1
|
Gao X, Yin Y, Liu S, Dong K, Wang J, Guo C. Fucoidan-proanthocyanidins nanoparticles protect against cisplatin-induced acute kidney injury by activating mitophagy and inhibiting mtDNA-cGAS/STING signaling pathway. Int J Biol Macromol 2023:125541. [PMID: 37355076 DOI: 10.1016/j.ijbiomac.2023.125541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Fucoidan (FU) is a natural polymer from marine organisms, which has been widely studied and applied in drug delivery. In this study, FU nanoparticles loaded with proanthocyanidins (PCs) (FU/PCs NPs) were prepared and their effect and mechanism in protecting cisplatin-induced acute kidney injury (AKI) were studied. The in vitro studies confirmed that FU/PCs NPs increased the antioxidant activity of free PCs and protected the death of human kidney proximal tubule (HK-2) cells induced by cisplatin. Further mechanism studies showed that FU/PCs NPs protected the mitochondrial damage induced by cisplatin, activated mitophagy, inhibited the release of mitochondrial DNA (mtDNA), and inhibited the cGAS/STING signal pathway. The in vivo results also indicated that FU/PCs NPs protected cisplatin-induced AKI, including inhibiting the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels induced by cisplatin. The mechanism studies confirmed that cisplatin induced an increase in the expression of mitophagy-related protein Pink/Pakrin, mitochondrial mtDNA release and cGAS/STING expression in mice kidney tissues. Pre-administration of FU/PCs NPs further activated mitophagy, as well as inhibiting mtDNA release and cGAS/STING expression. In conclusion, our research proved the role of mitophagy-mtDNA-cGAS/STING signal was involved in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yulan Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kehong Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266273, Shandong, China.
| |
Collapse
|
2
|
Cao YL, Lin JH, Hammes HP, Zhang C. Flavonoids in Treatment of Chronic Kidney Disease. Molecules 2022; 27:molecules27072365. [PMID: 35408760 PMCID: PMC9000519 DOI: 10.3390/molecules27072365] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive systemic disease, which changes the function and structure of the kidneys irreversibly over months or years. The final common pathological manifestation of chronic kidney disease is renal fibrosis and is characterized by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. In recent years, numerous studies have reported the therapeutic benefits of natural products against modern diseases. Substantial attention has been focused on the biological role of polyphenols, in particular flavonoids, presenting broadly in plants and diets, referring to thousands of plant compounds with a common basic structure. Evidence-based pharmacological data have shown that flavonoids play an important role in preventing and managing CKD and renal fibrosis. These compounds can prevent renal dysfunction and improve renal function by blocking or suppressing deleterious pathways such as oxidative stress and inflammation. In this review, we summarize the function and beneficial properties of common flavonoids for the treatment of CKD and the relative risk factors of CKD.
Collapse
Affiliation(s)
- Yi-Ling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (J.-H.L.); (H.-P.H.)
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (J.-H.L.); (H.-P.H.)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Correspondence: ; Tel.: +86-027-85726712
| |
Collapse
|
3
|
Bardelčíková A, Miroššay A, Šoltýs J, Mojžiš J. Therapeutic and prophylactic effect of flavonoids in post-COVID-19 therapy. Phytother Res 2022; 36:2042-2060. [PMID: 35302260 PMCID: PMC9111001 DOI: 10.1002/ptr.7436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The high incidence of post-covid symptoms in humans confirms the need for effective treatment. Due to long-term complications across several disciplines, special treatment programs emerge for affected patients, emphasizing multidisciplinary care. For these reasons, we decided to look at current knowledge about possible long-term complications of COVID-19 disease and then present the effect of flavonoids, which could help alleviate or eliminate complications in humans after overcoming the COVID-19 infection. Based on articles published from 2003 to 2021, we summarize the flavonoids-based molecular mechanisms associated with the post-COVID-19 syndrome and simultaneously provide a complex view regarding their prophylactic and therapeutic potential. Review clearly sorts out the outcome of post-COVID-19 syndrome according particular body systems. The conclusion is that flavonoids play an important role in prevention of many diseases. We suggest that flavonoids as critical nutritional supplements, are suitable for the alleviation and shortening of the period associated with the post-COVID-19 syndrome. The most promising flavonoid with noteworthy therapeutic and prophylactic effect appears to be quercetin.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Andrej Miroššay
