1
|
Roberts TR, Persello A, Harea GT, Vedula EM, Isenberg BC, Zang Y, Santos J, Borenstein JT, Batchinsky AI. First 24-Hour-Long Intensive Care Unit Testing of a Clinical-Scale Microfluidic Oxygenator in Swine: A Safety and Feasibility Study. ASAIO J 2024; 70:535-544. [PMID: 38165978 DOI: 10.1097/mat.0000000000002127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Microfluidic membrane oxygenators are designed to mimic branching vasculature of the native lung during extracorporeal lung support. To date, scaling of such devices to achieve clinically relevant blood flow and lung support has been a limitation. We evaluated a novel multilayer microfluidic blood oxygenator (BLOx) capable of supporting 750-800 ml/min blood flow versus a standard hollow fiber membrane oxygenator (HFMO) in vivo during veno-venous extracorporeal life support for 24 hours in anesthetized, mechanically ventilated uninjured swine (n = 3/group). The objective was to assess feasibility, safety, and biocompatibility. Circuits remained patent and operated with stable pressures throughout 24 hours. No group differences in vital signs or evidence of end-organ damage occurred. No change in plasma free hemoglobin and von Willebrand factor multimer size distribution were observed. Platelet count decreased in BLOx at 6 hours (37% dec, P = 0.03), but not in HFMO; however, thrombin generation potential was elevated in HFMO (596 ± 81 nM·min) versus BLOx (323 ± 39 nM·min) at 24 hours ( P = 0.04). Other coagulation and inflammatory mediator results were unremarkable. BLOx required higher mechanical ventilator settings and showed lower gas transfer efficiency versus HFMO, but the stable device performance indicates that this technology is ready for further performance scaling and testing in lung injury models and during longer use conditions.
Collapse
Affiliation(s)
- Teryn R Roberts
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Antoine Persello
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - George T Harea
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Else M Vedula
- Bioengineering Division, Draper, Cambridge, Massachusetts
| | | | - Yanyi Zang
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Jose Santos
- Bioengineering Division, Draper, Cambridge, Massachusetts
| | | | - Andriy I Batchinsky
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| |
Collapse
|
2
|
Isenberg BC, Vedula EM, Santos J, Lewis DJ, Roberts TR, Harea G, Sutherland D, Landis B, Blumenstiel S, Urban J, Lang D, Teece B, Lai W, Keating R, Chiang D, Batchinsky AI, Borenstein JT. A Clinical-Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207455. [PMID: 37092588 PMCID: PMC10288269 DOI: 10.1002/advs.202207455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Recent global events such as COVID-19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology is the complexity of the blood circuit, resulting in clotting and bleeding and necessitating treatment in specialized care centers. Microfluidic oxygenators represent a promising potential solution, but have not reached the scale or performance required for comparison with conventional hollow fiber membrane oxygenators (HFMOs). Here the development and demonstration of the first microfluidic respiratory assist device at a clinical scale is reported, demonstrating efficient oxygen transfer at blood flow rates of 750 mL min⁻1 , the highest ever reported for a microfluidic device. The central innovation of this technology is a fully 3D branching network of blood channels mimicking key features of the physiological microcirculation by avoiding anomalous blood flows that lead to thrombus formation and blood damage in conventional oxygenators. Low, stable blood pressure drop, low hemolysis, and consistent oxygen transfer, in 24-hour pilot large animal experiments are demonstrated - a key step toward translation of this technology to the clinic for treatment of a range of lung diseases.
