1
|
Yamamoto M, Aihara T, Wachi K, Hara M, Kamata K. La 1-xSr xFeO 3-δ Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to tert-Butyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39484694 DOI: 10.1021/acsami.4c15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to tert-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe4+ such as BaFeO3-δ, SrFeO3-δ, and La1-xSrxFeO3-δ exhibited catalytic performance superior to those of other Fe3+- and Fe2+-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO3 significantly enhanced the catalytic performance and durability. In particular, the La0.8Sr0.2FeO3-δ catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO3-δ and SrFeO3-δ catalysts were almost inactive. La0.8Sr0.2FeO3-δ promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La1-xSrxFeO3-δ on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe3+/Fe4+ valence states of La1-xSrxFeO3-δ nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Masanao Yamamoto
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keiju Wachi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Deng Z, Cao J, Zhao L, Zhang Z, Yuan J. Trimetallic FeCoNi Metal-Organic Framework with Enhanced Peroxidase-like Activity for the Construction of a Colorimetric Sensor for Rapid Detection of Thiophenol in Water Samples. Molecules 2024; 29:3739. [PMID: 39202819 PMCID: PMC11356859 DOI: 10.3390/molecules29163739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, nanozymes have attracted particular interest and attention as catalysts because of their high catalytic efficiency and stability compared with natural enzymes, whereas how to use simple methods to further improve the catalytic activity of nanozymes is still challenging. In this work, we report a trimetallic metal-organic framework (MOF) based on Fe, Co and Ni, which was prepared by replacing partial original Fe nodes of the Fe-MOF with Co and Ni nodes. The obtained FeCoNi-MOF shows both oxidase-like activity and peroxidase-like activity. FeCoNi-MOF can not only oxidize the chromogenic substrate 3,3,5,5-tetramethylbenzidine (TMB) to its blue oxidation product oxTMB directly, but also catalyze the activation of H2O2 to oxidize the TMB. Compared with corresponding monometallic/bimetallic MOFs, the FeCoNi-MOF with equimolar metals hereby prepared exhibited higher peroxidase-like activity, faster colorimetric reaction speed (1.26-2.57 folds), shorter reaction time (20 min) and stronger affinity with TMB (2.50-5.89 folds) and H2O2 (1.73-3.94 folds), owing to the splendid synergistic electron transfer effect between Fe, Co and Ni. Considering its outstanding advantages, a promising FeCoNi-MOF-based sensing platform has been designated for the colorimetric detection of the biomarker H2O2 and environmental pollutant TP, and lower limits of detection (LODs) (1.75 μM for H2O2 and 0.045 μM for TP) and wider linear ranges (6-800 μM for H2O2 and 0.5-80 μM for TP) were obtained. In addition, the newly constructed colorimetric platform for TP has been applied successfully for the determination of TP in real water samples with average recoveries ranging from 94.6% to 112.1%. Finally, the colorimetric sensing platform based on FeCoNi-MOF is converted to a cost-effective paper strip sensor, which renders the detection of TP more rapid and convenient.
Collapse
Affiliation(s)
- Zehui Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China;
- Shandong Institute of Metrology, Jinan 250014, China
| | - Jiaqing Cao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Lei Zhao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Zhao Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Jianwei Yuan
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing 211816, China
| |
Collapse
|
3
|
Xu H, Ye G, Wei C, Xia Y, Wu Z, Zhou Y, Zhou J. Enhanced water stability and catalytic activity of Fe-based metal-organic frameworks with co-ligands for 2,4-dichlorophenol degradation. CHEMOSPHERE 2024; 361:142518. [PMID: 38830463 DOI: 10.1016/j.chemosphere.2024.142518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Fe-based metal-organic frameworks (MOFs) have good photocatalytic performance, environmental friendliness, low cost, and abundance. However, their applications are limited by low water stability, particularly in the presence of light irradiation and oxidizing agents. In this study, we present a MIL-53(Fe)-based MOF using 1,4-naphthalene dicarboxylic (1,4-NDC) and 1,4-benzenedicarboxylic (H2BDC) acid co-ligands, denoted MIL-53(Fe)-Nx, where Nx represents the ratio of 1,4-NDC. This MOF exhibits high water stability and good photocatalytic activity because of the hydrophobicity of naphthalene. The removal and mineralization rates for 100 mg/L 2,4-dichlorophenol reached 100% and 22%, respectively, within 60 min. After three cycles of use, the Fe leached into the solution from the catalysts was significantly lower than the maximum permissible limit indicated in the European Union standard. Of note, 1,4-NDC can be used to make a rigid MOF, thereby improving the crystallinity, porosity, and hydrophobicity of the resultant materials. It also significantly reduced the bandgap energy and improved the charge separation efficiency of the catalysts. This study provides a route to enhance the water stability of Fe-based MOFs via a mixed-ligand strategy to expand their applications in pollutant control.