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Jindřich Šoltýs
- Institute of Parasitology, Slovak Academy of Science, Košice, Slovak Republic
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| |
Collapse
|
4
|
Riyadi PH, Atho'illah MF, Tanod WA, Rahmawati IS. Tilapia viscera hydrolysate extract alleviates oxidative stress and renal damage in deoxycorticosterone acetate-salt-induced hypertension rats. Vet World 2020; 13:2477-2483. [PMID: 33363344 PMCID: PMC7750208 DOI: 10.14202/vetworld.2020.2477-2483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023] Open
Abstract
Background and Aim: Hypertension is closely related to oxidative stress conditions, which increases malondialdehyde (MDA) expression and renal damage. Tilapia viscera hydrolysate extract (TVHE) contains compounds and peptides that act as antioxidants. This study aimed to investigate TVHE therapy effect on MDA levels and renal histological conditions in deoxycorticosterone acetate (DOCA)-salt-induced hypertension rats. Materials and Methods: Tilapia viscera were defatted and hydrolyzed using Alcalase enzyme to obtain TVHE. TVHE antioxidant activity was measured using the 1,1-diphenyl-2-picrylhydrazyl method. Fifteen Wistar male rats were divided into five groups: Normal control (without induced DOCA-salt), DOCA-salt, DOCA-salt+Captopril 5 mg/kg body weight (BW), DOCA-salt+TVHE 150 mg/kg BW, and DOCA-salt+TVHE 300 mg/kg BW. MDA level and renal histology were observed in each group. Results: TVHE half maximal inhibitory concentration values ranged from 3.87±0.35 μg/mL to 42.03±3.55 μg/mL, which were identified as in the very strong Blois category. TVHE and captopril therapy reduced MDA expression significantly (p<0.05) compared to DOCA-salt only. TVHE and captopril therapy also improved glomerular damage in DOCA-salt-induced hypertension rats. Conclusion: TVHE has antioxidant ability, decreased MDA level, and decreased glomerular damage in DOCA-salt-induced hypertension rats.
Collapse
Affiliation(s)
- Putut Har Riyadi
- Department of Fisheries Post Harvest Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang 1269, Central Java, Indonesia
| | - Mochammad Fitri Atho'illah
- Department of Biology, Faculty of Mathematics and Natural Science, Brawijaya University, Malang 65145, East Java, Indonesia
| | - Wendy Alexander Tanod
- Department of Fisheries Product Technology, Institute of Fisheries and Marine (Sekolah Tinggi Perikanan dan Kelautan), Palu 94118, Central Sulawesi, Indonesia.,Department of Fisheries and Marine Science, Politeknik Negeri Nusa Utara, Tahuna 95821, North Sulawesi, Indonesia
| | - Irma Sarita Rahmawati
- Department of Nutrition, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia
| |
Collapse
|
5
|
Grape Seed Proanthocyanidins Induce Apoptosis and Cell Cycle Arrest of HepG2 Cells Accompanied by Induction of the MAPK Pathway and NAG-1. Antioxidants (Basel) 2020; 9:antiox9121200. [PMID: 33260632 PMCID: PMC7760884 DOI: 10.3390/antiox9121200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignancies leading to death. Although radiotherapy and chemotherapy have certain effects, their side effects limit their therapeutic effect. Phytochemicals have recently been given more attention as promising resources for cancer chemoprevention or chemotherapy due to their safety. In this study, the effects of grape seed proanthocyanidins (GSPs) on the apoptosis, cell cycle, and mitogen-activated protein kinase (MAPK) pathway-related proteins and non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) expression of HepG2 cells were investigated. The results showed that GSPs inhibited the viability of HepG2 cells in a time- and dose-dependent manner, induced apoptosis and G2/M phase cell cycle arrest, and regulated cell cycle-related proteins, cyclin B1, cyclin-dependent kinase 1, and p21. GSPs also increased reactive oxygen species production and caspase-3 activity. In addition, GSPs also increased the expression of p-ERK, p-JNK, p-p38 MAPK and NAG-1, and GSPs-induced NAG-1 expression was related to the MAPK pathway-related proteins. These data suggest that GSPs may be promising phytochemicals for HCC chemoprevention or chemotherapy.