Collapse
Affiliation(s)
| | | | - Jose Santos
- Bioengineering DivisionDraperCambridgeMA02139USA
| | | | - Teryn R. Roberts
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | - George Harea
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | | | - Beau Landis
- Bioengineering DivisionDraperCambridgeMA02139USA
| | | | - Joseph Urban
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Daniel Lang
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Bryan Teece
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - WeiXuan Lai
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Rose Keating
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Diana Chiang
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Andriy I. Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | | |
Collapse
|
3
|
Abstract
Extracorporeal membrane oxygenation (ECMO) has been advancing rapidly due to a combination of rising rates of acute and chronic lung diseases as well as significant improvements in the safety and efficacy of this therapeutic modality. However, the complexity of the ECMO blood circuit, and challenges with regard to clotting and bleeding, remain as barriers to further expansion of the technology. Recent advances in microfluidic fabrication techniques, devices, and systems present an opportunity to develop new solutions stemming from the ability to precisely maintain critical dimensions such as gas transfer membrane thickness and blood channel geometries, and to control levels of fluid shear within narrow ranges throughout the cartridge. Here, we present a physiologically inspired multilayer microfluidic oxygenator device that mimics physiologic blood flow patterns not only within individual layers but throughout a stacked device. Multiple layers of this microchannel device are integrated with a three-dimensional physiologically inspired distribution manifold that ensures smooth flow throughout the entire stacked device, including the critical entry and exit regions. We then demonstrate blood flows up to 200 ml/min in a multilayer device, with oxygen transfer rates capable of saturating venous blood, the highest of any microfluidic oxygenator, and a maximum blood flow rate of 480 ml/min in an eight-layer device, higher than any yet reported in a microfluidic device. Hemocompatibility and large animal studies utilizing these prototype devices are planned. Supplemental Visual Abstract, http://links.lww.com/ASAIO/A769.
Collapse
|
4
|
Astor TL, Borenstein JT. The microfluidic artificial lung: Mimicking nature's blood path design to solve the biocompatibility paradox. Artif Organs 2022; 46:1227-1239. [PMID: 35514275 DOI: 10.1111/aor.14266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
The increasing prevalence of chronic lung disease worldwide, combined with the emergence of multiple pandemics arising from respiratory viruses over the past century, highlights the need for safer and efficacious means for providing artificial lung support. Mechanical ventilation is currently used for the vast majority of patients suffering from acute and chronic lung failure, but risks further injury or infection to the patient's already compromised lung function. Extracorporeal membrane oxygenation (ECMO) has emerged as a means of providing direct gas exchange with the blood, but limited access to the technology and the complexity of the blood circuit have prevented the broader expansion of its use. A promising avenue toward simplifying and minimizing complications arising from the blood circuit, microfluidics-based artificial organ support, has emerged over the past decade as an opportunity to overcome many of the fundamental limitations of the current standard for ECMO cartridges, hollow fiber membrane oxygenators. The power of microfluidics technology for this application stems from its ability to recapitulate key aspects of physiological microcirculation, including the small dimensions of blood vessel structures and gas transfer membranes. An even greater advantage of microfluidics, the ability to configure blood flow patterns that mimic the smooth, branching nature of vascular networks, holds the potential to reduce the incidence of clotting and bleeding and to minimize reliance on anticoagulants. Here, we summarize recent progress and address future directions and goals for this potentially transformative approach to artificial lung support.
