1
|
Zhou H, Jia J, Tang L, Shen D, Hu L, Long Y. Risk of hydrogen sulfide pollution from pressure release resulting from landfill mining. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135405. [PMID: 39106728 DOI: 10.1016/j.jhazmat.2024.135405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Landfill mining (LFM) has gained widespread recognition due to its benefits in terms of resource utilization of landfill waste and reuse of landfill sites. However, it is important to thoroughly assess the associated environmental risks. This study simulated the pressure release induced from LFM in small-scale batch anaerobic reactors subject to different initial pressures (0.2-0.6 MPa). The potential risk of hydrogen sulfide (H2S) pollution resulting from pressure release caused by LFM was investigated. The results demonstrated that the concentration of H2S significantly increased following the simulated pressure treatments. At the low (25 °C) and high (50 °C) temperatures tested, the peak H2S concentration reached 19366 and 24794 mg·m-3, respectively. Both of these concentrations were observed under highest initial pressure condition (0.6 MPa). However, the duration of H2S release was remarkably longer (>90 days) at the low temperature tested. Microbial diversity analysis results revealed that, at tested low temperature, the sulfate-reducing bacteria (SRB) communities of various pressure-bearing environments became phylogenetically similar following the pressure releases. In contrast, at the high temperature tested, specific SRB genera (Desulfitibacter and Candidatus Desulforudis) showed further enrichment. Moreover, the intensified sulfate reduction activity following pressure release was attributed to the enrichment of specific SRBs, including Desulfovibrio (ASV585 and ASV1417), Desulfofarcimen (ASV343), Candidatus Desulforudis (ASV24), and Desulfohalotomaculum (ASV506 and ASV2530). These results indicate that the pressure release associated with LFM significantly increases the amount of H2S released from landfills, and the SRB communities have different response mechanisms to pressure release at different temperature conditions. This study highlights the importance of considering the potential secondary environmental risks associated with LFM.
Collapse
Affiliation(s)
- Haomin Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jia Jia
- Zhejiang Huanneng Environment Technology Co., Ltd., Hangzhou 310012, China
| | - Lu Tang
- Hangzhou Environmental Protection Co., Ltd., Hangzhou 310000, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China.
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
2
|
Lehmusto J, Tesfaye F, Karlström O, Hupa L. Ashes from challenging fuels in the circular economy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:211-231. [PMID: 38342059 DOI: 10.1016/j.wasman.2024.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
In line with the objectives of the circular economy, the conversion of waste streams to useful and valuable side streams is a central goal. Ash represents one of the main industrial side-products, and using ashes in other than the present landfilling applications is, therefore, a high priority. This paper reviews the properties and utilization of ashes of different biomass power plants and waste incinerations, with a focus on the past decade. Possibilities for ash utilization are of uttermost importance in terms of circular economy and disposal of landfills. However, considering its applicability, ash originating from the heat treatment of chemically complex fuels, such as biomass and waste poses several challenges such as high heavy metal content and the presence of toxic and/or corrosive species. Furthermore, the physical properties of the ash might limit its usability. Nevertheless, numerous studies addressing the utilization possibilities of challenging ash in various applications have been carried out over the past decade. This review, with over 300 references, surveys the field of research, focusing on the utilization of biomass and municipal solid waste (MSW) ashes. Also, metal and phosphorus recovery from different ashes is addressed. It can be concluded that the key beneficial properties of the ash types addressed in this review are based on their i) alkaline nature suitable for neutralization reactions, ii) high adsorption capabilities to be used in CO2 capture and waste treatment, and iii) large surface area and appropriate chemical composition for the catalyst industry. Especially, ashes rich in Al2O3 and SiO2 have proven to be promising alternative catalysts in various industrial processes and as precursors for synthetic zeolites.