Collapse
Affiliation(s)
- Hao Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Guirong Ye
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Cui Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yi Xia
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiming Wu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongxin Zhou
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Jinghong Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Jussila T, Philip A, Rubio-Giménez V, Eklund K, Vasala S, Glatzel P, Lindén J, Motohashi T, Karttunen AJ, Ameloot R, Karppinen M. Chemical Bonding and Crystal Structure Schemes in Atomic/Molecular Layer Deposited Fe-Terephthalate Thin Films. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6489-6503. [PMID: 39005530 PMCID: PMC11238545 DOI: 10.1021/acs.chemmater.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Advanced deposition routes are vital for the growth of functional metal-organic thin films. The gas-phase atomic/molecular layer deposition (ALD/MLD) technique provides solvent-free and uniform nanoscale thin films with unprecedented thickness control and allows straightforward device integration. Most excitingly, the ALD/MLD technique can enable the in situ growth of novel crystalline metal-organic materials. An exquisite example is iron-terephthalate (Fe-BDC), which is one of the most appealing metal-organic framework (MOF) type materials and thus widely studied in bulk form owing to its attractive potential in photocatalysis, biomedicine, and beyond. Resolving the chemistry and structural features of new thin film materials requires an extended selection of characterization and modeling techniques. Here we demonstrate how the unique features of the ALD/MLD grown in situ crystalline Fe-BDC thin films, different from the bulk Fe-BDC MOFs, can be resolved through techniques such as synchrotron grazing-incidence X-ray diffraction (GIXRD), Mössbauer spectroscopy, and resonant inelastic X-ray scattering (RIXS) and crystal structure predictions. The investigations of the Fe-BDC thin films, containing both trivalent and divalent iron, converge toward a novel crystalline Fe(III)-BDC monoclinic phase with space group C2/c and an amorphous Fe(II)-BDC phase. Finally, we demonstrate the excellent thermal stability of our Fe-BDC thin films.
Collapse
Affiliation(s)
- Topias Jussila
- Department
of Chemistry and Materials Science, Aalto
University, FI-00076 Aalto, Finland
| | - Anish Philip
- Department
of Chemistry and Materials Science, Aalto
University, FI-00076 Aalto, Finland
| | - Víctor Rubio-Giménez
- Centre
for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Kim Eklund
- Department
of Chemistry and Materials Science, Aalto
University, FI-00076 Aalto, Finland
| | - Sami Vasala
- ESRF
- The European Synchrotron, 38000 Grenoble, France
| | | | - Johan Lindén
- Physics/Faculty
of Science and Engineering, Åbo Akademi
University, FI-20500 Turku, Finland
| | - Teruki Motohashi
- Department
of Applied Chemistry, Kanagawa University, Yokohama 221-8686, Japan
| | - Antti J. Karttunen
- Department
of Chemistry and Materials Science, Aalto
University, FI-00076 Aalto, Finland
| | - Rob Ameloot
- Centre
for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Maarit Karppinen
- Department
of Chemistry and Materials Science, Aalto
University, FI-00076 Aalto, Finland
| |
Collapse
|
5
|
Geng FL, Chi HY, Zhao HC, Wan JQ, Sun J. Stability performance analysis of Fe based MOFs for peroxydisulfates activation to effectively degrade ciprofloxacin. Front Bioeng Biotechnol 2023; 11:1205911. [PMID: 37576985 PMCID: PMC10421748 DOI: 10.3389/fbioe.2023.1205911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Fe-based metal-organic frameworks (MOFs) show high activity toward the activation of peroxodisulfate (PDS) for the removal of organic micropollutants (OMPs) in wastewater treatment. However, there is a phenomenon of Fe ion dissolution in the Fe-based MOFs' active PDS system, and the reasons and influencing factors that cause Fe ion dissolution are poorly understood. In this study, we synthesized four types of Fe-based MOFs and confirmed their crystal structure through characterization. All types of Fe-based MOFs were found to activate PDS and form sulfate radicals (SO4 -), which effectively remove OMPs in wastewater. During the process of Fe-based MOFs activating PDS for CIP removal, activated species, oxidant reagent, and pH negatively impact the stability performance of the MOFs' structure. The coordination bond between Fe atom and O atom can be attacked by water molecules, free radicals, and H+, causing damage to the crystal structure of MOFs. Additionally, Fe (II)-MOFs exhibit the best stability performance, due to the enhanced bond energy of the coordination bond in MOFs by the F ligands. This study summarizes the influencing factors of Fe-based MOFs' damage during PDS activation processes, providing new insights for the future development of Fe-based MOFs.
Collapse
Affiliation(s)
- Fang-Lan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yuan Chi
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Hua-Chao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jin-Quan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jian Sun
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Chen S, Li T, Deng D, Ji Y, Li R. Bifunctional Fe@PCN-222 nanozyme-based cascade reaction system: Application in ratiometric fluorescence and colorimetric dual-mode sensing of glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121427. [PMID: 35640471 DOI: 10.1016/j.saa.2022.121427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
This work innovatively integrated the peroxidase-mimicking activity and red emission property of Fe@PCN-222 framework, designed a cascade reaction system for dual-mode glucose sensing. The Fe3+ doping significantly improved the catalytic activity of Fe@PCN-222 that can oxidize the substrate o-phenylenediamine (OPD) to generate diminophenazine (DAP) with emission at 566 nm in the presence of H2O2. Similarly, the Fe@PCN-222 was used to catalyze the colorless TMB to produce blue oxidized TMB (oxTMB) showed absorption at 652 nm. When coupled with glucose oxidase (GOx), the linear ranges of ratiometric fluorescence mode and colorimetric mode for glucose sensing were 1-100 and 10-300 μM, respectively. And the limits of detection (LOD) of 0.78 and 2.41 μM for two modes were obtained, respectively. In addition, the practicability of Fe@PCN-222 nanozyme-based cascade reaction system for detection of glucose in human serum and saliva samples was successfully investigated. It is of great importance to integrate more functions into one skeleton to achieve dual-mode and optimal-performance sensing for expanding potential applications.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Donglian Deng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
7
|
Application of Nanocatalysts in Advanced Oxidation Processes for Wastewater Purification: Challenges and Future Prospects. Catalysts 2022. [DOI: 10.3390/catal12070741] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The increase in population demands for industrialization and urbanization which led to the introduction of novel hazardous chemicals in our environment. The most significant parts of these harmful substances found in water bodies remain in the background, causing a health risk to humans and animals. It is critical to remove these toxic chemicals from the wastewater to keep a cleaner and greener environment. Hence, wastewater treatment is a challenging area these days to manage liquid wastes effectively. Therefore, scientists are in search of novel technologies to treat and recycle wastewater, and nanotechnology is one of them, thanks to the potential of nanoparticles to effectively clean wastewater while also being ecologically benign. However, there is relatively little information about nanocatalysts’ applicability, efficacy, and challenges for future applications in wastewater purification. This review paper is designed to summarize the recent studies on applying various types of nanocatalysts for wastewater purification. This review paper highlights innovative work utilizing nanocatalysts for wastewater applications and identifies issues and challenges to overcome for the practical implementation of nanocatalysts for wastewater treatment.
