogen Evolution by a Diimine Copper(I) Complex. Catalysts 2020. [DOI: 10.3390/catal10111302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The tetrahedral copper(I) diimine complex [Cu(pq)2]BF4 displays high photocatalytic activity for the H2 evolution reaction with a turnover number of 3564, thus representing the first type of a Cu(I) quinoxaline complex capable of catalyzing proton reduction. Electrochemical experiments indicate that molecular mechanisms prevail and DFT calculations provide in-depth insight into the catalytic pathway, suggesting that the coordinating nitrogens play crucial roles in proton exchange and hydrogen formation.
Collapse
|
11
|
Liu WF, Qiu QM, Zhang M, Su ZM, An Q, Lv H, Jia Z, Yang GY. Two new Cu-based borate catalysts with cubic supramolecular cages for efficient catalytic hydrogen evolution. Dalton Trans 2020; 49:10156-10161. [PMID: 32662802 DOI: 10.1039/d0dt01994a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Focusing on renewable energy, we are devoted to developping efficient, robust and low cost water reduction catalysts (WRCs). Two new Cu-based borate catalysts, namely H2Na2K2[(μ4-O)Cu4@B20O32(OH)8]·21H2O (1) and H2Rb1.6K2.4[(μ4-O)Cu4@B20O32 (OH)8]·15H2O (2), with cubic supramolecular cages were synthesized under a hydrothermal condition. Moreover, new copper complexes were applied as water reduction catalysts (WRCs) in the presence of [Ir(ppy)2(dtbbpy)][PF6] as photosensitizer and triethanolamine (TEOA) as the sacrificial electron donor. Nevertheless, the main active place is attributed to the centre of Borates [(μ4-O)Cu4@B20O32(OH)8], and the atomic radius of the counter cation would be the critical factor of the photocatalytic activity. Increasing the atomic radius from the Na atom to the Rb atom, causes the photocatalytic activity to decrease efficiently. The experimental results match well with the density functional theory (DFT) conclusion. It is noteworthy to mention that our research not only enriches the Cu-based borate chemistry, but also investigates the photocatalytic activity of Cu-based borates. This would guide us through the borate synthesis and to develop their applications toward energy and the environment.
Collapse
Affiliation(s)
- Wen-Fang Liu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang HT, Zhang MT. The Application of Pincer Ligand in Catalytic Water Splitting. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Drosou M, Kamatsos F, Mitsopoulou CA. Recent advances in the mechanisms of the hydrogen evolution reaction by non-innocent sulfur-coordinating metal complexes. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01113g] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review comments on the homogeneous HER mechanisms for catalysts carrying S-non-innocent ligands in the light of experimental and computational data.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| | - Fotios Kamatsos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| | - Christiana A. Mitsopoulou
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| |
Collapse
|
14
|
Tong L, Duan L, Zhou A, Thummel RP. First-row transition metal polypyridine complexes that catalyze proton to hydrogen reduction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213079] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Su ZM, Zhang M, An Q, Qin D, Li HL, Lv H, Jia Z, Zhang Q, Yang GY. Synthesis of two new copper-sandwiched polyoxotungstates and the influence of nuclear number on catalytic hydrogen evolution activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj02065f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two hybrid inorganic–organic CuII-sandwiched POM were synthesized and they exhibit photocatalytic activity. This would guide us to prepared copper-substituted polyoxotungstate and apply them toward renew energy.
Collapse
Affiliation(s)
- Zhao-Min Su
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Mo Zhang
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Qingqing An
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Dan Qin
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Hai-Lou Li
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Zhiyu Jia
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Qiang Zhang
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
16
|
Dong HT, Speelman AL, Kozemchak CE, Sil D, Krebs C, Lehnert N. The Fe 2 (NO) 2 Diamond Core: A Unique Structural Motif In Non-Heme Iron-NO Chemistry. Angew Chem Int Ed Engl 2019; 58:17695-17699. [PMID: 31550416 DOI: 10.1002/anie.201911968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 11/10/2022]
Abstract
Non-heme high-spin (hs) {FeNO}8 complexes have been proposed as important intermediates towards N2 O formation in flavodiiron NO reductases (FNORs). Many hs-{FeNO}8 complexes disproportionate by forming dinitrosyl iron complexes (DNICs), but the mechanism of this reaction is not understood. While investigating this process, we isolated a new type of non-heme iron nitrosyl complex that is stabilized by an unexpected spin-state change. Upon reduction of the hs-{FeNO}7 complex, [Fe(TPA)(NO)(OTf)](OTf) (1), the N-O stretching band vanishes, but no sign of DNIC or N2 O formation is observed. Instead, the dimer, [Fe2 (TPA)2 (NO)2 ](OTf)2 (2) could be isolated and structurally characterized. We propose that 2 is formed from dimerization of the hs-{FeNO}8 intermediate, followed by a spin state change of the iron centers to low-spin (ls), and speculate that 2 models intermediates in hs-{FeNO}8 complexes that precede the disproportionation reaction.