Collapse
Affiliation(s)
- Juho Lehmusto
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland.
| | - Fiseha Tesfaye
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Oskar Karlström
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland; Industrial Engineering and Management, University of Turku, Vesilinnantie 5, 20500 FI-20500 Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| |
Collapse
|
3
|
Funari V, Toller S, Vitale L, Santos RM, Gomes HI. Urban mining of municipal solid waste incineration (MSWI) residues with emphasis on bioleaching technologies: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59128-59150. [PMID: 37041362 DOI: 10.1007/s11356-023-26790-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
Metals are essential in our daily lives and have a finite supply, being simultaneously contaminants of concern. The current carbon emissions and environmental impact of mining are untenable. We need to reclaim metals sustainably from secondary resources, like waste. Biotechnology can be applied in metal recovery from waste streams like fly ashes and bottom ashes of municipal solid waste incineration (MSWI). They represent substantial substance flows, with roughly 46 million tons of MSWI ashes produced annually globally, equivalent in elemental richness to low-grade ores for metal recovery. Next-generation methods for resource recovery, as in particular bioleaching, give the opportunity to recover critical materials and metals, appropriately purified for noble applications, in waste treatment chains inspired by circular economy thinking. In this critical review, we can identify three main lines of discussion: (1) MSWI material characterization and related environmental issues; (2) currently available processes for recycling and metal recovery; and (3) microbially assisted processes for potential recycling and metal recovery. Research trends are chiefly oriented to the potential exploitation of bioprocesses in the industry. Biotechnology for resource recovery shows increasing effectiveness especially downstream the production chains, i.e., in the waste management sector. Therefore, this critical discussion will help assessing the industrial potential of biotechnology for urban mining of municipal, post-combustion waste.
Collapse
Affiliation(s)
- Valerio Funari
- Institute of Marine Sciences (ISMAR-CNR), Department of Earth System Sciences and Environmental Technologies, National Research Council of Italy (CNR), Bologna Research Area, 40129, Bologna, Italy.
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Via Ammiraglio F. Acton 55, 80133, Napoli, Italy.
| | - Simone Toller
- Institute of Marine Sciences (ISMAR-CNR), Department of Earth System Sciences and Environmental Technologies, National Research Council of Italy (CNR), Bologna Research Area, 40129, Bologna, Italy
- Department of Chemical, Life and Environmental Sustainability Sciences (SCVSA), University of Parma, Parco Area delle Scienze, 17/A, Parma, Italy
| | - Laura Vitale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Via Ammiraglio F. Acton 55, 80133, Napoli, Italy
| | - Rafael M Santos
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Helena I Gomes
- Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
4
|
Ghazali E, Johari MAM, Fauzi MA, Nor NM. An Overview of Characterisation, Utilisation, and Leachate Analysis of Clinical Waste Incineration Ash. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:69. [PMID: 35992579 PMCID: PMC9379226 DOI: 10.1007/s41742-022-00455-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
As industrial globalisation and waste output continue to grow, solid waste management is one of the most pressing worldwide environmental challenges. Solid wastes include both the heterogeneous mass of urban throwaways and the homogeneous accumulations of agricultural, industrial, and mineral wastes. Clinical waste (CW) has a significant negative influence on both human health and the environment. To dispose hazardous CW, a proper waste management system should be necessary, and incineration should be the best possible option for reducing the volume of this hazardous waste. Incineration is being developed in Malaysia as a means of disposing clinical and hazardous waste. Currently, 170 common CW treatment facilities with 140 incinerators are accessible around the country. The combustion procedure kills pathogens and reduces waste volume and weight, but it leaves a solid residue known as clinical waste ash (CWA), which raises heavy metal, inorganic salt, and organic compound levels in the environment. Because metals are not eliminated during incineration, dumping CWA in a landfill could contaminate groundwater. Leachate is the liquid created when waste decomposes in a landfill and water filters through it. The most common method of disposing of CW ashes is to transfer them to a landfill. Landfills should install a top cover after closure for hazardous waste landfills. Due to a lack of space and the high expense of land disposal, recycling technologies and the reuse of ash in various systems have developed. Clinical waste incineration fly ash (CWIFA), a solid waste substance from CW incineration, typically includes mobile heavy metals and can cause significant pollution when reused. The standard requirement for removing CWIFA in dumpsites should be below the metal limit stated by the U.S. Environmental Protection Agency (USEPA). Much recent research on the usage of CWIFA has concentrated on mitigating their effects on the environment. Several studies have confirmed the utilisation of CWIFA in the construction field and agriculture to reduce the leaching of its hazardous components into the environment. Compressive strength decreased with the percentage amount of CWIFA due to the substitution of cement with CWIFA. CWIFA mix with 20% cement is the broad-scale application of CWIFA for geotechnical constructions. Heavy metals (Cd, Cu, Ni, Pb, and Zn) are strongly immobilised by the cementitious matrix. Solidification/stabilisation (S/S) materials can be dumped in landfills with less environmental protection than untreated waste. When utilising a CWIFA in mortar, the primary environmental concern is if any harmful materials leach out during the initial curing process or throughout the life of the mortar. Toxicity characteristic of leaching procedure (TCLP) analysis of all CWIFA specimens found amounts of heavy metals below regulatory limits. Solidification of waste with cement and solidified waste has become a popular way of minimising the atmosphere's emissions. The amount of CWIFA generated is expected to increase nationally and globally. There is an immediate need for further evaluation of ash leachate investigations for proper disposal and usage of ash in construction materials.