Collapse
|
8
|
Rapid oxidation of 4-cholorphenol in the iron-based Metal–Organic frameworks (MOFs)/H2O2 system: The ignored two-steps interfacial single-electron transfer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Zhang S, Zhuo Y, Ezugwu CI, Wang CC, Li C, Liu S. Synergetic Molecular Oxygen Activation and Catalytic Oxidation of Formaldehyde over Defective MIL-88B(Fe) Nanorods at Room Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8341-8350. [PMID: 34076409 DOI: 10.1021/acs.est.1c01277] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Defective MIL-88B(Fe) nanorods are exploited as exemplary iron-bearing metal-organic framework (MOF) catalyst for molecular oxygen (O2) activation at ambient temperature, triggering effective catalytic oxidation of formaldehyde (HCHO), one of the major indoor air pollutants. Defective MIL-88B(Fe) nanorods, growing along the [001] direction, expose abundant coordinatively unsaturated Fe-sites (Fe-CUSs) along extended hexagonal channels with a diameter of ca. 5 Å, larger enough for the diffusion of O2 (3.46 Å) and HCHO (2.7 Å). The Lewis acid-base interaction between Fe-CUSs and accessible HCHO accelerates the FeIII/FeII cycle, catalyzing Fenton-like O2 activation to produce reactive oxidative species (ROSs), including superoxide radicals (•O2-), hydroxyl radicals (•OH), and singlet oxygen (1O2). Consequently, adsorbed HCHO can be oxidized into CO2 with a considerable mineralization efficiency (over 80%) and exceptional recyclability (4 runs, 48 h). Dioxymethylene (CH2OO), formate (HCOO-) species, and formyl radicals (•CHO) are recorded as the main reaction intermediates during HCHO oxidation. HCHO, H2O, and O2 are captured and activated by abundant FeIII/FeII-CUSs as acid/base and redox sites, triggering synergetic ROS generation and HCHO oxidation, involving cooperative acid-base and redox catalysis processes. This study will bring new insights into exploiting novel MOF catalysts for efficient O2 activation and reliable indoor air purification at ambient temperature.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yifan Zhuo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chizoba I Ezugwu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China
| | - Chuanhao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Shengwei Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Insights into the Stability and Activity of MIL-53(Fe) in Solar Photocatalytic Oxidation Processes in Water. Catalysts 2021. [DOI: 10.3390/catal11040448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MIL-53(Fe) is a metal organic framework that has been recently considered a heterogeneous photocatalyst candidate for the degradation of water pollutants under visible or solar radiation, though stability studies are rather scarce in the literature. In this work, MIL-53(Fe) was successfully synthesized by a solvothermal method and fully characterized by X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), N2 adsorption–desorption isotherm, Thermogravimetric analysis coupled with mass spectrometry (TGA-MS), UV-visible diffuse reflectance spectroscopy (DRS), elemental analysis and wavelength dispersive X-ray fluorescence (WDXRF). The effects of pH, temperature, solar radiation and the presence of oxidants (i.e., electron acceptors) such as ozone, persulfate and hydrogen peroxide on the stability of MIL-53(Fe) in water were investigated. The as-synthetized MIL-53(Fe) exhibited relatively good stability in water at pH 4 but suffered fast hydrolysis at alkaline conditions. At pH 4–5, temperature, radiation (solar and visible radiation) and oxidants exerted negative effect on the stability of the metal–organic framework (MOF) in water, resulting in non-negligible amounts of metal (iron) and linker (terephthalic acid, H2BDC) leached out from MIL-53(Fe). The photocatalytic activity of MIL-53(Fe) under simulated solar radiation was studied using phenol and metoprolol as target pollutants. MIL-53(Fe) on its own removed less than 10% of the pollutants after 3 h of irradiation, while in the presence of ozone, persulfate or hydrogen peroxide, complete elimination of pollutants was achieved within 2 h of exposure to radiation. However, the presence of oxidants and the formation of some reaction intermediates (e.g., short-chain carboxylic acids) accelerated MIL-53(Fe) decarboxylation. The findings of this work suggest that MIL-53(Fe) should not be recommended as a heterogeneous photocatalyst for water treatment before carrying out a careful evaluation of its stability under actual reaction conditions.
