1
|
Zai Y, Wang Z, Ding Y, Min C, Liu Y, Zhao H, Su E, He N. Gravity-driven flow control in a fully integrated microfluidic cartridge for molecular point-of-care testing. Electrophoresis 2024; 45:1142-1154. [PMID: 38072650 DOI: 10.1002/elps.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 07/13/2024]
Abstract
Molecular point-of-care testing (POCT) system is crucial for the timely prevention and control of infectious diseases. We recently proposed a gravity-driven microfluidic cartridge for molecular POCT detection, without the need for external sources or actuators, demonstrating the advantages in terms of the reduced cartridge size and low development costs. How to achieve precise control of liquid flow behavior is challenging for the gravity-driven cartridge. In this work, we explored the underlying mechanism of flow control in the cartridge and offered optimized solutions for our cartridge design to achieve precise control of dynamic flow rates and enhance pumping efficiency significantly. Through the computational fluid dynamics simulations, we demonstrated that adopting an asymptotic contraction chamber geometry design and a closed-loop air flow channel design with the cartridge inlet can facilitate stable laminar flow of the liquid in our microfluidic cartridge, enabling precise control of flow velocity. We further optimized the microchannel diameter and the contact angle of the liquid with the microchannel wall. The effectiveness of the optimized cartridge for POCT detection was well validated by the accurate detection of the human papillomavirus type 16 virus in the 120 clinical swab samples.
Collapse
Affiliation(s)
- Yunfeng Zai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
- Getein Biotechnology Co., Ltd, Nanjing, P. R. China
| | - Zunliang Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Yongjun Ding
- Getein Biotechnology Co., Ltd, Nanjing, P. R. China
| | - Chao Min
- Getein Biotechnology Co., Ltd, Nanjing, P. R. China
| | - Yuan Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
- Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Huan Zhao
- Getein Biotechnology Co., Ltd, Nanjing, P. R. China
| | - Enben Su
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
- Getein Biotechnology Co., Ltd, Nanjing, P. R. China
| | - Nongyue He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| |
Collapse
|
2
|
Nguyen T, Chidambara VA, Andreasen SZ, Golabi M, Huynh VN, Linh QT, Bang DD, Wolff A. Point-of-care devices for pathogen detections: The three most important factors to realise towards commercialization. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Ye X, Li Y, Fang X, Kong J. Integrated Microfluidic Sample-to-Answer System for Direct Nucleic Acid-Based Detection of Group B Streptococci in Clinical Vaginal/Anal Swab Samples. ACS Sens 2020; 5:1132-1139. [PMID: 32133842 DOI: 10.1021/acssensors.0c00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The group B Streptococcus (GBS) is a type of pathogen that seriously threatens the health of mothers and infants. Prompt and timely diagnosis is crucial for good patient outcomes. However, the traditional bacterial culture and polymerase chain reaction methods are limited by their speed and involve complex operating procedures. Herein, we successfully established an integrated microfluidic sample-to-answer system for nucleic acid-based detection of GBS directly in vaginal/anal swab samples. Meanwhile, we demonstrated a dynamical reaction mechanism of Bst/FEN1-based nucleic acid amplification, which differs from traditional Bst-based isothermal amplification strategies. The system integrates cell lysis and nucleic acid purification, separation, amplification, and detection, enabling rapid (about 45 min to the entire analysis) and highly accurate (98% accuracy) analysis in a clinical setting. Experimental results show that the system offers a good detection limit (500 CFU/mL), perfect specificity (no cross-reactivity with 25 other common pathogens), excellent stability (coefficient of variation less than 3%), and good anti-interference performance. This novel system holds great potential as a nucleic acid-based diagnostic tool in clinical applications for detecting not only GBS but also other types of pathogens.
Collapse
Affiliation(s)
- Xin Ye
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Yang Li
- Shanghai Suxin Biotechnology Company Ltd and Suchuang Diagnostic Products Company, Ltd, Shanghai 201318, P. R. China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Shi B, Li Y, Wu D, Wu W. A handheld continuous-flow real-time fluorescence qPCR system with a PVC microreactor. Analyst 2020; 145:2767-2773. [PMID: 32095799 DOI: 10.1039/c9an01894h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The polymerase chain reaction (PCR) has unique advantages of sensitivity, specificity and rapidity in pathogen detection, which makes it at the forefront of academia and application in molecular biology diagnosis. In this study, we proposed a hand-held real-time fluorescence qPCR system, which can be used for the quantitative analysis of nucleic acid molecules. For the first time, we use a PVC microreactor which improved the transmittance of the microreactor and made it easy to collect the fluorescence signal. In order to make it portable, the system adopted a passive syringe for sample injection and integrated temperature control and detection with a lithium battery for power supply. What's more, the fluorescence signal was captured by using a smartphone through an external automatic robotic arm. This real-time qPCR system can detect genomic DNA of the H7N9 avian influenza over four orders of magnitude of concentration from 107 to 104 copies per μL. In addition, it was verified that the fluorescence images obtained by this system were clearer than those obtained by a traditional system (using a PTFE spatial PCR microreactor) with two typical dyes and a probe tested-EvaGreen, SYBR Green and FAM.