Collapse
Affiliation(s)
- Ezliana Ghazali
- School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Pulau Pinang Malaysia
| | - Megat Azmi Megat Johari
- School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Pulau Pinang Malaysia
| | - Mohd Azrizal Fauzi
- Centre for Civil Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
| | - Noorsuhada Md Nor
- Centre for Civil Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
| |
Collapse
|
5
|
Nowak P, Muir B, Solińska A, Franus M, Bajda T. Synthesis and Characterization of Zeolites Produced from Low-Quality Coal Fly Ash and Wet Flue Gas Desulphurization Wastewater. MATERIALS 2021; 14:ma14061558. [PMID: 33810082 PMCID: PMC8004866 DOI: 10.3390/ma14061558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
This study investigated a low-energy-consuming procedure for the synthesis of zeolite materials from coal fly ash (CFA). Materials containing zeolite phases, namely Na–X, Na–P1, and zeolite A, were produced from F–class fly ash, using NaOH dissolved in distilled water or in wastewater obtained from the wet flue gas desulphurization process, under atmospheric pressure at a temperature below 70 °C. The influence of temperature, exposure time, and alkaline solution concentration on the synthesized materials was tested. In addition, chemical, mineralogical, and textural properties of the obtained materials were determined by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and cation exchange capacity (CEC). Cd(II), Ni(II), NH4+ cation, and Se(VI) anion sorption experiments were conducted to compare the sorption properties of the produced synthetic zeolites with those of the commercially available ones. Zeolitization resulted in an increase of CEC (up to 30 meq/100 g) compared to raw CFA and enhanced the ability of the material to adsorb the chosen ions. The obtained synthetic zeolites showed comparable or greater sorption properties than natural clinoptilolite and synthetic Na–P1. They were also capable of simultaneously removing cationic and anionic compounds. The structural, morphological, and textural properties of the final product indicated that it could potentially be used as an adsorbent for various types of environmental pollutants.
Collapse
Affiliation(s)
- Paulina Nowak
- PGE Energia Ciepła S.A., Department of Research and Development, ul. Ciepłownicza 1, 31-587 Kraków, Poland
- Faculty of Geology, Geophysics and Environmental Protection, al., AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland; (B.M.); (A.S.); (T.B.)
- Correspondence: (P.N.); (M.F.); Tel.: +48-505-102-556 (P.N.)
| | - Barbara Muir
- Faculty of Geology, Geophysics and Environmental Protection, al., AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland; (B.M.); (A.S.); (T.B.)
| | - Agnieszka Solińska
- Faculty of Geology, Geophysics and Environmental Protection, al., AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland; (B.M.); (A.S.); (T.B.)
| | - Małgorzata Franus
- Department of Construction, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
- Correspondence: (P.N.); (M.F.); Tel.: +48-505-102-556 (P.N.)
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, al., AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland; (B.M.); (A.S.); (T.B.)
| |
Collapse
|
6
|
Tian Y, Bourtsalas ACT, Kawashima S, Ma S, Themelis NJ. Performance of structural concrete using Waste-to-Energy (WTE) combined ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:180-189. [PMID: 32892094 DOI: 10.1016/j.wasman.2020.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
In the U.S., about 27 million metric tons of municipal solid waste are used as fuel in Waste-to-Energy (WTE) power plants, generating about seven million tons of mixed bottom ash and fly ash (combined ash) annually, which are disposed of in landfills after metal separation. This study assessed the effect of using combined ash as a substitute of mined stone aggregates on the mechanical properties and leachability of cement mortar and concrete. The as-received combined ash was separated into three fractions: fine (<2 mm), medium (2-9.5 mm), and coarse (9.5-25 mm). The substitution of up to 100% of stone aggregate by the coarse and medium fractions of combined ash produced concrete with compressive strength exceeding 28 MPa after 28 days of curing. Similar results were obtained when the fine combined ash was used as a sand substitute, at 10 wt%, in mortar. The concrete specimens were subjected to several days of curing and mechanical testing. The results were comparable to the properties of commercial concrete products. The mechanical test results were supplemented by XRD and SEM analysis, and leachability tests by EPA Method 1313 showed that the optimal concrete products effectively immobilized the heavy metals in the combined ash.