Collapse
|
11
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Hu P, Sun Z, Shen Y, Pan Y. A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H 2O 2 in Fishery Products. Foods 2021; 10:419. [PMID: 33672942 PMCID: PMC7918592 DOI: 10.3390/foods10020419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) has been reported to be used for the illegal treatment of fishery products in order to obtain "fake" freshness. Residues of H2O2 in food may be of toxicology concern. In this study, a nonenzymatic sensor was developed based on Fe@PCN-224 metal-organic frameworks wrapped by Nafion to detect H2O2 concentration. The hybrid structure of Fe@PCN-224 was fabricated by incorporated free FeIII ions into the center of PCN-224, which was ultra-stable due to the strong interactions between Zr6 and the carboxyl group. Scanning electron spectroscopy images exhibited that Nafion sheets crossed together on the surface of Fe@PCN-224 nanoparticles to form a hierarchical and coherent structure for efficient electron transfer. Electrochemical investigations showed that the Fe@PCN-224/Nafion/GCE possessed good linearity from 2 to 13,000 μM (including four orders of magnitude), low detection limits (0.7 μM), high stability in continuous monitoring (current remained nearly stable over 2300 s) and in long-term measurement (current decreased 3.4% for 30 days). The prepared nanohybrid modified electrode was effectively applied to H2O2 detection in three different fishery products. The results were comparable to those measured using photometrical methods. The developed electrochemical method has a great potential in detecting the illegal management of fishery products with H2O2.
Collapse
Affiliation(s)
| | | | | | - Yiwen Pan
- Ocean College, Zhejiang University, Zhoushan 316021, China; (P.H.); (Z.S.); (Y.S.)
| |
Collapse
|
13
|
Ding J, Sun YG, Ma YL. Highly Stable Mn-Doped Metal-Organic Framework Fenton-Like Catalyst for the Removal of Wastewater Organic Pollutants at All Light Levels. ACS OMEGA 2021; 6:2949-2955. [PMID: 33553913 PMCID: PMC7860106 DOI: 10.1021/acsomega.0c05310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
A novel Mn-doped Fe-based metal-organic framework (MOF) Fenton-like catalyst was prepared for the removal of wastewater organic pollutants. The catalyst exhibited good degradation performance, stability, and recyclability for the removal of phenol from water with a maximum catalytic efficiency of 96%. Incorporating a long persistent phosphor in the MOF ensured optimum performance in the dark.
Collapse
Affiliation(s)
- Jie Ding
- State Key Laboratory of High-efficiency
Coal Utilization and Green Chemical Engineering, College of Chemistry
and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yong-Gang Sun
- State Key Laboratory of High-efficiency
Coal Utilization and Green Chemical Engineering, College of Chemistry
and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu-Long Ma
- State Key Laboratory of High-efficiency
Coal Utilization and Green Chemical Engineering, College of Chemistry
and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
14
|
Lu S, Liu L, Demissie H, An G, Wang D. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. ENVIRONMENT INTERNATIONAL 2021; 146:106273. [PMID: 33264734 DOI: 10.1016/j.envint.2020.106273] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/25/2023]
Abstract
Advanced oxidation process (AOP), with a high oxidation efficiency, fast reaction speed (relatively no secondary pollution), has become one of the core technologies of industrial wastewater and advanced drinking water treatment. Heterogeneous Fenton-like oxidation process (HFOP) is a kind of AOP, which developed rapidly in recent years in such a way to overcome the disadvantages of traditional Fenton reaction. Metal-organic frameworks (MOFs) and their derivatives become essential heterogeneous catalysts for organics mineralization due to the large specific surface area, abundant active sites, and ease of structural regulation. However, the knowledge gap on the mechanism and the fate of heterogeneous catalyst species during organics degradation activities by MOFs presents considerable impediments, particularly for a wide application and scaling up the process. This work has the potential to provide guidance and ideas for researchers and engineers in the fields of environmental remediation, environmental catalysis and functional materials. This review focuses on clarifying the critical mechanism of •OH production from MOFs and derivatives as well as its action on the organic's degradation process. The recent developments in MOF based HFOP are compared, and more attention is paid for the following aspects in this review: (1) classifies systematically progressive modification methods of MOFs by chemical and physical treatments; (2) analyzes the fate of catalytic species during treating organic wastewater; (3) proposes design ideas and principles for improving the performance of MOFs catalysts; (4) discusses the main factors influencing the catalytic properties and practical application; (5) summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libing Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailu Demissie
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangyu An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
15
|
Chi H, Wan J, Ma Y, Wang Y, Huang M, Li X, Pu M. ZSM-5-(C@Fe) activated peroxymonosulfate for effectively degrading ciprofloxacin: In-depth analysis of degradation mode and degradation path. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123024. [PMID: 32768834 DOI: 10.1016/j.jhazmat.2020.123024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In this work, ZSM-5-(C@Fe), as a peroxymonosulfate (PMS) heterogeneous activator, was synthesized, characterized, and evaluated for activating PMS to degrade ciprofloxacin (CIP) in wastewater. Zeolite Socony Mobil-5 (ZSM-5) was utilized to enhance structural stability and provided a scaffold to graft Fe doping C nanocomposites activator. Pyrolytic metal-organic frameworks (MOFs) can use crystal structure to construct stable carbon-encapsulated Fe nanocomposites. The formation of C-O-Si, C-O-Al and C-Fe was the key to the stability of catalysts. Fe doping in ZSM-5-(C@Fe) formed non-radical degradation pathway was the key to improve the degradation efficiency. The experimental data indicated ZSM-5-(C@Fe) could completely remove 20 mg L-1 CIP within 15 min and achieve good results in the experiments of treating actual wastewater, which could reduce 40% COD of the paper mill aerobic pond effluent. The Fukui function calculation and UHPL C-H RMS/MS analysis elucidated that the 1O2-dominated electrophilic reaction and the ZSM-5-(C@Fe) complex PMS-dominated nucleophilic reaction were the main pathways for CIP degradation and the radical degradation pathway (·OH and SO4-˙) plays auxiliary role. In addition, two new degradation pathways of the N29 and C27 in quinolone ring and the N22 in piperazine ring were discovered. This finding had important implications for the removal of N from organic pollutants.
