1
|
Li M, Zeng Y, Huang Z, Zhang L, Liu Y. Vertical Graphene-Based Printed Electrochemical Biosensor for Simultaneous Detection of Four Alzheimer's Disease Blood Biomarkers. BIOSENSORS 2023; 13:758. [PMID: 37622844 PMCID: PMC10452345 DOI: 10.3390/bios13080758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
Early detection and timely intervention play a vital role in the effective management of Alzheimer's disease. Currently, the diagnostic accuracy for Alzheimer's disease based on a single blood biomarker is relatively low, and the combined use of multiple blood biomarkers can greatly improve diagnostic accuracy. Herein, we report a printed electrochemical biosensor based on vertical graphene (VG) modified with gold nanoparticles (VG@nanoAu) for the simultaneous detection of four Alzheimer's disease blood biomarkers. The printed electrochemical electrode array was constructed by laser etching and inkjet printing. Then gold nanoparticles were modified onto the working electrode surface via electrodeposition to further improve the sensitivity of the sensor. In addition, the entire printed electrochemical sensing system incorporates an electrochemical micro-workstation and a smartphone. The customized electrochemical micro-workstation incorporates four electro-chemical control chips, enabling the sensor to simultaneously analyze four biomarkers. Consequently, the printed electrochemical sensing system exhibits excellent analytical performance due to the large surface area, biocompatibility, and good conductivity of VG@nanoAu. The detection limit of the sensing system for Aβ40, Aβ42, T-tau, and P-tau181 was 0.072, 0.089, 0.071, and 0.051 pg/mL, respectively, which meets the detection requirements of Alzheimer's disease blood biomarkers. The printed electrochemical sensing system also exhibits good specificity and stability. This work has great value and promising prospects for early Alzheimer's disease diagnosis using blood biomarkers.
Collapse
Affiliation(s)
| | | | | | - Lingyan Zhang
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (M.L.); (Y.Z.); (Z.H.)
| | - Yibiao Liu
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (M.L.); (Y.Z.); (Z.H.)
| |
Collapse
|
2
|
Seifert A, Drechsler H, Japtok J, Korten T, Diez S, Hermann A. The ALS-Associated FUS (P525L) Variant Does Not Directly Interfere with Microtubule-Dependent Kinesin-1 Motility. Int J Mol Sci 2021; 22:2422. [PMID: 33670886 PMCID: PMC7957795 DOI: 10.3390/ijms22052422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Deficient intracellular transport is a common pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the fused-in-sarcoma (FUS) gene are one of the most common genetic causes for familial ALS. Motor neurons carrying a mutation in the nuclear localization sequence of FUS (P525L) show impaired axonal transport of several organelles, suggesting that mislocalized cytoplasmic FUS might directly interfere with the transport machinery. To test this hypothesis, we studied the effect of FUS on kinesin-1 motility in vitro. Using a modified microtubule gliding motility assay on surfaces coated with kinesin-1 motor proteins, we showed that neither recombinant wildtype and P525L FUS variants nor lysates from isogenic ALS-patient-specific iPSC-derived spinal motor neurons expressing those FUS variants significantly affected gliding velocities. We hence conclude that during ALS pathogenesis the initial negative effect of FUS (P525L) on axonal transport is an indirect nature and requires additional factors or mechanisms.
Collapse
Affiliation(s)
- Anne Seifert
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Hauke Drechsler
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
| | - Till Korten
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Stefan Diez
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
3
|
Interplay between Convective and Viscoelastic Forces Controls the Morphology of In Vitro Paclitaxel-Stabilized Microtubules. CRYSTALS 2020. [DOI: 10.3390/cryst10010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Microtubules (MTs) are self-assembling, high-aspect-ratio tubular nanostructures formed from the polymerization of tubulin protein. MTs are capable of globally assembling into optically birefringent morphologies, but there is disagreement on the mechanisms driving this behavior. We investigated the temporal evolution of paclitaxel (PTX)-stabilized MT solutions under a range of in vitro conditions. Significant morphological differences were observed in the polymerized PTX-MT solutions as a consequence of varying the orientation of the reaction vessel (vertical vs. horizontal), the type of heating source (hot plate vs. incubator), the incubation time, and the concentration of PTX (high vs. low). The most robust birefringent patterns were found only in vertically oriented cuvettes that were heated asymmetrically on a hot plate, suggesting dependence upon a convective flow, which we confirmed with a combination of optical and thermal imaging. Higher concentrations of PTX led to denser PTX-MT domain formation and brighter birefringence, due to more complete polymerization. Combining our experimental observations, we conclude that birefringent patterns arise principally through a combination of convective and viscoelastic forces, and we identify the sequence of dynamical stages through which they evolve.