Collapse
Affiliation(s)
- Todd L Astor
- Biomembretics, Inc., Boston, Massachusetts, USA.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Santos J, Vedula EM, Lai W, Isenberg BC, Lewis DJ, Lang D, Sutherland D, Roberts TR, Harea GT, Wells C, Teece B, Karandikar P, Urban J, Risoleo T, Gimbel A, Solt D, Leazer S, Chung KK, Sukavaneshvar S, Batchinsky AI, Borenstein JT. Toward Development of a Higher Flow Rate Hemocompatible Biomimetic Microfluidic Blood Oxygenator. MICROMACHINES 2021; 12:888. [PMID: 34442512 PMCID: PMC8398684 DOI: 10.3390/mi12080888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023]
Abstract
The recent emergence of microfluidic extracorporeal lung support technologies presents an opportunity to achieve high gas transfer efficiency and improved hemocompatibility relative to the current standard of care in extracorporeal membrane oxygenation (ECMO). However, a critical challenge in the field is the ability to scale these devices to clinically relevant blood flow rates, in part because the typically very low blood flow in a single layer of a microfluidic oxygenator device requires stacking of a logistically challenging number of layers. We have developed biomimetic microfluidic oxygenators for the past decade and report here on the development of a high-flow (30 mL/min) single-layer prototype, scalable to larger structures via stacking and assembly with blood distribution manifolds. Microfluidic oxygenators were designed with biomimetic in-layer blood distribution manifolds and arrays of parallel transfer channels, and were fabricated using high precision machined durable metal master molds and microreplication with silicone films, resulting in large area gas transfer devices. Oxygen transfer was evaluated by flowing 100% O2 at 100 mL/min and blood at 0-30 mL/min while monitoring increases in O2 partial pressures in the blood. This design resulted in an oxygen saturation increase from 65% to 95% at 20 mL/min and operation up to 30 mL/min in multiple devices, the highest value yet recorded in a single layer microfluidic device. In addition to evaluation of the device for blood oxygenation, a 6-h in vitro hemocompatibility test was conducted on devices (n = 5) at a 25 mL/min blood flow rate with heparinized swine donor blood against control circuits (n = 3). Initial hemocompatibility results indicate that this technology has the potential to benefit future applications in extracorporeal lung support technologies for acute lung injury.
Collapse
Affiliation(s)
- Jose Santos
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Else M. Vedula
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Weixuan Lai
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Brett C. Isenberg
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Diana J. Lewis
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Dan Lang
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - David Sutherland
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Teryn R. Roberts
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA; (T.R.R.); (G.T.H.); (A.I.B.)
| | - George T. Harea
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA; (T.R.R.); (G.T.H.); (A.I.B.)
| | - Christian Wells
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Bryan Teece
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Paramesh Karandikar
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Joseph Urban
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Thomas Risoleo
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Alla Gimbel
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Derek Solt
- Thrombodyne, Inc., Salt Lake City, UT 84103, USA; (D.S.); (S.S.)
| | - Sahar Leazer
- Department of Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (S.L.); (K.K.C.)
| | - Kevin K. Chung
- Department of Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (S.L.); (K.K.C.)
| | | | - Andriy I. Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA; (T.R.R.); (G.T.H.); (A.I.B.)
| | - Jeffrey T. Borenstein
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| |
Collapse
|
6
|
Gimbel AA, Hsiao JC, Kim ES, Lewis DJ, Risoleo TF, Urban JN, Borenstein JT. A high gas transfer efficiency microfluidic oxygenator for extracorporeal respiratory assist applications in critical care medicine. Artif Organs 2021; 45:E247-E264. [PMID: 33561881 DOI: 10.1111/aor.13935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Advances in microfluidics technologies have spurred the development of a new generation of microfluidic respiratory assist devices, constructed using microfabrication techniques capable of producing microchannel dimensions similar to those found in human capillaries and gas transfer films in the same thickness range as the alveolar membrane. These devices have been tested in laboratory settings and in some cases in extracorporeal animal experiments, yet none have been advanced to human clinical studies. A major challenge in the development of microfluidic oxygenators is the difficulty in scaling the technology toward high blood flows necessary to support adult humans; such scaling efforts are often limited by the complexity of the fabrication process and the manner in which blood is distributed in a three-dimensional network of microchannels. Conceptually, a central advantage of microfluidic oxygenators over existing hollow-fiber membrane-based configurations is the potential for shallower channels and thinner gas transfer membranes, features that reduce oxygen diffusion distances, to result in a higher gas transfer efficiency defined as the ratio of the volume of oxygen transferred to the blood per unit time to the active surface area of the gas transfer membrane. If this ratio is not significantly higher than values reported for hollow fiber membrane oxygenators (HFMO), then the expected advantage of the microfluidic approach would not be realized in practice, potentially due to challenges encountered in blood distribution strategies when scaling microfluidic designs to higher flow rates. Here, we report on scaling of a microfluidic oxygenator design from 4 to 92 mL/min blood flow, within an order of magnitude of the flow rate required for neonatal applications. This scaled device is shown to have a gas transfer efficiency higher than any other reported system in the literature, including other microfluidic prototypes and commercial HFMO cartridges. While the high oxygen transfer efficiency is a promising advance toward clinical scaling of a microfluidic architecture, it is accompanied by an excessive blood pressure drop in the circuit, arising from a combination of shallow gas transfer channels and equally shallow distribution manifolds. Therefore, next-generation microfluidic oxygenators will require novel design and fabrication strategies to minimize pressure drops while maintaining very high oxygen transfer efficiencies.