Collapse
Affiliation(s)
- Haiyuan Chi
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China.
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China.
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China.
| | - Mei Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Xitong Li
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Mengjie Pu
- Dongguan University of Technology, Dongguan 523000, China.
| |
Collapse
|
16
|
Metal-Organic-Framework FeBDC-Derived Fe 3O 4 for Non-Enzymatic Electrochemical Detection of Glucose. SENSORS 2020; 20:s20174891. [PMID: 32872490 PMCID: PMC7506652 DOI: 10.3390/s20174891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Present-day science indicates that developing sensors with excellent sensitivity and selectivity for detecting early signs of diseases is highly desirable. Electrochemical sensors offer a method for detecting diseases that are simpler, faster, and more accurate than conventional laboratory analysis methods. Primarily, exploiting non-noble-metal nanomaterials with excellent conductivity and large surface area is still an area of active research due to its highly sensitive and selective catalysts for electrochemical detection in enzyme-free sensors. In this research, we successfully fabricate Metal-Organic Framework (MOF) FeBDC-derived Fe3O4 for non-enzymatic electrochemical detection of glucose. FeBDC synthesis was carried out using the solvothermal method. FeCl2.4H2O and Benzene-1,4-dicarboxylic acid (H2BDC) are used as precursors to form FeBDC. The materials were further characterized utilizing X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier-Transform Infrared Spectroscopy (FTIR). The resulting MOF yields good crystallinity and micro-rod like morphology. Electrochemical properties were tested using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) with a 0.1 M of Phosphate Buffer Saline (PBS pH 7.4) solution as the supporting electrolyte. The measurement results show the reduction and oxidation peaks in the CV curve of FeBDC, as well as Fe3O4. Pyrolysis of FeBDC to Fe3O4 increases the peak of oxidation and reduction currents. The Fe3O4 sample obtained has a sensitivity of 4.67 µA mM−1.cm−2, a linear range between 0.0 to 9.0 mM, and a glucose detection limit of 15.70 µM.
Collapse
|
17
|
Pu M, Niu J, Brusseau ML, Sun Y, Zhou C, Deng S, Wan J. Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2020; 394:125044. [PMID: 33414675 PMCID: PMC7785090 DOI: 10.1016/j.cej.2020.125044] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Three novel persulfate activators, Fe(II)-based metal-organic frameworks (MOFs) were synthesized for the degradation of sulfamethoxazole (SMX). The degradation experiment results showed that all the Fe(II)MOFs could effectively activate persulfate and degrade more than 97% SMX within 180 min, with higher than 77% persulfate decomposition efficiencies. It was found by Mössbauer spectra that the variation of organic ligands for synthesis have an influence on the content of Fe(II) of these MOFs, thus resulted in the order of activation capacities: Fe(Nic) > Fe(PyBDC) > Fe(PIP). It was demonstrated that the activation of persulfate was mainly ascribed to the heterogeneous process that accomplished by surface-bounded Fe(II) acted as the main active site to provided electrons for persulfate or dissolved oxygen. EPR and molecular probe studies confirmed the coexistence of SO4·-, ·OH, and O2·-, and differentiated their contributions in SMX degradation. Possible degradation pathways of SMX were proposed based on the detection results of intermediates by UPLC-MS/MS. This work provides a new prospect into the synthesis of high-performance MOFs with strong electron-donating properties as efficient persulfate activators, which may encourage the employ of MOFs in the wastewater treatment process.