Collapse
|
4
|
Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A. The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 2019; 14:11. [PMID: 31706327 PMCID: PMC6842214 DOI: 10.1186/s13064-019-0134-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Axons are the slender, cable-like, up to meter-long projections of neurons that electrically wire our brains and bodies. In spite of their challenging morphology, they usually need to be maintained for an organism's lifetime. This makes them key lesion sites in pathological processes of ageing, injury and neurodegeneration. The morphology and physiology of axons crucially depends on the parallel bundles of microtubules (MTs), running all along to serve as their structural backbones and highways for life-sustaining cargo transport and organelle dynamics. Understanding how these bundles are formed and then maintained will provide important explanations for axon biology and pathology. Currently, much is known about MTs and the proteins that bind and regulate them, but very little about how these factors functionally integrate to regulate axon biology. As an attempt to bridge between molecular mechanisms and their cellular relevance, we explain here the model of local axon homeostasis, based on our own experiments in Drosophila and published data primarily from vertebrates/mammals as well as C. elegans. The model proposes that (1) the physical forces imposed by motor protein-driven transport and dynamics in the confined axonal space, are a life-sustaining necessity, but pose a strong bias for MT bundles to become disorganised. (2) To counterbalance this risk, MT-binding and -regulating proteins of different classes work together to maintain and protect MT bundles as necessary transport highways. Loss of balance between these two fundamental processes can explain the development of axonopathies, in particular those linking to MT-regulating proteins, motors and transport defects. With this perspective in mind, we hope that more researchers incorporate MTs into their work, thus enhancing our chances of deciphering the complex regulatory networks that underpin axon biology and pathology.
Collapse
Affiliation(s)
- Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Yu-Ting Liew
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Beatriz Costa-Gomes
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK.
| |
Collapse
|
5
|
Farhana TI, Nakagawa T, Ohara S, Shintaku H, Kotera H, Yokokawa R. Spatial Patterning of Kinesin-1 and Dynein Motor Proteins in an In Vitro Assay using Aqueous Two-Phase Systems (ATPS). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13003-13010. [PMID: 31510745 DOI: 10.1021/acs.langmuir.9b01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cooperativity of motor proteins is essential for intracellular transport. Although their motion is unidirectional, they often cause bidirectional movement by different types of motors as seen in organelles. However, in vitro assessments of such cellular functions are still inadequate owing to the experimental limitations in precisely patterning multiple motors. Here, we present an approach to immobilize two motor proteins, kinesin-1 and dynein, using the aqueous two-phase system (ATPS) made of poly(ethylene glycol) and dextran polymers. The negligible influence of polymer solutions on the attachment and velocity of motor proteins ensures the compatibility of using ATPS as the patterning technique. The selective fixation of kinesin and dynein was assessed using polarity-marked microtubules (PMMTs). Our experimental results show that on a patterned kinesin surface, 72% of PMMTs display minus-end leading motility, while on a dynein surface, 79% of PMMTs display plus-end leading motility. This work offers a universal and biocompatible method to pattern motor proteins of different classes at the nanoscale, providing a new route to study different cellular functions performed by molecular motors such as the formation of mitotic spindles.