Collapse
Affiliation(s)
- Yixi Tian
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA.
| | - A C Thanos Bourtsalas
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Shiho Kawashima
- Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USA
| | - Siwei Ma
- Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USA; Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Nickolas J Themelis
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Advances in Methods for Recovery of Ferrous, Alumina, and Silica Nanoparticles from Fly Ash Waste. CERAMICS-SWITZERLAND 2020. [DOI: 10.3390/ceramics3030034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fly ash or coal fly ash causes major global pollution in the form of solid waste and is classified as a “hazardous waste”, which is a by-product of thermal power plants produced during electricity production. Si, Al, Fe Ca, and Mg alone form more than 85% of the chemical compounds and glasses of most fly ashes. Fly ash has a chemical composition of 70–90%, as well as glasses of ferrous, alumina, silica, and CaO. Therefore, fly ash could act as a reliable and alternative source for ferrous, alumina, and silica. The ferrous fractions can be recovered by a simple magnetic separation method, while alumina and silica can be extracted by chemical or biological approaches. Alumina extraction is possible using both alkali- and acid-based methods, while silica is extracted by strong alkali, such as NaOH. Chemical extraction has a higher yield than the biological approaches, but the bio-based approaches are more environmentally friendly. Fly ash can also be used for the synthesis of zeolites by NaOH treatment of variable types, as fly ash is rich in alumino-silicates. The present review work deals with the recent advances in the field of the recovery and synthesis of ferrous, alumina, and silica micro and nanoparticles from fly ash.
Collapse
|
8
|
Ding Y, Xiong J, Zhou B, Wei J, Qian A, Zhang H, Zhu W, Zhu J. Odor removal by and microbial community in the enhanced landfill cover materials containing biochar-added sludge compost under different operating parameters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:679-690. [PMID: 31109570 DOI: 10.1016/j.wasman.2019.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/29/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Odor problem has become a growing concern for municipal solid waste (MSW) operators and communities located close to landfill sites. In this study, nine laboratory-scale landfill reactors were used to simulate in-situ odor control by a novel landfill cover material consisting of biochar-added sludge compost under various operating parameters. Characterization of odor removal and microbial community in the cover layer under various operating parameters was conducted using gas chromatograph-mass spectrometry and 454 high-throughput pyrosequencing, respectively. Results showed that H2S (76.9-86.0%) and volatile organic sulfur compounds (VOSCs) (12.3-21.7%) were dominant according to their theoretical generated odor concentrations. The total odor REs calculated using the theoretical odor concentrations in the landfill reactors were different than using the measured odor values, which were ranked from high to low as: R6 > R5 > R7 > R4 > R8 > R9 > R3 > R2 > R1, showing the largest discrepancy of 25.3%. The optimum combination of operating parameters based on the theoretical odor concentration was different with that based on the measured odor concentrations. Moreover, although Firmicutes (12.21-91.48%), Proteobacteria (3.55-51.03%), and Actinobacteria (4.01-47.39%) were in general the three major bacterial phyla found in the landfill covers, the detailed bacterial communities in the cover materials of the simulated reactors varied with various operating parameters. Alicyclobacillus and Tuberibacillus showed positive correlations with the removal efficiencies (REs) of chlorinated compounds, H2S, aromatic compounds, volatile organic sulfur compounds (VOSCs), and organic acids. The correlations of Rhodanobacter, Gemmatimonas, Flavisolibacter and Sphingomonas were strongly positive with ammonia RE and relatively positive with REs of organic acids, VOSCs, and aromatic compounds. These findings are instrumental in understanding the relationship between the structure of microbial communities and odor removal performances, and in developing techniques for in-situ odor control at landfills.
Collapse
Affiliation(s)
- Ying Ding
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China.
| | - Junsheng Xiong
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China; Hubei Academy of Environmental Sciences, Wuhan 430070, PR China
| | - Bowei Zhou
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Jiaojiao Wei
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Aiai Qian
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Hangjun Zhang
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Weiqin Zhu
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Jun Zhu
- Department of Biological & Agricultural Engineering, University of Arkansas, AR 72701, USA.
| |
Collapse
|