Collapse
Affiliation(s)
- Mengjie Pu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Corresponding Author Phone/fax: +86-769-22863180;
| | - Mark L. Brusseau
- Department of Soil, Water and Environmental Science, School of Earth and Environmental Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Yanlong Sun
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Chengzhi Zhou
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Sheng Deng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Au-nanoparticle loaded nickel-copper bimetallic MOF: An excellent catalyst for chemical degradation of Rhodamine B. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Zhang Y, Zhou J, Chen J, Feng X, Cai W. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122315. [PMID: 32097853 DOI: 10.1016/j.jhazmat.2020.122315] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/04/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
This work demonstrates a facile route to assemble MIL-53(Fe) by solvothermal method. Sulfate radical-based advanced oxidation processes (SR-AOPs) coupling with photocatalysis based on MIL-53(Fe) were investigated under visible light. The catalytic effect of MIL-53(Fe) for the degradation of tetracycline hydrochloride (TC-HCl) was systematically studied, as well as the reusability of the catalyst and the effect of operating parameters. The results indicated that 99.7 % of TC (300 mg/L) could be degraded within 80 min in the SR-AOPs coupling with photocatalysis processes, as compared to 71.4 % for the SR-AOPs and only 17.1 % for the photocatalysis. The trapping experiments and electron spin-resonance spectroscopy (ESR) showed the photogenerated electrons of MIL-53(Fe) under visible light irritation were trapped by persulfate to generated sulfate radicals which effectively suppressed the recombination of photogenerated carriers. And also, the SO4- could be formed by the conversion between Fe (Ⅲ) and Fe (Ⅱ) in MIL-53(Fe). Moreover, OH and O2- generated by the reaction increased significantly due to the increase of SO4- which generated more OH and reduced photogenerated carrier recombination respectively. Thus, the degradation efficiency of TC-HCl was improved. Furthermore, the degradation pathway for TC-HCl was proposed using the theoretical calculations and liquid chromatography coupled with mass spectrometry.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiabin Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | - Junhui Chen
- Sichuan Academy of Environmental Sciences, Chengdu, 610041, China
| | - Xiaoqiong Feng
- Sichuan Academy of Environmental Sciences, Chengdu, 610041, China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
20
|
Kirchon A, Zhang P, Li J, Joseph EA, Chen W, Zhou HC. Effect of Isomorphic Metal Substitution on the Fenton and Photo-Fenton Degradation of Methylene Blue Using Fe-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9292-9299. [PMID: 32011112 DOI: 10.1021/acsami.9b21408] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The removal of toxic organic compounds (TOCs) using highly porous solids such as metal-organic frameworks (MOFs) has gained significant attention over the past decade. In this study, it has been demonstrated that the efficiency of PCN-250 as a heterogeneous catalyst porous coordination network (PCN) for both Fenton and photo-Fenton reactions can be improved by the isomorphic substitution of Mn and Co for Fe, while it can be inhibited by the substitution of Ni for Fe. Furthermore, the Mn-substituted sample named PCN-250(Fe2Mn) decomposed 100% of methylene blue (MB) in solution in 300 min and displayed good recyclability over three cycles. This work establishes that the highly porous, commercially available, and robust family of MOFs named PCN-250 has the potential to be used as catalysts for Fenton and photo-Fenton reactions as well as broader advanced oxidation processes (AOP) for water purification applications. Overall, this work successfully demonstrates not only the ability to perform isomorphic substitution of various metals within MOFs but also the effect of the substitution on the resulting catalytic performance.
Collapse
Affiliation(s)
- Angelo Kirchon
- Chemistry Department , Texas A&M University , 580 Ross Street , College Station , Texas 77843 , United States
| | - Peng Zhang
- Chemistry Department , Texas A&M University , 580 Ross Street , College Station , Texas 77843 , United States
| | - Jialuo Li
- Chemistry Department , Texas A&M University , 580 Ross Street , College Station , Texas 77843 , United States
| | - Elizabeth A Joseph
- Chemistry Department , Texas A&M University , 580 Ross Street , College Station , Texas 77843 , United States
| | - Wenmiao Chen
- Chemistry Department , Texas A&M University , 580 Ross Street , College Station , Texas 77843 , United States
| | - Hong-Cai Zhou
- Chemistry Department , Texas A&M University , 580 Ross Street , College Station , Texas 77843 , United States
| |
Collapse
|
21
|
Huang M, Wang Y, Wan J, Ma Y, Chi H, Xu Y, Qiu S. Facile construction of highly reactive and stable defective iron-based metal organic frameworks for efficient degradation of Tetrabromobisphenol A via persulfate activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113399. [PMID: 31662253 DOI: 10.1016/j.envpol.2019.113399] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/25/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Achieving large pore size, high catalytic performance with stable structure is critical for metal-organic frameworks (MOFs) to have more hopeful prospects in catalytic applications. Herein, we had reported a method to synthesize highly reactive yet stable defective iron-based Metal organic frameworks by using different monocarboxylic acids with varying lengths as a modulator. The physical-chemical characterization illustrating that modulators could improve the crystallinity, enlarge pore size and enhance catalytic performance and octanoic acid (OA) was screened to be the suitable choice. The catalytic performance of catalysts was detected through persulfate (PS) activation for degrading Tetrabromobisphenol A (TBBPA). The study demonstrated that the highest degradation efficiency for 0.018 mmol L-1 TBBPA was that 97.79% in the conditions of the 1.0 g L-1 Fe(BDC)(DMF,F)-OA-30 dosage and TBBPA:PS = 200:1. In addition, there was observed that no obvious change of the crystal structure, little the leachable iron concentration in the solutions and no significant loss of catalytic activities of Fe(BDC)(DMF,F)-OA-30 after 5th cycles. The iron valence state of Fe(BDC)(DMF,F)-OA-30 before and after degradation and electrochemical properties reveal that the partial substitution of organic ligands by octanoic acid, when removing OA and forming defects by heat and vacuum treatment to generate coordinatively unsaturated metal sites and accelerate the original transmission of electronic, leading to enhance the activity of persulfate activation for efficient removal TBBPA.
Collapse
Affiliation(s)
- Mei Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China.
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510006, China.
| | - Haiyuan Chi
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yanyan Xu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Shuying Qiu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
22
|
Chi H, Wan J, Ma Y, Wang Y, Ding S, Li X. Ferrous metal-organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:163-171. [PMID: 31158585 DOI: 10.1016/j.jhazmat.2019.05.081] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/24/2019] [Accepted: 05/26/2019] [Indexed: 05/27/2023]
Abstract
In the advanced oxidation system (AOPs) of persulfate (PS) activated by iron-based metal-organic frameworks (MOFs), aim at solving the problem on the treatment difficulty of wastewater with low concentration persistent organic pollutants (POPs), a new type of ferrous metal-organic frameworks (Fe(Ⅱ)-MOFs) with stronger coordinatively unsaturated metal sites (CUS) was successfully synthesized by different methods. The catalytic performance of Fe(Ⅱ)-MOFs was were obtained by the experiment of degrading dibutyl phthalate (DBP) through persulfate activation. It was found that the degradation efficiency of 0.018 mmol L-1 DBP was 86.73% under the conditions of 0.40 g L-1 and 2.70 mmol L-1 persulfate at a wide pH range. At the same time, the crystal structure and surface morphology of Fe(Ⅱ)-MOFs did not change significantly after reaction and it could still maintain the removal rate of 75.44% of the target pollutants in the fifth cycle. Furthermore, in the consideration of iron valence state of MOFs before and after reaction, and combined with the analysis of electrochemical properties, the possible mechanism of PS activation was proposed, namely the metastable electron layer inside ferrous ions produced the internal power to accelerate the electron transfer in CUS, leading to improve the activity of the catalyst.