Collapse
Affiliation(s)
- Tamanna Ishrat Farhana
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| | - Tomohiro Nakagawa
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| | - Shumpei Ohara
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| | - Hirofumi Shintaku
- Cluster for Pioneering Research, RIKEN , 2-1, Hirosawa , Wako , Saitama 351-0198 , Japan
| | | | - Ryuji Yokokawa
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| |
Collapse
|
6
|
Li F, Pan J, Choi JH. Local direction change of surface gliding microtubules. Biotechnol Bioeng 2019; 116:1128-1138. [PMID: 30659580 DOI: 10.1002/bit.26933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/30/2018] [Accepted: 01/16/2019] [Indexed: 11/07/2022]
Abstract
In vitro gliding assay, microtubule translocation by kinesin motor proteins on a surface, has been used as an engineering tool in analyte detection, molecular cargo transport, and other applications. Although controlling the moving direction is often necessary to realize these applications, current direction control methods focus largely on lithographic microfabrication of tracks or external fields on the microtubules. These methods are effective, but are relatively complicated. In addition, they cannot target particular microtubules without affecting others. In this study, we propose a facile approach that can make local direction changes for selected microtubules using a polystyrene particle as a circular motion center and a DNA double helix with streptavidin as a capture arm. The DNA arm captures a microtubule in the close proximity of the immobilized particle via biotin-streptavidin interaction and changes the moving direction ~10° on average. In contrast, no significant direction changes are observed other than random variations with streptavidin-less DNA arms (normal distribution centered at 0°), similar to regular motility assay. The particle-assisted local direction change scheme is compared with a flow field-based ensemble method. The combination of flow and kinesin interactions with each microtubule exerts a force to change the direction, ultimately aligning it to the flow field, regardless of its initial direction. A simple model based on the force balance predicts the time needed for such an alignment. Overall, the particle-based local scheme is distinct and different from ensemble methods such as crossflow that changes directions of all microtubules in the field, thus offering unique utility in engineering applications.
Collapse
Affiliation(s)
- Feiran Li
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Jing Pan
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
7
|
Tarhan MC, Yokokawa R, Jalabert L, Collard D, Fujita H. Pick-and-Place Assembly of Single Microtubules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701136. [PMID: 28692749 DOI: 10.1002/smll.201701136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Intracellular transport is affected by the filament network in the densely packed cytoplasm. Biophysical studies focusing on intracellular transport based on microtubule-kinesin system frequently use in vitro motility assays, which are performed either on individual microtubules or on random (or simple) microtubule networks. Assembling intricate networks with high flexibility requires the manipulation of 25 nm diameter microtubules individually, which can be achieved through the use of pick-and-place assembly. Although widely used to assemble tiny objects, pick-and-place is not a common practice for the manipulation of biological materials. Using the high-level handling capabilities of microelectromechanical systems (MEMS) technology, tweezers are designed and fabricated to pick and place single microtubule filaments. Repeated picking and placing cycles provide a multilayered and multidirectional microtubule network even for different surface topographies. On-demand assembly of microtubules forms crossings at desired angles for biophysical studies as well as complex networks that can be used as nanotransport systems.
Collapse
Affiliation(s)
- Mehmet Cagatay Tarhan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- CIRMM, IIS, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, 41 Blvd. Vauban, Lille, 59046, France
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, C3-c2S18, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Laurent Jalabert
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Dominique Collard
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroyuki Fujita
- CIRMM, IIS, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
8
|
Bhattacharyya S, Kim K, Nakazawa H, Umetsu M, Teizer W. Modulating the microtubule-tau interactions in biomotility systems by altering the chemical environment. Integr Biol (Camb) 2016; 8:1296-1300. [PMID: 27785513 DOI: 10.1039/c6ib00182c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obstacles in microtubule mediated neuronal transport can trigger dementia. We use bio-motility assays, that simulate the neuron chemistry in axonopathy, to screen chemicals, that retain the microtubule dynamics in healthy neuronal activity. Tau protein inhibits microtubule activity and leads to oligomerization. Iron(iii) untangles, whereas mono-sodium-glutamate destabilizes the microtubule oligomer.
Collapse
Affiliation(s)
- S Bhattacharyya
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - K Kim
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - H Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - M Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - W Teizer
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan and Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA. and Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|