Collapse
Affiliation(s)
- Hai T Dong
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Amy L Speelman
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Claire E Kozemchak
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Debangsu Sil
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| |
Collapse
|
17
|
Dong HT, Speelman AL, Kozemchak CE, Sil D, Krebs C, Lehnert N. The Fe
2
(NO)
2
Diamond Core: A Unique Structural Motif In Non‐Heme Iron–NO Chemistry. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hai T. Dong
- Department of Chemistry and Department of Biophysics The University of Michigan Ann Arbor Michigan 48109-1055 USA
| | - Amy L. Speelman
- Department of Chemistry and Department of Biophysics The University of Michigan Ann Arbor Michigan 48109-1055 USA
| | - Claire E. Kozemchak
- Department of Chemistry and Department of Biophysics The University of Michigan Ann Arbor Michigan 48109-1055 USA
| | - Debangsu Sil
- Department of Chemistry and Department of Biochemistry and Molecular Biology The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics The University of Michigan Ann Arbor Michigan 48109-1055 USA
| |
Collapse
|
18
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 440] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
19
|
Lentz C, Schott O, Auvray T, Hanan GS, Elias B. Design and photophysical studies of iridium(iii)–cobalt(iii) dyads and their application for dihydrogen photo-evolution. Dalton Trans 2019; 48:15567-15576. [DOI: 10.1039/c9dt01989h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report several new dyads constituted of cationic iridium(iii) photosensitizers and cobalt(iii) catalyst connected via free pendant pyridine on the photosensitizers.
Collapse
Affiliation(s)
- Cédric Lentz
- Institute of Condensed Matter and Nanosciences
- Molecular Chemistry
- Materials and Catalysis Division (IMCN/MOST)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
| | - Olivier Schott
- Département de Chimie
- Université de Montréal
- 2900 Boulevard Edouard-Montpetit
- Montréal
- Canada
| | - Thomas Auvray
- Département de Chimie
- Université de Montréal
- 2900 Boulevard Edouard-Montpetit
- Montréal
- Canada
| | - Garry S. Hanan
- Département de Chimie
- Université de Montréal
- 2900 Boulevard Edouard-Montpetit
- Montréal
- Canada
| | - Benjamin Elias
- Institute of Condensed Matter and Nanosciences
- Molecular Chemistry
- Materials and Catalysis Division (IMCN/MOST)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
| |
Collapse
|
20
|
Gao YC, Zhao YG, Song XW, Huang RY, Meng Y, Wang JW, Wang WJ, Chen CN. Electrocatalytic reduction of protons to hydrogen by a copper complex of the pentadentate ligand Dmphen-DPA in a nonaqueous electrolyte. NEW J CHEM 2019. [DOI: 10.1039/c9nj04275j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aminopyridine-based copper complex was synthesized and investigated for its electrocatalytic proton reduction activity and the plausible mechanism.