Collapse
|
6
|
Wang L, Huang W, Zhan J. Grape Seed Proanthocyanidins Induce Autophagy and Modulate Survivin in HepG2 Cells and Inhibit Xenograft Tumor Growth in Vivo. Nutrients 2019; 11:E2983. [PMID: 31817589 PMCID: PMC6950679 DOI: 10.3390/nu11122983] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide. Although radiotherapy and chemotherapy are effective in general, they present various side effects, significantly limiting the curative effect. Increasing evidence has shown that the dietary intake of phytochemicals plays an essential role in the chemoprevention or chemotherapy of tumors. In this work, HepG2 cells and nude mice with HepG2-derived xenografts were treated with grape seed proanthocyanidins (GSPs). The results showed that GSPs induced autophagy, and inhibition of autophagy increased apoptosis in HepG2 cells. In addition, GSPs also reduced the expression of survivin. Moreover, survivin was involved in GSPs-induced apoptosis. GSPs at 100 mg/kg and 200 mg/kg significantly inhibited the growth of HepG2 cells in nude mice without causing observable toxicity and autophagy, while inducing the phosphorylation of mitogen-activated protein kinase (MAPK) pathway-associated proteins, p-JNK, p-ERK and p-p38 MAPK and reducing the expression of survivin. These results suggested that GSPs might be promising phytochemicals against liver cancer.
Collapse
Affiliation(s)
| | | | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.W.); (W.H.)
| |
Collapse
|
7
|
Zhu J, Du C. Could grape-based food supplements prevent the development of chronic kidney disease? Crit Rev Food Sci Nutr 2019; 60:3054-3062. [PMID: 31631679 DOI: 10.1080/10408398.2019.1676195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jixiao Zhu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Chiu HF, Huang SL, Shen YC, Han YC, Venkatakri K, Wang CK. Inhibitory Effect of Grape Seed Polyphenol Extract and Vitamin C on Melanogenesis in Cultured B16-F1 Melanoma Cells. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.533.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Long M, Chen X, Wang N, Wang M, Pan J, Tong J, Li P, Yang S, He J. Proanthocyanidins Protect Epithelial Cells from Zearalenone-Induced Apoptosis via Inhibition of Endoplasmic Reticulum Stress-Induced Apoptosis Pathways in Mouse Small Intestines. Molecules 2018; 23:molecules23071508. [PMID: 29933637 PMCID: PMC6099583 DOI: 10.3390/molecules23071508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
This study evaluated the protective effect of proanthocyanidins (PCs) on reducing apoptosis in the mouse intestinal epithelial cell model MODE-K exposed to zearalenone (ZEA) through inhibition of the endoplasmic reticulum stress (ERS)-induced apoptosis pathway. Our results showed that PCs could reduce the rate of apoptosis in MODE-K cells exposed to ZEA (p < 0.01). PCs significantly increased the ZEA-induced antioxidant protective effects on the enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and on the content of GSH. PCs also significantly decreased the ZEA-induced increase in the content of malondialdehyde (MDA). The analysis indicated that ZEA increased both mRNA and protein expression levels of C/EBP homologous protein (CHOP), GRP78, c-Jun N-terminal kinase (JNK), and cysteinyl aspartate specific proteinase 12 (caspase-12) (p < 0.05), which are related to the ERS-induced apoptosis pathway. ZEA decreased levels of the pro-apoptotic related protein Bcl-2 (p < 0.05) and increased the anti-apoptotic related protein Bax (p < 0.05). Co-treatment with PCs was also shown to significantly reverse the expression levels of these proteins in MODE-K cells. The results demonstrated that PCs could protect MODE-K cells from oxidative stress and apoptosis induced by ZEA. The underlying mechanism may be that PCs can alleviate apoptosis in mouse intestinal epithelial cells by inhibition of the ERS-induced apoptosis pathway.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
10
|
Zhu FQ, Hu J, Lv FH, Cheng P, Gao S. Effects of oligomeric grape seed proanthocyanidins on L-NAME-induced hypertension in pregnant mice: Role of oxidative stress and endothelial dysfunction. Phytother Res 2018; 32:1836-1847. [PMID: 29851183 DOI: 10.1002/ptr.6119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/26/2023]
Abstract
The aim of this study was to investigate the effects of Grape Seed Proanthocyanidins (GSP) on Nω-Nitro-L-arginine methyl ester-induced hypertension in pregnant mice. Fifty Kunming mice were randomized into control, control + GSP, model, and model + GSP. Three weeks later, the artery systolic blood pressure was examined and the related pathological changes were detected. Aorta relaxation function was assessed by aorta ring apparatus. Blood urea nitrogen and serum creatinine were measured by an automatic biochemistry analyzer. Colorimetric analysis, enzyme-linked immunosorbent assay, immunofluorescence, and western blot were applied to detect related indicator in serum, cardiac, and kidney tissues. The results showed that GSP treatment for 3 weeks could improve cardiovascular and kidney remodeling indexes and decrease blood urea nitrogen and serum creatinine content in serum, as well as could ameliorate oxidative stress status and endothelial dysfunction. Therefore, it is for the first time found that GSP exerts protective effect against Nω-Nitro-L-arginine methyl ester-induced hypertension in pregnant mice, which provided a theoretical basis for potential application in the clinic.