Collapse
Affiliation(s)
- Haiyuan Chi
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China.
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China.
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China.
| | - Su Ding
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Xitong Li
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Sharma VK, Feng M. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:3-16. [PMID: 28993029 DOI: 10.1016/j.jhazmat.2017.09.043] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 05/29/2023]
Abstract
This paper presents a review on the environmental applications of metal-organic frameworks (MOFs), which are inorganic-organic hybrid highly porous crystalline materials, prepared from metal ion/clusters and multidentate organic ligands. The emphases are made on the enhancement of the performance of advanced oxidation processes (AOPs) (photocatalysis, Fenton reaction methods, and sulfate radical (SO4-)-mediated oxidations) using MOFs materials. MOFs act as adsorption and light absorbers, leading to superior performance of photocatalytic processes. More recent examples of photocatalytic degradation of dyes are presented. Additionally, it is commonly shown that Fe-based MOFs exhibited excellent catalytic performance on the Fenton-based and SO4•--mediated oxidations of organic pollutants (e.g., dyes, phenol and pharmaceuticals). The significantly enhanced generation of reactive species such as OH and/or SO4- by both homogeneous and heterogeneous catalysis was proposed as the possible mechanism for water depollution. Based on the existing literature, the challenge and future perspectives in MOF-based AOPs are addressed.
Collapse
Affiliation(s)
- Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, 1266 TAMU College Station, TX 77843, USA.
| | - Mingbao Feng
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, 1266 TAMU College Station, TX 77843, USA
| |
Collapse
|
24
|
Application of Fe-MOFs in advanced oxidation processes. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03820-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
An S, Zhang G, Wang T, Zhang W, Li K, Song C, Miller JT, Miao S, Wang J, Guo X. High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C 3N 4) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS NANO 2018; 12:9441-9450. [PMID: 30183258 DOI: 10.1021/acsnano.8b04693] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ultra-small metal clusters have attracted great attention owing to their superior catalytic performance and extensive application in heterogeneous catalysis. However, the synthesis of high-density metal clusters is very challenging due to their facile aggregation. Herein, one-step pyrolysis was used to synthesize ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride with high density (iron loading up to 18.2 wt %), evidenced by high-angle annular dark field-scanning transmission electron microscopy, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and 57Fe Mössbauer spectroscopy. The catalysts exhibit enhanced activity and stability in degrading various organic samples in advanced oxidation processes. The drastically increased metal site density and stability provide useful insights into the design and synthesis of cluster catalysts for practical application in catalytic oxidation reactions.
Collapse
Affiliation(s)
- Sufeng An
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
| | - Guanghui Zhang
- Davidson School of Chemical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Tingwen Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
| | - Wenna Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , 116023 , PR China
| | - Keyan Li
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Shu Miao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , 116023 , PR China
| | - Junhu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , 116023 , PR China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
| |
Collapse
|
26
|
Pu M, Guan Z, Ma Y, Wan J, Wang Y, Brusseau ML, Chi H. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. APPLIED CATALYSIS. A, GENERAL 2018; 549:82-92. [PMID: 29353965 PMCID: PMC5772938 DOI: 10.1016/j.apcata.2017.09.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A series of MIL-53(Fe) materials were synthesized using a solvothermal method under different temperature and time conditions and were used as catalysts to activate persulfate and degrade Orange G (OG). Influences of the above conditions on the crystal structure and catalytic behavior were investigated. Degradation of OG under different conditions was evaluated, and the possible activation mechanism was speculated. The results indicate that high synthesis temperature (larger than 170 °C) leads to poor crystallinity and low catalytic activity, while MIL-53(Fe) cannot fully develop at low temperature (100 or 120 °C). The extension of synthesis time from 5 h to 3 d can increase the crystallinity of the samples, but weakened the catalytic activity, which was caused by the reduction of BET surface area and the amount of Fe (II)-coordinative unsaturated sites. Among all the samples, MIL-53(Fe)-A possesses the best crystal structure and catalytic activity. In optimal conditions, OG can be totally decolorized after degradation for 90 min, and a removal rate of 74% for COD was attained after 120 min. The initial solution pH had great influence on OG degradation, with the greatest removal in acidic pH environment. ESR spectra showed that sulfate radical (SO4- ·), hydroxyl radical (OH·), persulfate radical (S2O8- ·), and superoxide radical (O2·) exist in this system under acidic conditions. Furthermore, with the increase of pH, the relative amount of O2· increases while that of OH· and SO4- · decreases, resulting in a reduced oxidizing capacity of the system.