Collapse
Affiliation(s)
- Ying-Chun Gao
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
| | - Ying-Guo Zhao
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
| | - Xiao-Wei Song
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
| | - Rong-Yi Huang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
| | - Yan Meng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
| | - Jun-Wei Wang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
| | - Wen-Jing Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Chang-Neng Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| |
Collapse
|
21
|
Lang P, Habermehl J, Troyanov SI, Rau S, Schwalbe M. Photocatalytic Generation of Hydrogen Using Dinuclear π-Extended Porphyrin-Platinum Compounds. Chemistry 2018; 24:3225-3233. [DOI: 10.1002/chem.201704999] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Philipp Lang
- Institute of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Johannes Habermehl
- Department of Inorganic Chemistry I; University of Ulm; Albert-Einstein-Allee 11 89077 Ulm Germany
| | - Sergey I. Troyanov
- Institute of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
- Chemistry Department; Moscow State University; 119991 Moscow Russia
| | - Sven Rau
- Department of Inorganic Chemistry I; University of Ulm; Albert-Einstein-Allee 11 89077 Ulm Germany
| | - Matthias Schwalbe
- Institute of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
22
|
Zhang YQ, Liao RZ. Reaction mechanism of hydrogen evolution catalysed by Co and Fe complexes containing a tetra-dentate phosphine ligand - a DFT study. Phys Chem Chem Phys 2018; 19:32589-32596. [PMID: 29192296 DOI: 10.1039/c7cp06222b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism of the electro-catalytic proton reduction in neutral phosphate buffer enabled by mononuclear cobalt and iron complexes containing a tetra-dentate phosphine ligand (MP4N2, M = Fe, Co) has been elucidated by density functional calculations. The phosphate from the buffer was found to play a crucial role by coordinating to the metal and delivering a proton to the metal hydride in the H-H bond formation. For the more efficient cobalt catalyst, the starting species is a CoII complex with a hydrogen phosphate and a water molecule ligated at the two vacant coordination sites. Two sequential proton-coupled electron transfer reductions lead to the formation of a CoII-H intermediate with a dihydrogen phosphate ligand, and the reduction potentials for these two steps were calculated to be -0.58 V and -0.72 V, respectively. Subsequently, the H-H bond formation takes place via coupling of the CoII-H and the proton from the dihydrogen phosphate ligand. The total barrier was calculated to be 18.2 kcal mol-1 with an applied potential of -0.5 V, which can further decrease to only 11.2 kcal mol-1 with an applied potential of -0.8 V. When the phosphate is displaced by a water molecule, the total barrier for the dihydrogen formation increases by 7.3 kcal mol-1. For the iron catalyst, the overall mechanism is essentially the same; however, the first reduction (FeII/FeI, potential of -1.13 V) is likely the rate-limiting step. The calculated results are in good agreement with the experimental data, which showed an onset potential of -0.50 V for the cobalt complex and -1.03 V for the iron complex.
Collapse
Affiliation(s)
- Ya-Qiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medic Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | |
Collapse
|
23
|
Fukuzumi S, Lee YM, Nam W. Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.07.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Application of the five-membered ring products of cyclometalation reactions for hydrogen production. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Coordination complexes of copper(II) with herbicide-trichlorophenoxyacetate: Syntheses, characterization, single crystal X-ray structure and packing analyses of monomeric [Cu(γ-pic)3(2,4,5-trichlorophenoxyacetate)]·H2O, [trans-Cu(en)2(2,4,5-trichlorophenoxyacetate)2]·2H2O and dimeric [Cu2(H2tea)2(2,4,5-trichlorophenoxyacetate)2]·2(H2O). Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Tang X, Zhao JH, Li YH, Zhou ZJ, Li K, Liu FT, Lan YQ. Co-Doped Zn1−xCdxS nanocrystals from metal–organic framework precursors: porous microstructure and efficient photocatalytic hydrogen evolution. Dalton Trans 2017; 46:10553-10557. [DOI: 10.1039/c7dt01970j] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoporous Co-doped Zn1−xCdxS fabricated with ZnCo-ZIFs as templates afford a high H2-production rate, corresponding to 45.2 and 422.2 times larger than those of Zn0.5Cd0.5S and CdS without using ZIF as template.
Collapse
Affiliation(s)
- Xiu Tang
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jia-Hui Zhao
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yu-Han Li
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Zi-Ji Zhou
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Kui Li
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Fu-Tian Liu
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Ya-Qian Lan
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| |
Collapse
|
27
|
Guo X, Zeng L, Wang Z, Zhang T, He C, Duan C. Photocatalytic copper-catalyzed azide–alkyne cycloaddition click reaction with Cu(ii) coordination polymer. RSC Adv 2017. [DOI: 10.1039/c7ra10207k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cu(ii) coordination polymers as photocatalysts for the copper-catalyzed azide–alkyne cycloaddition click reaction under household light irradiation in air.
Collapse
Affiliation(s)
- Xiangyang Guo
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Le Zeng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Zhe Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Tiexin Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| |
Collapse
|
28
|
Wang J, Li C, Zhou Q, Wang W, Hou Y, Zhang B, Wang X. A polypyridyl Co(ii) complex-based water reduction catalyst with double H2 evolution sites. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01897a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The unique coordination mode of Cl-TMPA and the double H2 evolution sites of [Co(Cl-TMPA)Cl2] provide a new strategy to design more effective WRCs.
Collapse
Affiliation(s)
- Junfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Chao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Weibo Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Yuanjun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Baowen Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| |
Collapse
|