Collapse
Affiliation(s)
- Feng-Qin Zhu
- Dept of Obstetrics and Gynecology, the Second Peoples Hospital of Hefei, Affiliated Hefei Hospital of Anhui Medical University, Hefei, 230011, China
| | - Juan Hu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Fa-Hui Lv
- Dept of Obstetrics and Gynecology, the Second Peoples Hospital of Hefei, Affiliated Hefei Hospital of Anhui Medical University, Hefei, 230011, China
| | - Pan Cheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
11
|
Vargas F, Romecín P, García-Guillén AI, Wangesteen R, Vargas-Tendero P, Paredes MD, Atucha NM, García-Estañ J. Flavonoids in Kidney Health and Disease. Front Physiol 2018; 9:394. [PMID: 29740333 PMCID: PMC5928447 DOI: 10.3389/fphys.2018.00394] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
This review summarizes the latest advances in knowledge on the effects of flavonoids on renal function in health and disease. Flavonoids have antihypertensive, antidiabetic, and antiinflammatory effects, among other therapeutic activities. Many of them also exert renoprotective actions that may be of interest in diseases such as glomerulonephritis, diabetic nephropathy, and chemically-induced kidney insufficiency. They affect several renal factors that promote diuresis and natriuresis, which may contribute to their well-known antihypertensive effect. Flavonoids prevent or attenuate the renal injury associated with arterial hypertension, both by decreasing blood pressure and by acting directly on the renal parenchyma. These outcomes derive from their interference with multiple signaling pathways known to produce renal injury and are independent of their blood pressure-lowering effects. Oral administration of flavonoids prevents or ameliorates adverse effects on the kidney of elevated fructose consumption, high fat diet, and types I and 2 diabetes. These compounds attenuate the hyperglycemia-disrupted renal endothelial barrier function, urinary microalbumin excretion, and glomerular hyperfiltration that results from a reduction of podocyte injury, a determinant factor for albuminuria in diabetic nephropathy. Several flavonoids have shown renal protective effects against many nephrotoxic agents that frequently cause acute kidney injury (AKI) or chronic kidney disease (CKD), such as LPS, gentamycin, alcohol, nicotine, lead or cadmium. Flavonoids also improve cisplatin- or methotrexate-induced renal damage, demonstrating important actions in chemotherapy, anticancer and renoprotective effects. A beneficial prophylactic effect of flavonoids has been also observed against AKI induced by surgical procedures such as ischemia/reperfusion (I/R) or cardiopulmonary bypass. In several murine models of CKD, impaired kidney function was significantly improved by the administration of flavonoids from different sources, alone or in combination with stem cells. In humans, cocoa flavanols were found to have vasculoprotective effects in patients on hemodialysis. Moreover, flavonoids develop antitumor activity against renal carcinoma cells with no toxic effects on normal cells, suggesting a potential therapeutic role in patients with renal carcinoma.