Collapse
Affiliation(s)
- Bing Shi
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yuanming Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, 130033, China.
| | - Di Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Wenming Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
5
|
Nguyen T, Chidambara Vinayaka A, Duong Bang D, Wolff A. A Complete Protocol for Rapid and Low-Cost Fabrication of Polymer Microfluidic Chips Containing Three-Dimensional Microstructures Used in Point-of-Care Devices. MICROMACHINES 2019; 10:mi10090624. [PMID: 31546811 PMCID: PMC6780813 DOI: 10.3390/mi10090624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
This protocol provides insights into the rapid, low-cost, and largescale fabrication of polymer microfluidic chips containing three-dimensional microstructures used in point-of-care devices for applications such as detection of pathogens via molecular diagnostic methods. The details of the fabrication methods are described in this paper. This study offers suggestions for researchers and experimentalists, both at university laboratories and in industrial companies, to prevent doom fabrication issues. For a demonstration of bio-application in point-of-care testing, the 3D microarrays fabricated are then employed in multiplexed detection of Salmonella (Salmonella Typhimurium and Salmonella Enteritidis), based on a molecular detection technique called solid-phase polymerase chain reaction (SP-PCR).
Collapse
Affiliation(s)
- Trieu Nguyen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark.
| | - Aaydha Chidambara Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Division of Microbiology and Production, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, DK 2800 Lyngby, Denmark.
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Division of Microbiology and Production, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, DK 2800 Lyngby, Denmark.
| | - Anders Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Pham QN, Trinh KTL, Tran NKS, Park TS, Lee NY. Fabrication of 3D continuous-flow reverse-transcription polymerase chain reaction microdevice integrated with on-chip fluorescence detection for semi-quantitative assessment of gene expression. Analyst 2018; 143:5692-5701. [PMID: 30318528 DOI: 10.1039/c8an01739e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We fabricate a three-dimensional (3D) microdevice operated with minimal peripheral accessories, including a portable pump for semi-automated sample delivery and a single heater for temperature control, for performing reverse transcription polymerase chain reaction (RT-PCR) integrated with a downstream fluorescence detection module for semi-quantitative assessment of gene expression. The microdevice was fabricated by wrapping a polytetrafluoroethylene (PTFE) tube around a pre-designed polycarbonate mold to create a seamless microchannel for both the reverse transcription (RT) of RNA and the amplification of complementary DNA. In addition, a silicone tube, which underwent a two-step surface modification mediated by polyethyleneimine and glutaraldehyde coating, was connected at the outlet to capture amplicons downstream of the PTFE tube for on-site fluorescence detection. This fabrication method enabled continuous-flow RT-PCR (CF RT-PCR) using the 3D CF RT-PCR microdevice as a reactor, a single heater for the temperature control of both RT and PCR processes, and a disposable plastic syringe for semi-automated sample delivery. The microdevice was successfully implemented for the identification of the β-actin gene, a constitutively expressed gene in all cells, and the sphingosine-1-phosphate lyase 1 gene, a potential pharmacological target gene in the diagnosis of cancer, diabetes, and atherosclerosis. This portable integrated microdevice offers a potential approach towards preliminary studies of gene expression and identification of RNA viruses.
Collapse
Affiliation(s)
- Quang Nghia Pham
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | | | | | | | | |
Collapse
|
7
|
Nguyen T, Zoëga Andreasen S, Wolff A, Duong Bang D. From Lab on a Chip to Point of Care Devices: The Role of Open Source Microcontrollers. MICROMACHINES 2018; 9:mi9080403. [PMID: 30424336 PMCID: PMC6187319 DOI: 10.3390/mi9080403] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
Microcontrollers are programmable, integrated circuit chips. In the last two decades, their applications to industrial instruments, vehicles, and household appliances have reached the extent that microcontrollers are now the number-one selling electronic chip of all kinds. Simultaneously, the field of lab-on-a-chip research and technology has seen major technological leaps towards sample handling, sample preparation, and sensing for use in molecular diagnostic devices. Yet, the transformation from a laboratory based lab-on-a-chip technology to actual point-of-care device products has largely been limited to a fraction of the foreseen potential. We believe that increased knowledge of the vast possibilities that becomes available with open source microcontrollers, especially when embedded in easy-to-use development environments, such as the Arduino or Raspberry Pi, could potentially solve and even bridge the gap between lab-on-a-chip technology and real-life point of care applications. The profuse availability and extraordinary capabilities of microcontrollers, namely within computation, communication, and networking, combined with easy-to-use development environments, as well as a very active and fast moving community of makers, who are eager to share their knowledge, could potentially be the difference between a dreadful “chip-in-a-lab”-situation, and the next successful start-up. Here follows a brief insight into how open source microcontrollers could potentially have a transformative effect on the field of lab-on-a-chip research and technology. Details in some specific areas of application are briefly treated before addressing challenges and future perspectives.
Collapse
Affiliation(s)
- Trieu Nguyen
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), DK-2800 Kongens Lyngby, Denmark.
| | - Sune Zoëga Andreasen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kongens Lyngby, Denmark.
| | - Anders Wolff
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kongens Lyngby, Denmark.
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Zhang L, Ding B, Chen Q, Feng Q, Lin L, Sun J. Point-of-care-testing of nucleic acids by microfluidics. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Nanayakkara IA, Cao W, White IM. Simplifying Nucleic Acid Amplification from Whole Blood with Direct Polymerase Chain Reaction on Chitosan Microparticles. Anal Chem 2017; 89:3773-3779. [DOI: 10.1021/acs.analchem.7b00274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Imaly A. Nanayakkara
- Fischell
Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Weidong Cao
- Canon U.S. Life Sciences, Inc., Rockville, Maryland 20850, United States
| | - Ian M. White
- Fischell
Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-Care Diagnostics: Recent Developments in a Connected Age. Anal Chem 2017; 89:102-123. [PMID: 27958710 PMCID: PMC5793870 DOI: 10.1021/acs.analchem.6b04630] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samiksha Nayak
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Nicole R. Blumenfeld
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Tassaneewan Laksanasopin
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
11
|
A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future. Anal Chim Acta 2016; 914:7-16. [DOI: 10.1016/j.aca.2016.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 12/23/2022]
|