Collapse
Affiliation(s)
| | | | - Ernest S Kim
- Bioengineering Division, Draper, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
7
|
Gimbel AA, Flores E, Koo A, García-Cardeña G, Borenstein JT. Development of a biomimetic microfluidic oxygen transfer device. LAB ON A CHIP 2016; 16:3227-34. [PMID: 27411972 PMCID: PMC4987252 DOI: 10.1039/c6lc00641h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Blood oxygenators provide crucial life support for patients suffering from respiratory failure, but their use is severely limited by the complex nature of the blood circuit and by complications including bleeding and clotting. We have fabricated and tested a multilayer microfluidic blood oxygenation prototype designed to have a lower blood prime volume and improved blood circulation relative to current hollow fiber cartridge oxygenators. Here we address processes for scaling the device toward clinically relevant oxygen transfer rates while maintaining a low prime volume of blood in the device, which is required for clinical applications in cardiopulmonary support and ultimately for chronic use. Approaches for scaling the device toward clinically relevant gas transfer rates, both by expanding the active surface area of the network of blood microchannels in a planar layer and by increasing the number of microfluidic layers stacked together in a three-dimensional device are addressed. In addition to reducing prime volume and enhancing gas transfer efficiency, the geometric properties of the microchannel networks are designed to increase device safety by providing a biomimetic and physiologically realistic flow path for the blood. Safety and hemocompatibility are also influenced by blood-surface interactions within the device. In order to further enhance device safety and hemocompatibility, we have demonstrated successful coating of the blood flow pathways with human endothelial cells, in order to confer the ability of the endothelium to inhibit coagulation and thrombus formation. Blood testing results provide confirmation of fibrin clot formation in non-endothelialized devices, while negligible clot formation was documented in cell-coated devices. Gas transfer testing demonstrates that the endothelial lining does not reduce the transfer efficiency relative to acellular devices. This process of scaling the microfluidic architecture and utilizing autologous cells to line the channels and mitigate coagulation represents a promising avenue for therapy for patients suffering from a range of acute and chronic lung diseases.
Collapse
Affiliation(s)
- A A Gimbel
- Department of Biomedical Engineering, The Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139, USA.
| | - E Flores
- Department of Biomedical Engineering, The Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139, USA.
| | - A Koo
- Laboratory for Systems Biology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - G García-Cardeña
- Laboratory for Systems Biology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - J T Borenstein
- Department of Biomedical Engineering, The Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Potkay JA. Reply to the 'Comment on "The promise of microfluidic artificial lungs"' by G. Wagner, A. Kaesler, U. Steinseifer, T. Schmitz-Rode and J. Arens, Lab Chip, 2016, 16. LAB ON A CHIP 2016; 16:1274-1277. [PMID: 26957040 DOI: 10.1039/c6lc00221h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This response explores and discusses the critiques of Wagner et al. in their "Comment on 'The promise of microfluidic artificial lungs' by Joseph A. Potkay, Lab Chip, 2014, 14, 4122-4138".
Collapse
Affiliation(s)
- Joseph A Potkay
- VA Ann Arbor Healthcare System, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|