Collapse
Affiliation(s)
- Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - Paola Romecín
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Ana I García-Guillén
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Rosemary Wangesteen
- Departamento de Ciencias de la Salud, Area de Fisiología, Universidad de Jaén, Jaén, Spain
| | - Pablo Vargas-Tendero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - M Dolores Paredes
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Noemí M Atucha
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Joaquín García-Estañ
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
12
|
Proanthocyanidins block aldosterone-dependent up-regulation of cardiac gamma ENaC and Nedd4-2 inactivation via SGK1. J Nutr Biochem 2016; 37:13-19. [PMID: 27592201 DOI: 10.1016/j.jnutbio.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/10/2016] [Accepted: 07/15/2016] [Indexed: 11/21/2022]
Abstract
Aldosterone plays a central role in the development of cardiac pathological states involving ion transport imbalances, especially sodium transport. We have previously demonstrated a cardioprotective effect of proanthocyanidins in aldosterone-treated rats. Our objective was to investigate for the first time the effect of proanthocyanidins on serum and glucocorticoid-regulated kinase 1 (SGK1), epithelial Na+ channel (γ-ENaC), neuronal precursor cells expressed developmentally down-regulated 4-2 (Nedd4-2) and phosphoNedd4-2 protein expression in the hearts of aldosterone-treated rats. Male Wistar rats received aldosterone (1mg kg-1day-1)+1% NaCl for 3weeks. Half of the animals in each group were simultaneously treated with the proanthocyanidins-rich extract (80% w/w) (PRO80, 5mg kg-1day-1). Hypertension and diastolic dysfunction induced by aldosterone were abolished by treatment with PRO80. Expression of fibrotic, inflammatory and oxidative mediators were increased by aldosterone-salt administration and blunted by PRO80. Antioxidant capacity was improved by PRO80. The up-regulated aldosterone mediator SGK1, ENaC and p-Nedd4-2/total Nedd4-2 ratio were blocked by PRO80. PRO80 blunted aldosterone-mineralocorticoid-mediated up-regulation of ENaC provides new mechanistic insight of the beneficial effect of proanthocyanidins preventing the cardiac alterations induced by aldosterone excess.
Collapse
|
13
|
Liu W, Xu C, Sun X, Kuang H, Kuang X, Zou W, Yang B, Wu L, Liu F, Zou T, Zhang D. Grape seed proanthocyanidin extract protects against perfluorooctanoic acid-induced hepatotoxicity by attenuating inflammatory response, oxidative stress and apoptosis in mice. Toxicol Res (Camb) 2016; 5:224-234. [PMID: 30090339 PMCID: PMC6062257 DOI: 10.1039/c5tx00260e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/22/2015] [Indexed: 01/06/2023] Open
Abstract
Grape seed proanthocyanidin extract (GSPE) is a rich source of proanthocyanidins with multiple biological activities and potential health benefits. In the present study, we investigated the protective effect of GSPE against liver injury caused by perfluorooctanoic acid (PFOA) in mice and its possible mechanisms of action. Simultaneous treatment with GSPE for 14 consecutive days attenuated the functional and morphological changes in the liver of PFOA-exposed mice. Furthermore, simultaneous supplementation of GSPE reduced the production of inflammatory cytokines IL-6 and TNF-α, increased the expression of Nrf2 and its target antioxidant genes superoxide dismutase and catalase, and decreased the production of malondialdehyde and hydrogen peroxide in the liver of mice exposed to PFOA. Moreover, GSPE supplementation up-regulated the expression of anti-apoptotic protein Bcl-2 and down-regulated the expression of pro-apoptotic proteins p53 and Bax, with a decreased activity of caspase-3 in the liver of PFOA-treated mice. These findings suggest that GSPE ameliorates PFOA-induced inflammatory response, oxidative stress and apoptosis in the liver of mice.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Changshui Xu
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Xi Sun
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Haibin Kuang
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Xiaodong Kuang
- Department of Pathology , Medical College of Nanchang University , Nanchang 330006 , PR China
| | - Weiying Zou
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Bei Yang
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Lei Wu
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Fangming Liu
- Office of Academic Affairs , Medical College of Nanchang University , Nanchang 330006 , PR China
| | - Ting Zou
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Dalei Zhang
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| |
Collapse
|