Collapse
Affiliation(s)
- Mengjie Pu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Department of Soil, Water and Environmental Science, School of Earth and Environmental Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Zeyu Guan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mark L. Brusseau
- Department of Soil, Water and Environmental Science, School of Earth and Environmental Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Haiyuan Chi
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Liu X, Zhou Y, Zhang J, Tang L, Luo L, Zeng G. Iron Containing Metal-Organic Frameworks: Structure, Synthesis, and Applications in Environmental Remediation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20255-20275. [PMID: 28548822 DOI: 10.1021/acsami.7b02563] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) with Fe content are gradually developing into an independent branch in environmental remediation, requiring economical, effective, low-toxicity strategies to the complete procedure. In this review, recent advancements in the structure, synthesis, and environmental application focusing on the mechanism are presented. The unique structure of novel design proposed specific characteristics of different iron-containing MOFs with potential innovation. Synthesis of typical MILs, NH2-MILs and MILs based materials reveal the basis and defect of the current method, indicating the optimal means for the actual requirements. The adsorption of various contamination with multiple interaction as well as the catalytic degradation over radicals or electron-hole pairs are reviewed. This review implied considerable prospects of iron-containing MOFs in the field of environment and a more comprehensive cognition into the challenges and potential improvement.
Collapse
Affiliation(s)
- Xiaocheng Liu
- College of Resources and Environment, Hunan Agricultural University , Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University , Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University , Changsha 410128, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University , Changsha 410082, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University , Changsha 410128, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University , Changsha 410082, China
| |
Collapse
|
28
|
Hu S, Liu M, Li K, Song C, Zhang G, Guo X. Surfactant-assisted synthesis of hierarchical NH2-MIL-125 for the removal of organic dyes. RSC Adv 2017. [DOI: 10.1039/c6ra25745c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hierarchical NH2-MIL-125 were synthesized and an excellent dye removal performance was obtained.
Collapse
Affiliation(s)
- Shen Hu
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Min Liu
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Keyan Li
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Guoliang Zhang
- College of Biological and Environmental Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
29
|
Sun Q, Liu M, Li K, Han Y, Zuo Y, Chai F, Song C, Zhang G, Guo X. Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00441e] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Results show that the incorporation of Mn can significantly promote the catalytic process, Co exhibits no obviously favorable behavior, and Ni presents an apparently inhibitory impact.
Collapse
Affiliation(s)
- Qiao Sun
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Min Liu
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Keyan Li
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yitong Han
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yi Zuo
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Fanfan Chai
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Guoliang Zhang
- College of Biological and Environmental Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
30
|
Gogoi A, Navgire M, Sarma KC, Gogoi P. Novel highly stable β-cyclodextrin fullerene mixed valent Fe-metal framework for quick Fenton degradation of alizarin. RSC Adv 2017. [DOI: 10.1039/c7ra06447k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Degradation of alizarin by β-cyclodextrin supported magnetic nanoscaled fullerene/Fe3O4 (CDFMNPs) catalyst in a heterogeneous Fenton reaction.
Collapse
Affiliation(s)
- Aniruddha Gogoi
- Department of Instrumentation & USIC
- Gauhati University
- Guwahati 781014
- India
| | - Madhukar Navgire
- Department of Chemistry
- Jijamata College of Science & Arts
- Ahmadnagar
- India
| | | | - Parikshit Gogoi
- Department of Chemistry
- Nowgong College
- Nagaon 782001
- India
- School of Chemical and Biomolecular Engineering
| |
Collapse
|
31
|
Abeykoon B, Grenèche JM, Jeanneau E, Chernyshov D, Goutaudier C, Demessence A, Devic T, Fateeva A. Tuning the iron redox state inside a microporous porphyrinic metal organic framework. Dalton Trans 2017; 46:517-523. [DOI: 10.1039/c6dt04208b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuning the iron redox state inside a microporous porphyrinic metal organic framework.
Collapse
Affiliation(s)
- Brian Abeykoon
- Univ Lyon
- Université Claude Bernard Lyon 1
- Laboratoire des Multimatériaux et Interfaces
- UMR CNRS 5615
- F-69622 Villeurbanne
| | - Jean-Marc Grenèche
- Institut des Molécules et Matériaux du Mans
- UMR CNRS 6283 Université du Maine – Avenue Olivier Messiaen
- 72085 Le Mans
- France
| | - Erwann Jeanneau
- Univ Lyon
- Université Claude Bernard Lyon 1
- Laboratoire des Multimatériaux et Interfaces
- UMR CNRS 5615
- F-69622 Villeurbanne
| | | | - Christelle Goutaudier
- Univ Lyon
- Université Claude Bernard Lyon 1
- Laboratoire des Multimatériaux et Interfaces
- UMR CNRS 5615
- F-69622 Villeurbanne
| | - Aude Demessence
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon
- Université Claude Bernard Lyon 1
- CNRS UMR 5256
- Villeurbanne
- France
| | - Thomas Devic
- Institut Lavoisier
- UMR CNRS 8180
- Université de Versailles Saint-Quentin-en-Yvelines
- 78035 Versailles cedex
- France
| | - Alexandra Fateeva
- Univ Lyon
- Université Claude Bernard Lyon 1
- Laboratoire des Multimatériaux et Interfaces
- UMR CNRS 5615
- F-69622 Villeurbanne
| |
Collapse
|
32
|
Dhakshinamoorthy A, Asiri AM, Garcia H. Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00695g] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review illustrates the recent developments in heterogeneous catalysis using mixed metal or mixed linker MOFs.
Collapse
Affiliation(s)
| | - Abdullah M. Asiri
- Centre of Excellence for Advanced Materials Research
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química CSIV-UPV
- Universitat Politecnica de Valencia
- Valencia
- Spain
- Centre of Excellence for Advanced Materials Research
| |
Collapse
|